
TAUCS A Library of
Sparse

Linear Solvers
SIVAN TOLEDO

with DORON CHEN and VLADIMIR ROTKIN
School of Computer Science

Tel-Aviv University
stoledo@tau.ac.il

http://www.tau.ac.il/~stoledo/taucs

5th May 2002

This document is the user manual for version 2.0 of TAUCS. Version 2.0 is the
first version to support both real and complex data type (both in single and
double precisions). As a consequence, the interfaces to subroutines in version
2.0 are somewhat different than in version 1.0.

Contents

1 Preliminaries 2
1.1 Introduction . 2
1.2 License . 5
1.3 Installation . 5
1.4 Learning TAUCS by Example: Sample Programs 7

2 TAUCS Fundamentals 7
2.1 Sparse Matrix Representation and Interface Conventions 7
2.2 Vectors . 11
2.3 Utility Routines . 11

3 Matrix Reordering 12

4 Sparse Direct Linear Solvers 13
4.1 In-Core Sparse Symmetric Factorizations 13
4.2 Out-of-Core Sparse Symmetric Factorizations 16
4.3 Out-of-Core Sparse Unsymmetric Factorizations 18
4.4 Inverse Factorizations . 18

1

5 Iterative Linear Solvers 19

6 Preconditioners for Iterative Linear Solvers 20
6.1 Drop-Tolerance Incomplete Cholesky 20
6.2 Maximum-Weight-Basis (Vaidya’s) Preconditioners 20
6.3 Multilevel Support-Graph Preconditioners (Including

Gremban-Miller Preconditioners) 22

7 Matrix Generators 23

1 Preliminaries

1.1 Introduction

TAUCS is a C library of sparse linear solvers. The current version of the library
includes the following functionality:

Multifrontal Supernodal Cholesky Factorization. This code is quite fast (sev-
eral times faster than MATLAB 6’s sparse Cholesky). It uses the BLAS and
LAPACK to factor and compute updates from supernodes. It uses relaxed
and amalgamated supernodes.

Left-Looking Supernodal Cholesky Factorization. Slower than the multi-
frontal solver but uses less memory.

Out-of-core Sparse Choleksy Factorization. This is a supernodal left-looking
factorization code with an associated solve routine that can solve very
large problems by storing the Cholesky factor on disk.

Out-of-core Sparse Pivoting LU Factorization. This is a supernodal left-
looking factorization code with an associated solve routine that can solve
very large problems by storing the LU factors on disk. The algorithm is
a supernodal version of the algorithm described in [8]. (New in version
2.0)

Drop-Tolerance Incomplete-Cholesky Factorization. Much slower than the
supernodal solvers when it factors a matrix completely, but it can drop
small elements from the factorization. It can also modify the diagonal el-
ements to maintain row sums. The code uses a column-based left-looking
approach with row lists.

LDLT Factorization. Column-based left-looking with row lists. Use the su-
pernodal codes instead, since they are faster, unless you really need an
LDLT factorization and not an LLT Cholesky factorization.

Ordering Codes and Interfaces to Existing Ordering Codes. The library in-
cludes a unified interface to several ordering codes, mostly existing ones.
The ordering codes include Joseph Liu’s genmmd (a minimum-degree

2

code in Fortran), Tim Davis’s amd codes (approximate minimum degree),
METIS (a nested-dissection/minimum-degree code by George Karypis
and Vipin Kumar), and a special-purpose minimum-degree code for no-
fill ordering of tree-structured matrices. All of these are symmetric order-
ings. The library also includes an interface to Tim Davis’s colamd column
ordering code for LU factorization with partial pivoting.

Matrix Operations. Matrix-vector multiplication, triangular solvers, matrix
reordering.

Matrix Input/Output. Routines to read and write sparse matrices using a sim-
ple file format with one line per nonzero, specifying the row, column, and
value.

Matrix Generators. Routines that generate finite-differences discretizations of
2- and 3-dimensional partial differential equations. Useful for testing the
solvers.

Iterative Solvers. Preconditioned conjugate-gradients and preconditioned
MINRES (See [1], for example).

Support-Graph Preconditioners. These preconditioners construct a matrix
larger than the coefficient matrix and use the Schur complement of the
larger matrix as the preconditioner. The construction routine can con-
struct Gremban-Miller preconditioners [9, 10] along with other (yet un-
documented) variants.

Vaidya’s Preconditioners. Augmented Maximum-weight-basis and
Maximum-spanning-tree preconditioners [2, 4, 6, 7, 13]. These precondi-
tioners work by dropping nonzeros from the coefficient matrix and them
factoring the preconditioner directly.

Recursive Vaidya’s Preconditioners. These preconditioners [3, 11, 13] also
drop nonzeros, but they don’t factor the resulting matrix completely. In-
stead, they eliminate rows and columns which can be eliminated without
producing much fill. They then form the Schur complement of the ma-
trix with respect to these rows and columns and drop elements from the
Schur complement, and so on. During the preconditioning operation, we
solve for the Schur complement elements iteratively.

Utility Routines. Timers (wall-clock and CPU time), physical-memory estima-
tor, and logging.

The routines that you are not likely to find in other libraries of sparse linear
solvers are the direct supernodal solvers, the out-of-core solvers, and Vaidya’s
preconditioners. The supernodal solvers are fast and not many libraries in-
clude them; in particular, I don’t think any freely-distributed library includes
a sparse Cholesky factorization that is as fast as TAUCS’s multifrontal code. I

3

am not aware of any othe library at all that includes efficient out-of-core sparse
factorizations.

