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Abstract 
 

Evolutionary models are at the heart of numerous bioinformatic and molecular evolution 

challenges such as searching for remote homologous sequences, phylogenetic 

reconstruction, and detecting positive and purifying selection. In this chapter, we review 

probabilistic evolutionary models used for reconstructing ancestral protein sequences, 

and discuss their impact on the accuracy of the reconstructed sequences. We discuss 

various aspects of current models, such as among site rate variation, variation of the 

substitution matrix among positions, non-homogeneity and non-stationarity as well as the 

covarion process. We also present an algorithmic approach that uses external information 

to increase the accuracy of ancestral reconstruction. Model selection, Bayesian 

approaches for ancestral reconstruction, the handling of missing characters and gapped 

positions and the integration of structural information on ancestral sequence 

reconstruction are also discussed. Finally, computational aspects of joint and marginal 

ancestral sequence reconstruction are presented.
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1. Probabilistic Evolutionary Models 
 

Recent large-scale sequencing efforts are changing the dogma of biological research. To 

understand and utilize the ever-increasing sequence databases, one must use sequence 

evolutionary models (reviewed in Whelan et al. 2001). These models are fundamental in 

various bioinformatics applications, such as protein structure prediction, protein function 

prediction, sequence motif finding, active site prediction, evolutionary studies, gene 

prediction, comparative genomics, RNA structure predictions, tree reconstruction and 

ancestral sequence reconstruction (ASR). When using evolutionary models, we have to 

be careful in choosing the model assumptions. There are many examples where the use of 

unrealistic models of sequence evolution leads to erroneous conclusions (Pupko et al. 

2002b; Sullivan and Swofford 1997). Novel models of sequence evolution are 

continuously being developed both in terms of modeling choices and computational tools. 

Advanced statistical techniques are used to learn parameters of these models and to 

predict with them. Special effort is directed to better take into account realistic biological 

phenomena, removing possible sources of error from existing oversimplified models. In 

this chapter, the effect of the model assumptions on ASR will be discussed. Existing 

methods for sequence reconstruction are based on the Maximum Parsimony (MP) 

criterion or on probabilistic models. ASR using probabilistic models is based on either 

the Maximum Likelihood (ML) or the Bayesian paradigms. This chapter will focus on 

probabilistic based methods for ASR of protein coding sequences. However, for 

completeness, in the following section we briefly describe ASR based on the MP 

criterion, which was widely used before probabilistic ASR methodology was developed. 

 

2. Ancestral Sequence Reconstruction Based On the Maximum 

Parsimony Criterion 
 

The idea of maximum parsimony (MP) is to identify the ancestral states at each node of a 

tree that minimize the number of character changes needed to explain the observed 

differences among the sequences at the leaves. Algorithms for ASR based on this 

criterion were developed by Fitch (1971), Sankoff (1975), and Sankoff and Rousseau 

(1975). These algorithms use dynamic programming, ensuring efficient reconstruction. 

The Fitch algorithm, introduced with nucleotide sequence data, penalizes equally any 

change among the four character states (A, C, G, and T). For the reconstruction of a 

specific position, the algorithm proceeds by assigning to each node of the tree a set of 

character states that are compatible with minimum number of changes. The algorithm 

processes the tree in post-order, i.e., each tree node is visited only after its descendants 

are visited. Thus, the algorithm starts by assigning character sets to the leaves of the tree. 

If, for example, a leaf is labeled by the character A, a set {A} is assigned to that leaf. 

Next, an internal node for which both descendents have already been visited is evaluated. 

The set assigned to this internal node is the intersection of the sets at its two descendant 

nodes if this intersection is not empty, or the union of the two sets if the intersection is 

empty. If the new set is a union, one change is counted so that the number of changes is 

the number of the union operations. The next step is to traverse the tree from root to 

leaves, in pre-order, to determine the ancestral states for internal nodes. Initially the 
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ancestral state at the root is equal to the character state in its set. If this set includes more 

than one character different equally parsimonious reconstructions exist. Then, each 

descendent of the root is evaluated as follows: if the ancestral state at the root is a 

member of the set of the descendent node the same ancestral state is assigned to the 

descendent node, otherwise another state from the set in the descendent node is chosen. 

This procedure is applied for each node in the tree. This procedure will find some of the 

most parsimonious reconstructions but not all. To guarantee that all most parsimonious 

reconstructions are found, comparisons involving the outgroups of a node must be 

performed (Harvey and Pagel 1991; Maddison et al. 1984). 

To exemplify the algorithm of ASR using the Fitch's algorithm consider the 

simple 5-taxa tree in figure 1: 

 

 
Fig. 1 

 

For the character illustrated, the data observed are X1 = A, X2 = C, X3 = G, X4 = C, and 

X5 = T. At the leaves the character sets are simply: X1 = {A}, X2 = {C}, X3 = {G}, X4 = 

{C}, and X5 = {T}. At node X6, the intersection of the sets of its two descendants X1 and 

X2 is{ } { }A C φ∩ = . Hence, the union set is assigned:{ } { } { , }A C A C∪ = . Likewise, the 

union set of X3 and X4 is assigned at node X7, i.e.,{ } { } { , }G C G C∪ = . Now the set at 

node X8 can be determined, since the intersection of sets X5 and X7 is again empty, the 

union of these sets{ , , }G C T is assigned. Finally the set in the root (X9) is the intersection 

of the sets X8 and X6: { , } { , , } { }A C G C T C∩ = . Three union operations were needed thus 

a minimum of three changes is needed for this reconstruction. In the next step, the 

ancestral states are determined (marked in bold type in figure 1) by traversing the tree in 

pre-order (from the root to the leaves). First the state C is determined at the root; the state 

at X8 is also set to C since this state is the ancestral state in the parent (X9) and is a 

member of the set at that node (X8). Similarly, the state at X6 is C since this state is the 

ancestral state in the parent, as well as a member of the set at node X6. Finally, the state at 

node X7 is assigned and is equal to C. 