As of version 2.0, the direct solvers work on real and complex matrices,
single or double precision. The iterative solvers work on real matrices only.

To get a sense of the speed of the in-core multifrontal sparse Cholesky rou-
tine, let’s compare it to MATLAB’s sparse Cholesky solver. On a 600×600 model
problem (matrix order is 360000) TAUCS reorders the matrix using a minimum
degree code that results in a Cholesky factor with approximately 12 million
nonzeros. TAUCS factors the reordered matrix in 15.6 seconds, whereas MAT-
LAB 6 takes 81.6 seconds to perform the same factorization, more than 5 times
slower. The ratio is probably even higher on 3D meshes. (These experiments
were performed with version 1.0 of the library on one processor of a 600MHz
dual-Pentium III computer running Linux.)

TAUCS is easy to use and easy to cut up in pieces. It uses a nearly trivial
design with only one externally-visible structure. If you need to use just a few
routines from the library (say, the supernodal solvers), you should be able to
compile and use almost only the files that include these routines; there are not
many dependences among source files.

Two minor design goals that the library does attempt to achieve is avoid-
ance of name-space pollution and clean failures. All the C routines in the li-
brary start with the prefix taucs and so do the name of structures and prepro-
cessor macros. Therefore, you should not have any problems using the library
together with other libraries. Also, the library attempts to free all the memory
it allocates even if it fails, so you should not worry about memory leaks. This
also allows you to try to call a solver in your program, and if it fails, simply call
another. The failed call to the first solver should not have any side effects. In
particular, starting in version 2.0 we use special infrastructure to find and elim-
inate memory leaks. This infrastructure allows us to ensure that no memory
remains allocated after the user’s program calls the appropriate free routines,
and that no memory remains allocated in case of failures. This infrastructure
also allows us to artificially induce failures; we use this feature to test the parts
of the code that handle failures (e.g., failures of malloc), parts that are normally
very rarely used.

The library is currently sequential. You can use parallelized BLAS, which
may give some speedup on shared-memory multiprocessors. We have an ex-
perimental parallel version of the multifrontal Cholesky factorization, but it is
not part of this release.

Preview of Things to Come

The next versions of the library should include

• A drop-tolerance incomplete LU factorization and nonsymmetric itera-
tive solvers. The code is written but some of it needs to be converted
from Fortran to C and it needs to be integrated into the library.

More distant versions may include

4

• A multithreaded version of the supernodal Cholesky factorizations.

Your input is welcome regarding which features you would like to see. We
have implemented quite a few features as a direct response to users’s requests
(e.g., the complex routines and the out-of-core sparse LU), so don’t be shy!

1.2 License

TAUCS comes with no warranty whatsoever and is distributed under the GNU
LGPL (Library or Lesser GNU Public Library). The license is available in
www.gnu.org. Alternatively, you can also elect to use TAUCS under the fol-
lowing UMFPACK-style license, which is simpler to understand than the LGPL:

TTAUCS Version 1.0, November 29, 2001. Copyright (c) 2001 by
Sivan Toledo, Tel-Aviv Univesity, stoledo@tau.ac.il. All Rights Re-
served.

TAUCS License:

Your use or distribution of TAUCS or any derivative code implies
that you agree to this License OR to the GNU LGPL.

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO
WARRANTY EXPRESSED OR IMPLIED. ANY USE IS AT YOUR
OWN RISK.

Permission is hereby granted to use or copy this program, provided
that the Copyright, this License, and the Availability of the original
version is retained on all copies. User documentation of any code
that uses this code or any derivative code must cite the Copyright,
this License, the Availability note, and ”Used by permission.” If this
code or any derivative code is accessible from within MATLAB, then
typing ”help taucs” must cite the Copyright, and ”type taucs” must
also cite this License and the Availability note. Permission to mod-
ify the code and to distribute modified code is granted, provided
the Copyright, this License, and the Availability note are retained,
and a notice that the code was modified is included. This software
is provided to you free of charge.

The distribution also includes the AMD symmetric ordering routines, which
come under a different, more restrictive license. Please consult this license in
the source files (say src/amdtru.f). You can compile and use the library with-
out these routines if you cannot accept their license.

1.3 Installation

Type make to compile the library and build the examples.
More specifically, make uses a platform specific configuration file,

install/make.platform where platform is the name of the operating system

5

in lowercase (linux, solaris, aix, irix). Make gets the name of the platform from
the OSTYPE environment variable which is usually set correctly. If it is not set
at all, you will get an error message with further instructions on how to set it.

If the build process fails or if there is no configuration file for your plat-
form, you will have to edit the make.platformfile in install. It should set the
name and options for the C compiler, the Fortran compiler, the linker, and the
programs ar and ranlib that build libraries, directories for additional include
files (should not be necessary), libraries, and build options.

The build-configuration file should specify the location of several libraries:
LAPACK, the BLAS, METIS, and other run-time libraries that the libraries or
compilers depend on. LAPACK is used for dense factorization routines. The
BLAS are used for dense matrix operations such as multiplication and solution
of triangular linear systems. Use a high-performance library for the BLAS,
either the vendor’s optimized library or ATLAS (www.netlib.org/atlas).
METIS is used to produce fill-reducing orderings. These libraries and the com-
pilers may depend on other libraries, such as the C and Fortran run-time li-
braries, the C math library, and possibly the threads library (if the BLAS and/or
LAPACK are multithreaded).

Build Options

You can build the library without several underlying codes if you fail to build
them properly or if you cannot accept their licenses.

AMD (approximate minimum degree ordering codes in src/amd*.f). To omit
them, remove them from the makefile and add -DNOAMD to the DEFINES
makefile variable.

COLAMD (approximate column minimum
degree ordering code in src/colamd,c). To omit, remove the reference
to src/colamd.c from the makefile and add -DNOCOLAMD to the DEFINES
makefile variable.

MMD (multiple approximate minimum degree ordering code in
src/genmmd.f). To omit, remove the source file from the makefile and
add -DNOMMD to the DEFINES makefile variable.

METIS (a graph partitioning and matrix reordering library). To omit, clear the
METISLIB in the makefile (that is, use the line METISLIB = with nothing
after the = sign) and add -DNOMETIS to the DEFINES makefile variable.

Directory Layout

The sources for the library are in src, and the sources for the examples in progs.
The include file taucs.h which you need to include in your own programs in
also in src. Binaries of the examples are built into bin and the library itself
it built into lib. The binaries and library are not placed directly under these

6

directories but under platform subdirectories so you store have binaries and
libraries for several platforms in one directory tree. As explained above, build-
configuration files are in install. The documentation is in doc.

The command make clean removes the object files from the source direc-
tories and the command make reallyclean removes all the generated files in-
cluding binaries and libraries.

An Overview of the Build Process

The build process of TAUCS compiles each C source file four times, to obtain
routines for single-precision real matrices, double-precision real, and single-
and double-precision complex matrices. We produce four object files from each
source file, with suffixes oS, oD, oC, oZ. A preprocessor variable that the make
file specifies on the command line of the compilation command determines the
data type that will be used to produce the object code.

1.4 Learning TAUCS by Example: Sample Programs

The progs directory contains example programs that you can use to test TAUCS
without writing any code, and to guide you in calling the library from your
own programs. These programs can generate matrices or read them from files,
and they can employ several solvers. The programs print out detailed usage
instructions when invoked with no arguments. The programs are

direct tests direct solvers.

iter tests iterative solvers.

memory determines the amount of main memory.

2 TAUCS Fundamentals

2.1 Sparse Matrix Representation and Interface Conventions

TAUCS uses the following compressed-column-storage (CCS) structure to rep-
resent sparse matrices. Like other TAUCS data structures and data types, it is
defined in src/taucs.h, which must be included in source files that call TAUCS
routines.

7

typedef struct {
int n; number of columns
int m; number of rows
int flags; see below
int* colptr; pointers to where columns begin in rowind and values

0-based, length is (n+1)
int* rowind; row indices, 0-based
union {

void* v;

taucs double* d;

taucs single* s;

taucs dcomplex* z;

taucs scomplex* c; }
values; numerical values

} taucs ccs matrix;

(Comments are set in italics). Before version 2.0, the type of values was
double*; since version 2.0, values is a union, to support multiple data
types. The data types taucs double, taucs single, taucs scomplex, and
taucs dcomplex correspond to C’s native float and double and to arrays of
two such numbers to represent the real and imaginary parts of complex num-
bers. In C compilers that support complex arithmetic, the build process uses
native complex representations for taucs scomplex, and taucs dcomplex (gcc
support complex arithmetic; in the future, we expect most C compilers to sup-
port complex arithmetic since this is part of the new C99 standard for the C
language). Otherwise, we use arrays of two floats or doubles.

The flags member contains the bitwise or of several symbolic constants that
describe the matrix:

TAUCS INT matrix contains integer data
TAUCS SINGLE matrix contains single-precision real data
TAUCS DOUBLE matrix contains double-precision real data
TAUCS SCOMPLEX matrix contains single-precision complex data
TAUCS DCOMPLEX matrix contains double-precision complex data
TAUCS PATTERN matrix contains no numric values, only a nonzero pattern

TAUCS TRIANGULAR matrix is triangular
TAUCS SYMMETRIC matrix is symmetric
TAUCS HERMITIAN matrix is hermitian

TAUCS LOWER matrix is lower triangular (if TAUCS TRIANGULAR is set)
or the lower part of a triangular/hermitian matrix

TAUCS UPPER upper triangular or upper part of symmetric/hermitian

In symmetric and hermitian matrices we store only one triangle, normally the
lower one. Most of the routines fail if their argument contain the upper triangle
of a symmetric/hermitian matrix.

8

Generic and Type-Specific Routines

Most of the computational and data-structure-related rourines in TAUCS have
five entry points, one for each data type (real/complex, single/double), and
one generic. The generic routine calls one of the four specific routines based on
the data type of the actual arguments. For example, the following five routines
compute the Cholesky factorization of a matrix A.

void* taucs sccs factor llt mf (taucs ccs matrix* A);

void* taucs dccs factor llt mf (taucs ccs matrix* A);

void* taucs cccs factor llt mf (taucs ccs matrix* A);

void* taucs zccs factor llt mf (taucs ccs matrix* A);

void* taucs ccs factor llt mf (taucs ccs matrix* A);

Each of the first four routines operate on a single data type. Each one
of them expects A’s elements to be of a specific data type. For example,
taucs zccs factor llt mf expects A’s elements to be of type taucs dcomplex.
Names of type-specific routines always start with taucs s, taucs d, taucs c,
or taucs z. The fifth declaration is for the generic routine, which determines
the data type using A->flags and calls the appropriate type-specific routine.
Calling the generic routine incurs a small overhead compared to calling the
appropriate type-specific routine, but this overhead is negligible in most cases.
User codes that call TAUCS should call the generic routines.

The rest of the documentation only documents generic routines.