 The Sankoff (1975) algorithm is a generalization of Fitch's algorithm. Instead of 

assuming all state changes are equally likely, it allows different costs for different 

X7 ={G,C} 

X3={G} X4={C} 

X8={G,C,T} 

X9={C} 

 

X6={A,C} 

X1={A} X2={C} X5={T} 
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character changes. Similarly to the Fitch's algorithm, the tree is visited in post-order 

followed by pre-order steps.  

 Both algorithms may reconstruct more than one ancestral state for each node. 

When the results are ambiguous two different methods of assignment: acceleration 

transformation (ACCTRAN) or delayed transformation (DELTRAN) can be applied 

(Swofford and Maddison 1987). ACCTRAN assumes that the character changes happen 

at the earliest possible point and thus prefer reversals over convergences. DELTRAN 

tries to delay the changes and thus maximizes parallelism. 

 

3. Ancestral Sequence Reconstruction Using Probabilistic Models 
 

In phylogeny, probabilistic models (both maximum likelihood and Bayesian approaches) 

are considered the state-of-the-art methods for tree reconstruction (Holder and Lewis 

2003). Felsenstein’s (1981) seminal work showing how to efficiently compute the 

likelihood of a tree, together with the efficient computer program PHYLIP (Felsenstein 

2005, distributed from 1980) boosted interest in probabilistic models for phylogeny. 

During the next two decades, such probabilistic approach replaced the previously more 

common MP approach as numerous studies demonstrated the many shortcomings of the 

later (e.g., Holder and Lewis 2003). For instance, MP is inherently biased toward 

overestimating the number of ‘‘common to rare’’ changes (Eyre-Walker 1998). 

Furthermore, this method does not supply statistically robust means for discriminating 

among equally parsimonious reconstructions (Yang et al. 1995). Unlike MP, the 

probabilistic approach also allows the statistical testing of various hypotheses, such as 

testing whether two tree topologies are significantly different or testing for a 

monophyletic origin of a clade (reviewed in Goldman et al. 2000).  

 The history of ASR followed that of tree reconstruction, albeit with a delay. Until 

the concept of probabilistic sequence reconstruction was introduced in the early 90’s 

(Gonnet and Benner 1991; Koshi and Goldstein 1996; Schluter 1995; Yang et al. 1995), 

MP was the method of choice (e.g., Jermann et al. 1995; Stewart 1995). However, it is 

clear that the same MP shortcomings that have been mentioned in the context of tree 

reconstruction are also valid for ASR that is parsimony based. Later Koshi and Goldstein 

(1996), and Pupko et al. (2000) developed efficient algorithms for both joint and 

marginal reconstruction using the probabilistic approach (see below for a detailed 

explanation of these concepts). 

 A vital advance in the development of evolutionary models was the consideration 

of heterogeneity of evolutionary rates among sequence sites (Yang 1993). Yang has 

shown that a model that takes into account such among-site-rate-variation significantly 

increases the tree likelihood. In the case of ASR, Pupko et al. (2002c) showed via 

simulations that failure to account for among site rate variation also reduces the accuracy 

of ASR and results in lower likelihood for the reconstructed sequences. As can be 

expected, a general pattern emerges: models that better fit data for tree reconstruction are 

also better for ASR. Areas in which model improvements have been attempted include: 

accounting for rate variation between different amino-acids (the substitution matrix) and 

the variation of this substitution matrix among different sites of a protein, and among 

different branches of the phylogenetic tree. The tree and its associated branches are also 

considered as part of the probabilistic model. Thus, the impact of taking into account 
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uncertainties in tree topology and model parameters within a Bayesian approach on the 

accuracy of ASR was also explored. In the subsequent sections we describe each aspect 

in details. 

 

4. How Ancestral Sequences are Computed Using Probabilistic 

Models 
 

To exemplify the concept of probabilistic ASR consider the following simple 4-taxa tree. 

  

 
 

Fig. 2 

 

For simplicity we consider a two-state (0 or 1) alphabet (for example, polar versus non 

polar amino-acids). The ancestral character assignments, x5 and x6 at the internal nodes 

X5 and X6 are unknown. Numbers above branches indicate branch lengths, i.e., average 

number of substitution per sequence site. In all probability-based models, the 

probabilities are expressed in terms of summations and multiplications of Pij(t) factors, 

the probability that character i will be replaced by character j along a branch of length t. 

The Pij(t) factors are usually expressed in a matrix form P(t), so that [P(t)]ij = Pij(t). The 

matrix P(t) can be computed by P(t) = e
Qt

, where Q is the instantaneous rate matrix and t 

the branch length (Felsenstein 2004). The probability model also contains initial 

probabilities: for each amino acid x, P(x) denotes the probability of observing x at the 

root of the tree. The likelihood of the data describes the probability of observing the 

characters at the leaves given the tree topology, the branch lengths and the Pij(t) factors. 

Thus, the following expression represents the likelihood of the tree in figure 2. 

)2.0()1.0()4.0()3.0()2.0()(
46366525

5 6

15 ,,,,,5 xxxxxxxx

x x

xx PPPPPxP∑∑ .  (1) 

This likelihood is a sum of 4 different terms, each corresponding to a specific ancestral 

sequence assignment (x5=x6=0, x5=x6=1, x5=0 and x6=1, x5=1 and x6=0). In this case, 

internal node X5 was arbitrarily chosen as the root of the tree. Most evolutionary models 

used are time reversible. In mathematical terms, a model is time reversible if 

P(i)Pij(t)=P(j)Pji(t) for all pairs of characters, i and j. Felsenstein (1981) showed that for 

time reversible models, the position of the root of the tree does not effect the likelihood 

score. The joint character assignment (x5, x6) which contributes the most to the above 

likelihood is called the joint ancestral sequence reconstruction and is explicitly given by 

the expression: 

0.3 

0.4 

0.1 

0.2 

0.2 

X4=0 

X5=x5 

X3=0 

X2=0 

X6=x6 

X1=0 
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))2.0()1.0()4.0()3.0()2.0()((
4,3,6,2,1,5, 6655565

argmax xxxxxxxxxxxx PPPPPxP . (2) 

The maximum of the above expression is the likelihood of the joint reconstruction. 

 In essence, x5 and x6 are two non-independent random variables over the [0, 1] 

set. The term of equation 1 above, in which x5=0, and x6=0, corresponds to 

P(x5=0,x6=0,data), whereas “data” refers to x1=0, x2=0, x3=1, and x4=0. The probability of 

x5=0 and x6=0 given the data is simply  

)(

),0,0(
)|0,0( 65

65
dataP

dataxxP
dataxxP

==
===      (3) 

P(data) is exactly the expression given in equation (1) above. The four possible values 

P(x5 , x6 | data) can be expressed in a tabular form: 

 

 x6 = 0 x6 = 1 sum 

x5 = 0 )|0,0( 65 dataxxP ==  )|1,0( 65 dataxxP ==  )|0( 5 dataxP =  

x5 = 1 )|0,1( 65 dataxxP ==  )|1,1( 65 dataxxP ==  )|1( 5 dataxP =  

sum )|0( 6 dataxP =  )|1( 6 dataxP =  1 

  

From these joint probabilities, one can easily compute the marginal probabilities. For 

example, the probability that character 0 was the ancestral state at node X6, given the 

available current sequence is )|0( 6 dataxP = = )|0,0( 65 dataxxP == + )|0,1( 65 dataxxP == . 

Thus, if we are interested in the best character assignment to node X6, we should compare 

)|0( 6 dataxP =  and )|1( 6 dataxP =  ― if the former is higher, 0 is the most likely 

reconstruction at this node, otherwise it is 1. As was shown by Pupko et al. (2000), joint 

and marginal reconstructions are not always the same. If for example )|0,0( 65 dataxxP ==  

= 0.4, )|1,0( 65 dataxxP == =0.3, )|0,1( 65 dataxxP == =0.05, )|1,1( 65 dataxxP == =0.25, the 

highest would be the first, indicating character 0 at both internal nodes. However, the 

marginal probabilities of assigning 1 to node 6 would be 0.55, indicating that this is the 

most likely marginal reconstruction. A similar explanation of such ancestral 

reconstruction probabilities can be found in Koshi and Goldstein (1996) and Yang et al. 

(1995). 

 

 

5. Ancestral Sequence Reconstruction Taking Into Account Among 

Site Rate Variation 

 
While heterogeneity of the number of amino-acid replacements in different sites, can 

result from the stochastic nature of the process, it was understood that the observed 

pattern of variability in the number of replacement significantly deviates from the 

expected pattern under a model which assumes homogenous rate at all sites (Uzzell and 

Corbin 1971). This rate heterogeneity stems from the fact that not all sites in a protein are 

subject to the same evolutionary constraints. Sites that are important to maintaining the 

structure of function of a protein, such as the active site residues, are usually highly 
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conserved, while other sites evolve at higher rates. Among site rare variation (ASRV) 

models aim to mathematically express this heterogeneity of evolutionary rates across 

sites. 

 In ASRV models it is assumed that each site has a fixed rate r, which indicates 

how fast this position evolves relative to the average rate over all positions (Yang 1993). 

Thus, a site with a rate of 2 evolves twice as fast as the average, i.e., the expected number 

of substitutions in this site is twice that of the average. More formally, when a position 

evolves at a rate r, we assume that the rate matrix Q underlying the site’s Markovian’s 

process is multiplied by r. We note that since P(t) = e
Qt

, the same replacement 

probabilities will be obtained by either multiplying the rate matrix by r or by multiplying 

the branch length t by the same factor r. This equivalency shows that the likelihood of a 

position that evolves at a rate r can be computed by first multiplying all the branch 

lengths of the tree by r, and then computing the likelihood of that position with Q. This 

allows computing the likelihood of all sites with the same Q, rather with a different Q 

matrix for each rate, thus significantly reducing computation times. 