Creating and Deleting Sparse Matrices

The following routines create and delete sparse matrices.

taucs ccs matrix* taucs ccs create(int m, int n, int nnz, flags);

void taucs ccs free (taucs ccs matrix* A);

The first routine, taucs ccs create, allocates memory for an m-by-n matrix
with space for nnz nonzeros. Its last argument specifies the data type for the
matrix, and can also specify other properties, such as symmetry. The interface
to taucs ccs create changed in version 2.0! The matrix is not initialized in
any way apart from setting the flags. The second routine frees a matrix and all
the memory associated with it.

Reading and Writing Sparse Matrices

TAUCS includes a number of routines to read and write sparse matrices from
and to files in various formats. The first pair of routines hanle ijv files, which
have a simple textual format: each line contains the row index, column index,
and numerical value of one matrix entry. Indices are 1-based. The file does not
contain any flags regarding symmetry and so on, so you have to pass both data
type and structural flags to taucs ccs read ijv., which reads a matrix from a
file.

9

taucs ccs matrix* taucs ccs read ijv (char* filename,int flags);

int taucs ccs write ijv(taucs ccs matrix* A, char* filename);

The ijv-reading routine assumes that the lower part of symmetric and her-
mitian matrices is stored in the file; if the upper part is also stored, the routine
simply ignores it. The ijv-writing routine always writes all the matrix’s entries
into the file. You can read ijv files into MATLAB using the command

read ’Afile.ijv’ -ascii; A=spconvert(Afile);

The next format, the mtx format, is almost identical to the ijv format, but the
first line in the file contains the number of rows and columns, and nonzeros in
the matrix.

taucs ccs matrix* taucs ccs read mtx (char* filename,int flags);

int taucs ccs write mtx(taucs ccs matrix* A, char* filename);

The ccs format is also a textual format. The first integer in the file store the ma-
trix’s dimension n. It is followed the integers in the arrays colptr and rowind
in the CCS data structure, and then the array of real or complex values. This is
essentially a textual representation for square CCS matrices, but excluding the
flags.

taucs ccs matrix* taucs ccs read ccs (char* filename,int flags);

int taucs ccs write ccs(taucs ccs matrix* A, char* filename);

The binary format simply dumps a taucs ccs matrix into (or from) a binary
file. This format is not archival (it may change in future versions of TAUCS), but
it can be used to transfer matrices quickly between TAUCS clients and MATLAB
or other programs (we have MATLAB routines to read and write such matrices).
The current version of TAUCS includes only a binary-writing routine. Since the
flags are stored in the file, there is no flags argument to the routine.

taucs ccs matrix* taucs ccs read binary(char* filename);

Finally, the following routine reads a matrix stored in Harwell-Boeing format,
which is used in matrix collections such as MatrixMarket and Tim Davis’s.
Harwell-Boeing files contain structural infomation (e.g., symmetry) and dis-
tinguish between real and complex matrices, so the flags argument to this
routine only specifies whether the resulting matrix will be single or double
precision. If the Harwell-Boeing matrix contains only a nonzero pattern, the
routine creates a matrix with random elements in the specified positions (if the
Harwell-Boeing matrix is symmetric the diagonal elements are not set to ran-
dom values but to values that ensure that the matrix is diagonally dominant).

taucs ccs matrix* taucs ccs read hb(char* filename, int flags);

10

2.2 Vectors

TAUCS represents vectors as simple arrays of numbers, with no type or length
information. If one of the arguments to a generic routine is a matrix and the
other is a vector, the routine determines the length and type of the vector from
the information associated with the matrix. The following routine, for exam-
ple, multiplies a sparse matrix A by a vector x and stores the result in another
vector, b.

void taucs ccs times vec (taucs ccs matrix* A,

void* x,

void* b);

The pointers x and b must point to arrays of numbers with the same type as
A’s elements. That is, if TAUCS DCOMPLEX is set in A->flags, then x and b must
point to arrays of taucs dcomplex elements. The size of x and b must match
the number of columns in A.

Vector handing routines that have no matrix argument have explicit argu-
ments that specify the data type and length of input and output vectors. For
example, the next two routines read and write vectors from and to binary (non
archival) files.

void* taucs vec read binary (int n, int flags, char* filename);

int taucs vec write binary(int n, int flags, void* v, char* filename);

2.3 Utility Routines

TAUCS routines print information to a log file using a special routine,

int taucs printf(char *fmt, ...);

Another routine,

void taucs logfile(char* file prefix);

sets the name of the log file. The names stdout, stderr and none are accept-
able, as are actual file names. If you do not call this routine or if you set log file
to none, the library produces no printed output at all.

int taucs printf(char *fmt, ...);

TAUCS can usually determine the amount of memory available. This can be
useful when calling an out-of-core solver, which needs this information in or-
der to plan its schedule. This information can also be useful for determining
whether an in-core direct solver is likely to run out of memory or not before
calling it.

double taucs system memory size();

double taucs available memory size();

11

The first routine attempts to determine how much physical memory the com-
puter has, in bytes. The second reports the amount of memory in bytes that you
can actually allocate and use. It returns the minimum of 0.75 of the physical
memory if it can determine the amount of physical memory, and the amount
that it actually managed to allocate and use. You should use the second rou-
tine, since the first may fail or may report more memory than your program
can actually allocate.

The next routines measure time.

double taucs wtime();

double taucs ctime();

The first routine returns the time in seconds from some fixed time in the past
(so-called wall-clock time). The second returns the CPU time in seconds that
the process used since it started. The CPU time is mostly useful for determin-
ing that the wall-clock measurements are not reliable due to other processes,
paging, I/O, etc.