The rate at each site is in general unknown. Whereas one can try to estimate the 

most likely rate at each site (e.g., Nielsen 1997; Pupko et al. 2002a), when the goal is to 

reconstruct the tree topology or the ancestral characters, it is preferable to include the 

various possible rates in the computation in a probabilistic manner (Felsenstein 2001). 

Thus, it is usually assumed that several rates are allowed at each site, each rate with a 

specific probability. Given such a rate distribution, the likelihood of the data is computed 

by summing the likelihood over all possible rates, taking into account their probabilities. 

A discrete approximation of the gamma distribution (Yang et al. 1994) is by far the most 

widely used rate distribution.  

 In the paper of Yang (1995) on probabilistic ancestral sequence reconstruction, 

ASRV was not taken into account. Yang suggested that “the relative contributions to the 

likelihood by different reconstructions at a site is unlikely to change significantly when 

the branch lengths are multiplied by a constant…” Although this statement may be true 

regarding one most likely character at a specific node at a specific site, it is not true for 

the probability vector: the probabilities of each character at each node and site 

(xxxChapterGina). The most likely character is just the one that maximizes the 

probability vector. This probability vector is often taken to represent the confidence 

interval of the reconstruction, and moreover, it is used in various applications such as 

detecting co-evolving substitutions and substitution mapping (Bollback 2006; Dimmic et 

al. 2005; Dutheil et al. 2005) and detecting radical replacements (Pupko et al. 2003). It is 

intuitively expected that the most likely reconstruction will be less sensitive to model 

assumptions. Yet, this is clearly not the case for probability vectors and for applications 

which use such vectors as part of their computations. Furthermore, it was later shown that 

taking into account ASRV significantly increases the accuracy of the most likely 

reconstruction, especially for sequences that are highly diverged (Pupko et al. 2002c). 

Thus, ASRV should be especially critical when highly diverged sequences are 

reconstructed, which is often the case (e.g., Chang et al. 2002; Thornton 2001).  

 In some cases, computing ancestral sequences using ASRV model is not trivial. 

When marginal reconstruction is needed, computational time is linear with the number of 

sequences whether or not ASRV is assumed. However, computing joint reconstruction 

assuming ASRV is exponential with the number of sequences. To this end, Pupko et al. 
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(2002c) developed an efficient branch-and-bound algorithm that, although exponential in 

the worst case, can handle dozens of sequences in most practical cases. It should be noted 

that this algorithm guarantees finding the joint ML reconstruction, i.e., it is not a 

heuristic approach.  

 One limitation of all ASRV models discussed above is that they assume a 

constant rate throughout evolution, which is not always the case. This issue is discussed 

in section 7. 

 

6. Model Selection and Ancestral Sequence Reconstruction  

 
Which rate distribution is best for ancestral sequence reconstruction? As in phylogenetic 

reconstruction, the “best” distribution cannot be determined a-priori and should be 

determined based on the available data. The most widely used distribution for modeling 

ASRV is the discrete gamma distribution. Is the discrete gamma distribution the best? In 

terms of likelihood it seems that allowing a proportion of the sites to be invariable and 

having the rest of the rates sampled from a gamma distribution results in an improved 

likelihood (Gu et al. 1995). However, this “Gamma + Invariant” model is also not ideal, 

as the proportion of invariant sites seems to be highly sensitive to the amount of 

sequences used in the analysis. Recently, Mayrose et al. (2005) suggested using a mixture 

of gamma distributions to better account for the complicated pattern of ASRV. This 

model significantly increases the likelihood and it is expected that it will also increase the 

accuracy of ancestral sequence reconstructions and methods that rely on them. 

 Complex evolutionary models are usually more realistic from the biological point 

of view. Yet, they often require the estimation of additional parameters from the same 

amount of data, and hence, the standard error of each estimated parameter is increased. 

This tradeoff between rich models with many parameters and simple models with a few 

parameters is the topic of extensive research in statistics, which is known as model 

selection (Burnham and Anderson 2003). In general, criteria such as the Akaike 

Information Criterion (AIC) and the likelihood ratio test (LRT) (Posada and Buckley 

2004) are often used to compare different models. Hence, it is advisable to search for the 

best-fitting model for the given data using programs such as ProTest (Abascal et al. 

2005), and only then to perform ASR using this best model. Theoretically, it is best to 

estimate both the ancestral sequences and the model parameters simultaneously. 

However, a two stage approach, consisting of first finding the parameters that maximize 

the likelihood of the data (average over all reconstructions), and then fixing these 

parameters for the ASR is more efficient and should provide essentially identical results 

as compared to the simultaneous approach. 

 

7. The Instantaneous Rate Matrix and its Impact on Ancestral 

Sequence Reconstruction  
 

As stated above, current likelihood models are based on two components: the rate matrix 

Q which determines the substitution probabilities and the ASRV parameters. The 

determination of Q is critical to any evolutionary model. As it turns out, different 

approaches for the determination of Q were developed for DNA (coding or non-coding), 
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RNA, amino-acid, and codons. As the focus of this book is on ancestral protein 

sequences, we will describe in detail only amino-acid and codon based matrices. 