3 Matrix Reordering

Reordering the rows and columns of a matrix prior to factoring it can have
a dramatic effect on the time and storage required to factor it. Reordering a
matrix prior to an iterative linear solver can have a significant effect on the
convergence rate of the solver and on the time each iteration takes (since the
reordering affects the time matrix-vector multiplication takes). The following
routine computes various permutations that can be used effectively to permute
a matrix.

void taucs ccs order(taucs ccs matrix* matrix,

int** perm, int** invperm,

char* which);

The string argument which can take one of the following values, all of which
are fill-reducing permutations. All except the last are for for symmetric matri-
ces, and the last is only for unsymmetric matrices.

identity The identity permutation.

genmmd Multiple minimum degree. In my experience, this routine is often
the fastest and it produces effective permutations on small- and medium-
sized matrices.

md, mmd, amd True minimum degree, multiple minimum degree, and ap-
proximate minimum degree from the AMD package. In my experience
they are slower then genmmd although they are supposed to be faster.

metis Hybrid nested-dissection minimum degree ordering from the METIS li-
brary. Quite fast and should be more effective than minimum degree
codes alone on large problems.

12

treeorder No-fill ordering code for matrices whose graphs are trees. This is
a special case of minimum degree but the code is faster than a general
minimum degree code.

colamd Tim Davis’s column approximate minimum-degree code. This order-
ing produces a column ordering that reduces fill in sparse LU factoriza-
tions with partial pivoting.

The next routine takes the permutation returned from taucs ccs order and
permutes a matrix symmetrically. That is, the permutation is applied to both
the rows and the columns.

taucs ccs matrix* taucs ccs permute symmetrically(taucs ccs matrix* A,

int* perm, int* invperm);

The last two routines are auxiliary routines that permute a vector or inverse
permute a vector. The interface to these routines changed in version 2.0!

void taucs vec permute (int n,

int flags, data type
double v[], input vector
double pv[], permuted output vector
int p[]); permutation, 0-based

void taucs vec ipermute(int n,

int flags, data type
double v[], input vector
double pv[], permuted output vector
int invp[]); inverse permutation

4 Sparse Direct Linear Solvers

4.1 In-Core Sparse Symmetric Factorizations

The next routine factors a symmetric matrix A completely or incompletely into
a product of lower triangular matrix L and its transpose LT . If droptol is set to
0, the matrix is factored completely into A = LLT . If droptol is positive, small
elements are dropped from the factor L after they are computed but before
they update other coefficients. Elements are dropped if they are smaller than
droptol times the norm of the column of L and they are not on the diagonal and
they are not in the nonzero pattern of A. If you set modified to true (nonzero
value), the factorization is modified so that the row sums of LLT are equal to the
row sums of A. A complete factorization should only break down numerically
when A is not positive definite. An incomplete factorization can break down
even if A is positive definite.

13

taucs ccs matrix* taucs ccs factor llt(taucs ccs matrix* A,

double droptol,

int modified);

The factorization routine returns a lower triangular matrix which you can use
to solve the linear system LLT x = b (if the factorization is complete, that is, if
A = LLT , then this solves Ax = b). The formal type of the argument is void*
but the routine really expects a taucs ccs matrix*, presumably one returned
from taucs ccs factor llt. The reason that we declare the argument to be
void* is that all the solve routines that might be used as preconditioners must
have the same type but each one accepts a different data type.

int taucs ccs solve llt (void* L,

double* x,

double* b);

The routine taucs ccs factor llt factors a matrix column by column. It is
quite slow in terms of floating-point operations per second due to overhead
associated with the sparse data structures and to cache misses. TAUCS also in-
cludes faster routines that can only factor matrices completely. These routines
rely on an easy-to-compute decomposition of L into so-called supernodes, or
set of columns with similar structure. Exploiting supernodes allow these rou-
tines to reduce overhead and to utilize cache memories better.

void* taucs ccs factor llt mf(taucs ccs matrix* A);

void* taucs ccs factor llt ll(taucs ccs matrix* A);

The first routine (mf) is a supernodal multifrontal routine and the second (ll)
is a supernodal left-looking routine. The multifrontal code is faster but uses
more temporary storage. Both routines return the factor in an opaque data
structure that you can pass to the solve routine to solve LLT x = b.

int taucs supernodal solve llt(void* L,

double* x,

double* b);

The next routine deallocates the storage associated with such a factor.

void taucs supernodal factor free(void* L);

You can also convert a supernodal factor structure to a compressed-column
matrix using the following routine

taucs ccs matrix*

taucs supernodal factor to ccs(void* L);

There may be two reason to perform this conversion. First, the compressed-
column solve routine may be slightly faster than the supernodal solve routine
due to cache effects and indexing overhead. Second, the only operations on

14

supernodal factors are the solve and free routines, so if you want to perform
another operation on the factor, such as writing it out to a file, you need to
convert it to a compressed-column structure.