 Most amino-acid matrices are “empirical”. Empirical matrices are derived from 

large datasets and hence accurate estimates of amino-acid replacement probabilities can 

be obtained. A few empirical amino-acid replacement matrices have been previously 

proposed (Adachi and Hasegawa 1996; Dayhoff et al. 1978; Gonnet et al. 1992; Jones et 

al. 1992; Whelan and Goldman 2001). These matrices are extensively used in amino-acid 

based applications such as programs for multiple sequence alignment, detecting distant 

homologs, phylogenetic tree, and ancestral sequence reconstruction (e.g., Altschul et al. 

1997; Penny and Hasegawa 1997; e.g., Thompson et al. 1994). The strength of empirical 

matrices stems from the fact that they are derived from averaging over many genes from 

various organisms, and thus, the rate matrix entries usually correspond to accurate 

estimation for the average replacement probabilities. However, in these matrices, no 

information about replacement probabilities can be learned from the specific data 

analyzed, i.e., Q has no free parameters. This concern can be a major difficulty when the 

protein analyzed evolves in a manner distinct from the “average” protein. 

 Should the same amino-acid matrix be used to model the evolution of all positions 

of a given protein? It is well known that not all regions within a protein evolve under the 

same evolutionary constraints. For example, transmembrane regions of proteins are 

known to evolve under different evolutionary constraints than non-transmembrane 

regions. Jones, Taylor, and Thornton (1994) have computed specific amino-acid 

replacement matrices for transmembrane and non-transmembrane domains. Other 

context-dependent matrices were developed for secondary structures (alpha helices, beta 

sheets and loops) or for buried versus exposed structural elements (Koshi and Goldstein 

1995). Unfortunately, these matrices are not commonly used for ASR, although it is 

expected that using an alpha helix based matrix when reconstructing the ancestral 

characters of an alpha helix region will result in more accurate reconstruction compared 

to a general matrix such as the widely used JTT matrix of Jones et al. (1992). In addition, 

specific amino-acid matrices were developed for the mitochondria (Adachi and 

Hasegawa 1996) and for chloroplasts genomes (Adachi et al. 2000). These matrices 

reflect both the different mutation pattern in these genomes (correlated with the different 

genetic codes used in these genomes, the different replication machinery, etc.), and the 

different selection pressures. With the advent of more sophisticated algorithms for 

constructing amino-acid replacement models (e.g., Muller et al. 2002; Muller and 

Vingron 2000), it is expected that more such context-dependent matrices will be 

developed. 

 An effort was made to create mechanistic models for amino-acid replacement 

probabilities - models which include parameters that are fitted to each data analyzed. For 

example, in some models Qij depends on the difference in fitness between the pair of 

amino-acid, which is based on some physical-chemical properties, such as alpha helical 

propensity or hydrophobicity (Koshi and Goldstein 1998; Koshi et al. 1997). Another 

approach is to construct amino-acid based matrices from codon models (Yang et al. 

1998).These models provide an intriguing alternative to the commonly used empirical 

matrices. More research is needed to test their applicability for phylogenetic tree 

inference and for ASR.  
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 All the models suggested above assumed that the same Q matrix models all sites. 

These models, thus, do not allow heterogeneity of substitution pattern among sites. 

Models that take into account among-site substitution-variation are similar in concept to 

discrete ASRV models, in the sense that in the former, each site can evolve according to 

some predefined rate category, and in the latter, each site can evolve according to some 

predefined Q matrix. Such an approach was used by Dimmic et al. (2000), in which 

several Q matrices were used to model mitochondrial proteins - each such matrix 

constructed so that it can model different selection forces underlying the evolution of the 

various sites of these proteins. 

 Goldman and Yang (1994) and Muse and Gaut (1994) were among the first to 

suggest mechanistic codon-based evolutionary models. The more sophisticated Goldman 

and Yang (1994) model takes into account the transition-transversion bias, the codon 

frequencies, and the different replacement probabilities between amino acids based on the 

Grantham (1974) physico-chemical distance matrix. However, these models did not 

account for the heterogeneity of the evolutionary selection pressure among protein sites. 

Nielsen and Yang (1998) and Yang et al. (2000) further developed mechanistic Bayesian 

models that accounts for such selection heterogeneity. In their model, a prior distribution 

of the ratio of the nonsynonymous substitutions rate (Ka) to the synonymous substitutions 

rate (Ks) is assumed. Sites showing Ka/Ks values significantly lower than 1 are regarded 

as undergoing purifying selection and therefore may have a functionally or structurally 

important role. Sites showing Ka/Ks values significantly higher than 1 are indicative of 

positive Darwinian selection, suggesting adaptive evolution. However, unlike the model 

of Goldman and Yang (1994), these models ignore the fact that distinct amino acids 

differ in their replacement rates. Recently, an empirical codon substitution matrix was 

developed by Schneider et al. (2005). This model was used to estimate synonymous 

distance between coding sequences (Schneider et al. 2006). Another direction is the 

derivation of codon matrices from empirical amino-acid matrices (Doron- Faigenboim 

and Pupko. in preparation). 

 Current efforts in codon models focus on their applicability for detecting positive 

selection. However, it is clear that for coding sequences, these models can be very helpful 

for phylogenetic reconstruction and ASR. In this respect, the different substitution rates 

between amino-acids must be taken into account as in the original paper of Goldman and 

Yang (1994).  

 

8. Covarion Models and Their Impact on Ancestral Sequence 

Reconstruction 
 

Several new approaches show promise in generating better models of protein evolution. 

The realization that different sites in a protein evolve at different rates has led to the use 

of the abovementioned ASRV models. However, these models assume that over the 

course of evolution, the rate of substitution remains unchanged at a given protein site. 

Recent studies have shown this may not always be the case (e.g., Lopez et al. 2002). Sites 

that are highly conserved in one part of the tree may be variable in the rest of the tree and 

vice versa. Although this notion, termed covarion, was described decades ago by Fitch 

and Markowitz (1970), an evolutionary probabilistic model for the covarion process was 

only recently developed (Galtier 2001)+(xxxChapterGina). Galtier’s covarion model 
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assumes that the rate itself is not fixed for each site, but rather follows a continuous time 

Markov process along the tree, with a specific rate-change parameter. The higher this rate 

switching parameter, the more common the rate jumps. In his pioneering work Galtier 

applied such a covarion model to infer the ancestral GC content of the most recent 

common ancestor (MRCA) of extant life forms. The moderate GC content found in this 

study brings into question the previously accepted hypothesis of a thermophilic origin of 

the MRCA. Gaucher et al. (2003) also used ASR to study whether the ancient bacteria 

were thermophiles. In this work, ancestral elongation factors sequences were inferred, 

synthesized in the lab and finally, their activity was empirically measured as a function of 

the temperature. Interestingly, the optimal temperature of the ancestral protein found 

strengthens the "classical" view that ancient bacteria were thermophiles. 

 It is difficult to draw many conclusions about the effect of covarion on ASR, 

since in Galtier’s study the covarion model was used to study ancestral GC content rather 

than to infer ancestral sequences. Thus, the effect of the covarion assumption on the 

accuracy of the reconstructed sequences was not tested. Furthermore, the model used was 

a non-homogenous one (see section 8), and thus no analysis was performed to determine 

the effect of accounting for the covarion in standard homogenous models. However, 

especially when highly diverged sequences are analyzed, ASR is expected to be much 

more accurate when covarion models are introduced. This is especially true as it was 

shown that refraining to take into account the covarion process underestimates the 

number of multiple substitutions (Galtier 2001).  

 

9. Deviations from Homogenous Stationary Reversible Models 
 

Standard evolutionary models assume the following three assumptions: (1) the process is 

homogenous, so that the same Q matrix models the evolution in all branches. (2) The 

process is stationary, so that on average, the same character frequencies hold for all 

branches. (3) The process is reversible, so jiij QjPQiP )()( = . These concepts are 

explained in e.g., Galtier and Gouy (1998). All these assumptions are known to be 

violated in many biological examples (e.g., Chang and Campbell 2000; Galtier and Gouy 

1995; Lockhart et al. 1994). The main reason for these assumptions is to avoid the 

introduction of too many parameters, thus risking over fitting the data (see section 5). In 

addition, models that do not make these assumptions are computationally intensive, for 

some tasks, such as finding the ML tree. Thus, these models may not be applicable even 

for moderately sized datasets. 

 When the tree topology is known, as is often the case in many ASR studies, this 

computational limitation is not a real hurdle. This enables the use of such complex 

models, and the subsequent gains of insights from these models regarding the function of 

the ancestral sequences.  

 One such example is the nonhomogenous model developed by Galtier and Gouy 

(1998). In their model, the G+C content is allow to change over time, so that each branch 

along the tree can have a distinct G+C content. They have shown via simulation studies 

that ML inference with this model can accurately infer the ancestral G+C content. They 

then used a variant of this model (allowing also ASRV) to reconstruct the G+C content in 

the MRCA (section 7).  



 12 

 Yap and Speed (2005) compared three models of nucleotide substitutions: the 

standard reversible one (REV), a stationary non reversible one (STAT) and a non 

stationary non reversible one (NONSTAT). They found that the NONSTAT model 

significantly improved the likelihood and could be used to root simple trees. In their 

NONSTAT model, the nucleotide frequencies at the root can be different from the 

stationary frequencies. Although the authors did not explore the possible effect of the 

NONSTAT model on ASR, their model suggests a way to test if the character frequencies 

at extant sequences reliably reflect those of the ancestral sequence. The effects and 

impact of the different assumptions, i.e., non-reversibility and non-stationarity on ASR 

await further investigation.  

 

10. Using Side Information 
 

Accurate ancestral sequence reconstruction depends on how well the model fits the data. 

Each model contains parameters such as tree topology, branch lengths, and the 

transition/transversion ratio that are estimated from the data. This estimation depends on 

the amount of information the data contain: in general, the more sequences and positions 

available for analysis, the higher the accuracy of each estimated parameter. However, 

when “data” are concerned, one can separate between two types of data. The first is the 

protein alignment whose ancestral sequences are to be inferred. We term this the “ASR 

data”. The second type of data is any information that is not directly related to the protein 

sequence analyzed, yet can contribute to the accuracy of the ASR. We term this second 

type “side information”.  