The following three routines are usefull when the application needs to fac-
tor several matrices with the same nonzero structure but different numerical
values. These routines call the supernodal multifrontal factorization code. The
first routine performs a symbolic elimination, which is a preprocessing steps
that depends only on the nonzero structure of the input matrix. It returns a
factor object, but with no numerical values (it cannot be yet used for solving
linear systems).

void* taucs ccs factor llt symbolic(taucs ccs matrix* A);

The next routine takes a symbolic factor and a matrix and performs the nu-
merical factorization. It returns 0 if the factorization succeeds, −1 otherwise. It
appends the numeric values of the factors to the factor object, which can now
be used to solve linear systems.

int taucs ccs factor llt numeric(taucs ccs matrix* A,void* L);

If you want to reuse the symbolic factor, you can release the numeric informa-
tion and call the previous routine with a different matrix, but with the same
structure. The following routine releases the numeric information.

void taucs supernodal factor free numeric(void* L);

An auxiliary routine computes the elimination tree of a matrix (the graph of
column dependences in the symmetric factorization) and the nonzero counts
for rows of the complete factor L, columns of L, and all of L. This routine is
used internally by the factorization routines, but it can be quite useful without
them. In particular, computing the number of nonzeros can help a program
determine whether there is enough memory for a complete factorization. Cur-
rently this routine is not as fast as it can be; it runs in time proportional to
the number of nonzeros in L (which is still typically a lot less than the time
to compute the factor). I hope to include a faster routine in future versions of
TAUCS.

int taucs ccs etree(taucs ccs matrix* A, input matrix
int parent[], an n-vector to hold the etree
int L colcount[], output; NULL is allowed
int L rowcount[], output; NULL is allowed
int* L nnz output; NULL is allowed
);

You must pass the address of the output arguments if you want them or NULL
if you do not need them.

The next routine factors a symmetric matrix A completely into a product
LDLT where L is lower triangular and D is diagonal.

15

taucs ccs matrix* taucs ccs factor ldlt(taucs ccs matrix* A);

The factorization routine returns a lower triangular matrix that packs both
L and D into a single triangular, and which you can use to solve the lin-
ear system LDLT x = b. The formal type of the argument is void* but the
routine really expects a taucs ccs matrix*, presumably one returned from
taucs ccs factor llt. The matrices L and D are packed into the matrix C

that the routine returns in the following way: the diagonal of D is the diago-
nal of C, and the strictly lower triagular part of L is the strictly lower triangular
part of C; the diagonal of L contains only 1, and is not represented explicitly. To
solve linear systems you do not need to understand this packed format, only if
you need to access elements of D or L.

int taucs ccs solve ldlt (void* L,

double* x,

double* b);

The routine taucs ccs factor ldlt factors a matrix column by column. It is
quite slow in terms of floating-point operations per second due to overhead
associated with the sparse data structures and to cache misses.

4.2 Out-of-Core Sparse Symmetric Factorizations

TAUCS can factor a matrix whose factors are larger than main memory by stor-
ing the factor on disk files. The code works correctly even if the factor takes
more than 4 GB of memory to store, even on a 32-bit computer (we have fac-
tored matrices whose factors took up to 46 GB of disk space on a Pentium-III
computer running Linux). On matrices that can be factored by one of the su-
pernodal in-core routines, the out-of-core code is usually faster if the in-core
routines cause a significant amount of paging activity, but slower if there is lit-
tle or no paging activity. As a rule of thumb, use the out-of-core routines if the
in-core routines run out of memory or cause significant paging.

The basic sequence of operations to solve a linear system out-of-core is as
follows:

1. Represent the coefficient matrix as a taucs ccs matrix.

2. Find a fill-reducing symmetric ordering and permute the matrix.

3. Create a file that will store the factor by calling
taucs io create multifile.

4. Factor the permuted coefficient matrix into the file by calling
taucs ooc factor llt. The Cholesky factor is now stored on disk files.

5. Solve one or more linear systems using the disk-resident factor by calling
taucs ooc solve llt.

16

6. Delete the factor from disk using taucs io delete, or just close the disk
files by calling taucs io close. If you just close the file, you can keep it
on disk and use it later to solve additional linear systems by opening it
(taucs io open multifile) and calling the solve routine.

TAUCS stores the sparse factor in multiple files, each at most than one gigabyte
in size. The file-creation routine,

taucs io handle* taucs io create multifile(char* basename);

receives a string argument that is used to generate file names. For example, if
the argument is "/tmp/bcsstk38.L", then the factor will be stored in the files
/tmp/bcsstk38.L.0, /tmp/bcsstk38.L.1, /tmp/bcsstk38.L.2, and so on. To
open an existing collection of files that represent a sparse matrix, call

taucs io handle* taucs io open multifile(char* basename);

If you want to stop the program but retain the contents of such files, you must
close them explicitly,

int taucs io close(taucs io handle* h);

The argument is the handle that the create or open routine returned. This rou-
tine returns -1 in case of failure and 0 in case of success. To delete an existing
an open collection of files, and to release the memory associated with a handle
to the files, call

int taucs io delete(taucs io handle* h);

There is no way to delete files that are not open; if you want to delete an exising
on-disk matrix, open it and then delete it.

Using the out-of-core factor and solve routines is easy:

int taucs ooc factor llt(taucs ccs matrix* A,

taucs io handle* L,

double memory);

int taucs ooc solve llt (void* L, double* x, double* b);

The first argument of the factor routine is the matrix to be factored (permute it
first!), the second is a handle to a newly created TAUCS file that will contain the
factor upon return, and the third is the amount of main memory that the factor
routine should use. In general, the value of the third argument should be only
slightly smaller than the amount of physical main memory the computer has.
The larger the argument, the less explicit I/O the factorization performs. But
a value larger than the physical memory will cause explicit I/O in the form
of paging activity and this typically slows down the factorization. If you do
not know how much memory to allow the routine to use, just pass the value
returned by taucs available memory size(); in most cases, this will deliver

17

near-optimal performance. The return value of both the factor and solve rou-
tines is 0 in case of success and -1 otherwise.

The first argument of the solve routine is the handle to the file containing
the factor. The formal argument is declared as void* to ensure a consistent
interface to all the solve routines, but the actual argument must be of type
taucs io handle*. Do not pass a filename!