 Assume our goal is to reconstruct the ancestral cytochrome b of human, 

chimpanzee, gorilla and baboon. A naïve approach would consider adding an outgroup 

(e.g., mouse), and using these ASR data to search for the maximum likelihood tree 

topology and branch lengths and then to compute the ancestral sequence at the ancestor 

of these primates. A first improvement to this approach is not to search the tree topology 

based on cytochrome b sequences alone, but rather estimate the species tree based on a 

large set of orthologous sequences available for all these organisms. In this case, the 

species tree is assumed to reflect the topology of the gene trees, and this tree should be 

used for the ASR, rather than the ML tree based on the ASR data alone. 

 Such an approach was used for example in Krishnan et al. (2004) when 

reconstructing ancestral primate mitochondrial DNA. Even when a Bayesian approach, 

which takes into account many alternative trees, is considered, one should compute the 

trees’ posterior probabilities not from the ASR data alone, but rather also from all other 

available side information. When using information external to the sequences to build a 

gene tree, one should be careful to evaluate the fit of the gene tree to the imposed species 

tree. Techniques for such evaluation have been previously developed using the parsimony 

(Berglund et al. 2006) or the Bayesian (Arvestad et al. 2003) frameworks. 

 Assuming the tree topology is known, should we infer branch lengths from the 

ASR data or can we use side information for more accurate branch lengths estimation? In 

other words, for the above example, assume that in addition to the cytochrome b 

sequences, we also have the sequences of cytochrome c oxidase subunit 1 from these four 

primates and mouse – how can this information be used to more accurately estimate the 

branch lengths of the cytochrome b tree? One approach is to concatenate these two 
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datasets and infer the branch lengths from the concatenated data. However, as has been 

previously shown, concatenation is by far the least correct method for combining 

different datasets (Pupko et al. 2002b; Yang 1996). In essence, concatenation assumes 

that all genes evolve at the same rate, an assumption that is known to be wrong: some 

genes are highly conserved (slow evolving), while others are highly variable (fast 

evolving). An alternative approach (the separate model) is to assume that branch lengths 

of each dataset are independent of each other. This assumes that no information is shared 

regarding evolutionary rates of different species. It is known that mouse evolves faster 

than human for all genes, so that the branch leading to human should be, on average, 

shorter than the branch leading to mouse. When assuming the separate model, this 

information is ignored, and a possible increase in branch length accuracy is overlooked. 

Furthermore, the separate model assumes a free parameter for each branch for each 

dataset: a very large number of parameters resulting in decreased accuracy for each 

branch length. 

 A better approach, first suggest by Yang (1996), would be to assume a 

proportional model, in which a base tree topology and branch lengths are assumed to be 

shared among all members of the dataset(see also Bevan et al. 2005; Pupko et al. 2002b). 

The tree for each gene in the dataset has the same topology as this base tree, but its 

branches are multiplied by a fixed rate factor, the evolutionary rate of this gene. To 

exemplify this point consider a hypothetical case in which the analysis of many genes 

from human and chimpanzee resulted in an estimate that the chimpanzee evolves 1.05 

times faster than human. It can then be assumed that this same ratio exists between the 

branch lengths leading to human and chimpanzee in the analyzed ASR data. Knowing 

such relative evolutionary rates between organisms can significantly reduce the number 

of free parameters. We note, that for some genes, the proportionality assumption can be 

rejected, if for example, a rapid evolution of the gene in a specific lineage has occurred. 

Therefore, we suggest to first test which model best fits the entire data analyzed 

(concatenation, proportional or separate analysis) and then use the best model for branch 

length estimation.  

 Finally, should we use other vertebrate cytochrome b sequences if our goal is only 

to reconstruct the human-chimpanzee-gorilla-baboon ancestral sequence? In general, the 

answer is yes. All model parameters (tree topology and branch lengths, the alpha 

parameter of the gamma distribution, the transition/transversion ratio in case of DNA 

based model, amino acid frequencies, etc.) are more accurately inferred in cases when 

more data are available. One should always be cautious to specific cases in which this 

general more data - more accuracy assumption fails. The identification of such cases is 

strongly linked with methods aimed at identifying functional shifts in proteins, and is an 

active area of current research (e.g., Gaucher et al. 2002; Gu 2003; Pupko and Galtier 

2002). See also section 7. 

 

11. Taking into Account Uncertainties in the Tree Topology, 

Branch Lengths and Model Parameters 
 

In the empirical Bayesian approach of ASR, one computes the most likely tree topology, 

branch lengths and model parameters in the first computational step. Then, the ancestral 

sequences are reconstructed using these maximum likelihood estimates (MLE) as fixed 
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values. This approach fails to consider the uncertainty in the MLE and may result in 

overestimated confidence.  

 Bayesian methods for ASR were suggested to overcome this uncertainty 

(Huelsenbeck and Bollback 2001; Schultz and Churchill 1999). Schultz and Churchill 

(1999) studied the effect of different prior distributions on the posterior probabilities of 

ancestral states in the simple case of a two-character-states model. Their approach was 

fully Bayesian: the parameters of the prior distribution were fixed and were not 

influenced by the data.  