In this version of TAUCS the out-of-core routines are not completely reliable
in case of failure. They will generally print a correct error message, but they
may not return immediately and they may not release all the disk space and
memory that they have allocated. In particular, this may happen if they run
out of disk space. We will attempt to rectify this in future versions.

Finally, this version of the documentation does not document the interfaces
to the matrix I/O routines that the out-of-core codes use. If you need such doc-
umentation to develop additional out-of-core matrix algorithms using TAUCS’s
I/O infrastructure, please let me know.

4.3 Out-of-Core Sparse Unsymmetric Factorizations

TAUCS can solve unsymmetric linear systems using an out-of-core sparse LU

factorization with partial pivoting.

int taucs ooc factor lu (taucs ccs matrix* A,

int* colperm,

taucs io handle* LU,

double memory);

int taucs ooc solve lu (taucs io handle* LU,

void* x,

void* b);

The interface to these routines is similar to the interface of the out-of-core
symmetric routines, except that you do not need to prepermute A and you
do not need to permute b and x before and after the solve. The argument
colperm is a fill-reducing column permutation that you can obtain by calling
taucs ccs orderwith a colamd ordering-specification. These routines perform
all the necessary permutations internally, so you do not have to perform any.

4.4 Inverse Factorizations

TAUCS can directly compute the sparse Cholesky factor of the inverse of a ma-
trix. This factorization always fills more than the Cholesky factorization of the
matrix itself, so it is usually not particularly useful, and is included mainly
for research purposes. One interesting aspect of this factorization is that the
solve phase involves two sparse matrix-vector multiplications, as opposed to
two triangular solves that constitute the solve phase of convensional triangu-
lar factorizations. This fact may make the factorization useful in certain iter-
ative solvers, such as solvers that use support trees as preconditioners [9, 10].

18

For further details about the factorization, see [12]; for a different perspective,
along with an analysis of fill, see [5].

The first routine computes the factor of the inverse, the second uses this
factor to solve a linear system. The interface is identical to the interface of the
Cholesky routines.

taucs ccs matrix* taucs ccs factor xxt(taucs ccs matrix* A);

int taucs ccs solve xxt (void* X,

double* x,

double* b);

5 Iterative Linear Solvers

The iterations of conjugate gradients are cheaper than the iterations of MIN-
RES, but conjugate gradients is only guaranteed to work on symmetric
positive-definite matrices, whereas MINRES should work on any symmetric
matrix. The two iterative solver routines have identical interfaces. To solve
a system Ax = b, you pass the sparse matrix A, the addresses of the right-
hand side b and of the output x, the preconditioner, and the parameters of the
stopping criteria itermax and convergetol.

The iterative algorithm stops when the maximum number of iterations
reaches itermax or when the 2-norm of the residual b − Ax drops by a fac-
tor of convergetol or more.

The preconditioner is specified using two arguments: the address of a
routine that solves Mz = r for z given M and r and the address of an
opaque data structure that represents M. For example, if you construct
an incomplete-Cholesky preconditioner by calling taucs ccs factor llt,
the value of precond fn should be taucs ccs solve llt and the value of
precond arg should be the address of the incomplete triangular factor returned
by taucs ccs factor llt.

int taucs conjugate gradients(

taucs ccs matrix* A,

int (*precond fn)(void*,double z[],double r[]),

void* precond args,

double x[],

double b[],

int itermax,

double convergetol);

int taucs minres(taucs ccs matrix* A,

int (*precond fn)(void*,double z[],double r[]),

void* precond args,

double x[],

double b[],

int itermax,

double convergetol);

19

6 Preconditioners for Iterative Linear Solvers

This section describes TAUCS routines that construct preconditioners for itera-
tive linear solvers.

6.1 Drop-Tolerance Incomplete Cholesky

As described in Section 4.1, taucs ccs factor llt can construct relaxed-
modified and unmodified incomplete Cholesky factorizations.

6.2 Maximum-Weight-Basis (Vaidya’s) Preconditioners

The next routine constructs a so-called Vaidya preconditioner for a symmetric
diagonally-dominant matrix with positive diagonal elements. The precondi-
tioner M that is returned is simply A without some of the off-diagonal nonze-
ros dropped and with a certain diagonal modification. To be used as a pre-
conditioner in an iterative linear solver, you normally have to factor M into
its Cholesky factors. The routine accepts two parameters that affect the result-
ing preconditioner. The construction of M is randomized and rnd is used as
a random value. Different values result in slightly different preconditioners.
Subgraphs is a number that controls how many nonzeros are dropped from A

to form M. The value 1.0 results in the sparsest possible preconditioner that
this routine can construct; it will have less than n offdiagonal nonzeros (for an
n-by-n matrix) and it can be factored with O(n) work and fill. If all the offdi-
agonal nonzeros in A are negative, the graph of M will be a tree. The value n

for subgraphs results in M = A. In-between values result in in-between levels
of fill. The sparsity of M is roughly, but not strictly, monotone in subgraphs.

The routine may fail due to several reasons: failure to allocate memory,
an input matrix that is not symmetric or symmetric with only the upper part
stored, or an input matrix with negative diagonal elemtents. In the first case
the routine returns NULL, in all the other cases the address of A.

taucs ccs matrix* taucs amwb preonditioner create(

taucs ccs matrix* A,

int rnd,

double subgraphs);

Note that the theory of Vaidya’s preconditioner only applies to symmetric
diagonally-dominant matrices with positive diagonal elements, but the rou-
tine works on any symmetric matrix with positive diagonals. Furthermore, the
returned preconditioner is always symmetric and positive definite, so it should
always have a Cholesky factor and, at least in theory, it should always lead to
Conjugate Gradients convergence if A is symmetric positive definite. We en-
force the diagonal dominance of the preconditioner by always constructing a
preconditioner for A + D, where D is a diagonal matrix that brings A + D to
diagonal dominance. However, when A is not diagonally dominant, conver-
gence may be slow.