 Huelsenbeck and Bollback (2001) reconstructed ancestral DNA sequences using 

the HKY85 substitution model (Hasegawa et al. 1985) with ASRV. Uncertainties in the 

tree topology and branch lengths, ASRV and substitution model parameters were 

considered. Prior distributions on model parameters are assumed. In the case of ASRV, 

the Bayesian method is hierarchical: the rate at each site is assumed to follow a gamma 

distribution with parameter α, and this α is assumed to be derived from a uniform 

distribution between zero and ten. Computing exact posterior probabilities is 

computationally infeasible, so the Markov chain Monte Carlo (MCMC) technique was 

used to efficiently approximate these probabilities (see Mau et al. 1999 for an example of 

applying MCMC for tree reconstruction). 

 Consider the goal of reconstructing the ancestral sequence at a specific node of a 

given tree. One problem arises: when integrating over the space of all possible trees, how 

trees in which this node does not exist should be considered in the MCMC computation? 

Huelsenbeck and Bollback (2001) considered only trees in which this node exists in their 

computation. However, Pagel et al. (2004) have shown that such a method of 

disregarding irrelevant trees introduces a bias in the estimation of the posterior 

probability. In essence, they suggest that the uncertainty in the existence of the node must 

also be taken into account in the ASR.  

 

12. Gaps and Unknown Characters 
 

All the models described thus far do not explicitly consider gapped positions and 

unknown characters. A common technique in phylogenetic tree reconstruction is to 

exclude from the analysis all positions in which at least one sequence contains a gap. 

However, for ASR, the goal is to infer the most likely ancestral sequence and thus, it is 

essential to determine whether a character or gap is the ancestral state.  

 One approximation to escape this problem is to consider a gap as a missing 

character (e.g., Pupko et al. 2000; Yang 1997). In this approach, all possible character 

states are considered at the gapped position, in the ASR computation. One problem with 

this approach is that the ancestral sequence is always longer or equal in length compared 

to the longest sequence – clearly an unrealistic result. 

 An alternative approach is to represent a gap by adding an additional character to 

the model (thus creating an alphabet of size 21 for amino acid, or 5 for DNA/RNA). 

Since gaps are considered as all other characters, the probability of a gap being replaced 

by any other character and vice versa must be determined. There are two main difficulties 

with this approach. First, the probabilities of such hypothetical transitions from each 

amino acid to a gap and vice versa are unknown. More importantly, this approach 

assumes independency among sites. Thus, an insertion of two residues will be considered 
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as two independent “character to gap transitions”, rather than the more parsimonious 

explanation of a single insertion of two amino-acids.  

 Clearly, it is more realistic to consider insertions and deletions of more than one 

residue as components of the evolutionary model. To this end, the tree-based HMM (T-

HMM) scheme was developed (Mitchison and Durbin 1995; Mitchison 1999). In this 

approach three hidden states are allowed in each position: match, insertion, and deletion. 

Each “match state” emits a character. A Markovian substitution scheme between these 

hidden states is assumed in two dimensions: the spatial dimension across the sequence 

and the temporal dimension along evolutionary times. Qian and Goldstein (2003) have 

used this approach for finding remote homologs. To this end, they applied ASR 

methodology to build sequence profiles that were then used in the homology search. 

However, the evaluation of the impact of these models on ASR awaits further studies. 

 A different approach to deal with gaps was suggested by Edwards and Shields 

(2004). This algorithm first approximates the probabilities of gaps at each position and 

internal node, using a two-states-character model (0 for a gapped position, 1 for any other 

character). Once the ancestral state (0/1) for each node was determined, the non-gapped 

sites are estimated in an informal likelihood approach using probabilities derived from 

empirical substitution matrices. Although they show that their method is not as accurate 

as ML, their novelty is in dividing the ASR algorithm to two separate tasks: first 

reconstruct gapped versus non gapped positions and than use this reconstruction for ASR 

of un-gapped position.  

 

13. Using Structural and Physicochemical Based Information 

When Reconstructing Ancestral Proteins 
 

The different purifying selection resulting from different constraints on the structure, 

stability, foldability, and function of a protein should be considered as part of the 

evolutionary model. There are a few interesting directions towards this goal. For example 

it is possible to include information of secondary structures or surface accessibility in the 

model. This is done by considering amino acid substitution matrices for specific 

secondary structures or for buried versus exposed residues (these models are discussed in 

section 6). 

Ideally, reconstructed proteins should be stable, foldable and functional. With current 

computational techniques, it is difficult to predict if this is the case for a reconstructed 

sequence. Towards this goal, biophysical model of protein evolution were developed that 

can be used to study the relationship between reconstructed ancestral proteins and their 

stability (DePristo et al. 2005; Rastogi and Liberles 2005; Taverna and Goldstein 2000; 

Taverna and Goldstein 2002). Recently, such a model was used to study the accuracy of 

various ASR methods. In a simulation study, the thermodynamic properties of the 

reconstructed sequence were compared with these properties in the “true” ancestral 

sequences (Williams et al. 2006). Such methods are likely to have impact on the detection 

of co-evolving substitutions, and as such on ASR, since non independent evolution of 

residues in a protein is a direct result from purifying selection forces acting to maintain 

interactions between amino-acid sites, and thus maintain protein stability and proper 

folding. 
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The ongoing effort to improve existing models for protein evolution, the endeavor to 

develop more realistic models, and the integration of these models with efficient ASR 

methods should increase our ability to accurately infer ancestral sequences and genomes, 

a vital element in evolutionary research.  
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