20

The next set of routines creates a so-called recursive Vaidya preconditioner.
It works in the following way. It drops elements from A. It then finds all the
rows and columns in A that can be eliminated without creating much fill (elim-
ination of degree-1 and 2 vertices until all vertices have degree 3 or more). It
then eliminates these rows and columns and computes the Schur complement
of A with respect to them. Now it drops elements again from the Schur com-
plement and so on. When the sparsified Schur complement is small enough,
it factors it directly. In a 2-level preconditioner, in which we drop elements,
compute the Schur complement, drop elements from it, and factor it directly,
each preconditioning iteration requires an iterative solve for the unknowns as-
sociated with the Schur complement. The preconditioner in the inner solve is
an augmented-maximum-weight-basis preconditioner. In a 3-level precondi-
tioner, the nesting of iterative solves inside iterative solves is deeper.

The creation routine returns both a preconditioner and the reordering per-
mutation and its inverse.

The construction depends on several parameters. The routine builds a pre-
conditioner with at most maxlevels levels. It does not recurse if the matrix
or Schur complement is smaller than nsmall. The parameters c and epsilon
determine how may elements we drop from the matrix or from a Schur com-
plement when building an augmented-maximum-weight-basis preconditioner
them. A small epsilon > 0 will drop few elements, a large epsilon will drop
many. A large c < 1 will drop few elements, a large c will drop many. The
parameters innerits and innerconv control the accuracy of the inner iterative
solves in terms of the maximum number of iteration and the convergence ratio.

We have not experimented extensively with these preconditioners and we
are unsure when they are effective and how to control their construction.
Therefore, the interface to the construction routine may change in the future.

void* taucs recursive mst preconditioner create(

taucs ccs matrix* A,

double c,

double epsilon,

int nsmall,

int maxlevels,

int innerits,

double innerconv,

int** perm,

int** invperm);

int

taucs recursive mst preconditioner solve(void* P,

double* z,

double* r);

21

6.3 Multilevel Support-Graph Preconditioners (Including
Gremban-Miller Preconditioners)

TAUCS can construct a wide range of multilevel preconditioners that are called
support-graph preconditioners. Such preconditioners were first proposed by
Gremban and Miller [9, 10]. The next routine constructs Gremban-Miller pre-
conditioners, as well as a range of other multilevel preconditioners. This ver-
sion of the documentation only documents the construction of Gremban-Miller
preconditioners using this routine; its other capabilities will be described at a
later date.

This routine relies on METIS and it will not work if you build the library
with the NOMETIS option.

Also, the routine works only on symmetric diagonally-dominant matrices
with negative offdiagonals.

The Gremban-Miller preconditioner is the Schur complement of a matrix
whose graph is a tree. The leaves of the tree correspond to the unknowns,
and the preconditioner is the Schur complement of the tree with respect to its
leaves (in other words, all the internal vertices are eliminated and the reduced
matrix on the leaves is the preconditioner). However, the Schur complement
is not formed explicitly. Instead, the construction routine factors the entire
tree matrix and uses this factor to apply the preconditioner implicitly. This
ensures that the preconditioner can be factored and applied to a vector using
Θ(n) work, where n is the dimension of the linear system. The construction of
the tree is quite expensive, however, since it involves repeated calls to graph
partitioning routines in METIS.

void* taucs sg preconditioner create(taucs ccs matrix *A,

int* *perm,

int* *invperm,

char* ordering,

char *gremban command);

The first argument is the coefficient matrix of the linear system. The second and
third arguments allow the routine to return a new ordering for the rows and
columns of A. You should permute A symmetrically using this ordering before
calling the iterative solver. The third argument is ignored when this routine
constructs Gremban Preconditioners; so you can pass "identity". The last
argument is a string that specifies the specific support-tree preconditioner that
you want to construct. To construct a Gremban-Miller support tree, specify
"regular:GM:2". The integer at the end of the string specifies the degree of
the tree’s internal vertices, and we have found that high degrees lead to more
efficient construction and to a more effective preconditioner (higher degrees
increase the number of iterations, but reduce the cost of each iterations). It
seems that values between 8 and 32 work well. The routine returns an opaque
object that you can use to apply the preconditioner (or NULL if the construction
fails):

22

int taucs sg preconditioner solve(void* P,

double* z,

double* r);

The first argument of the solve routine should be the pointer that the construc-
tion routine returns. This routine solves the linear system Pz = r.

To free the memory associated with a support-tree preconditioner, call

void taucs sg preconditioner free(void* P);

The ordering that the construction routine returns consists of two integer vec-
tors that you can deallocate with free().

7 Matrix Generators

TAUCS includes several matrix generators that we use to test linear solvers.
The first creates a symmetric matrix that is a finite-differences discretization of
cx

∂2u
∂x2 +cy

∂2u
∂y2 in the unit square. The argument n specifies the size of the mesh

(the size of the matrix is n2 and the string argument which specifies cx, cy, and
the boundary conditions. The possible values of which are

dirichlet u = 0 on the boundary, cx = cy.

neumann ∂u
∂n = 0 (the derivative in the direction normal to the boundary is

0), cx = cy. The diagonal is modified at one corner to make the matrix
definite.

anisotropic x ∂u
∂n = 0, cx = 100cy, diagonal modification at a corner.

anisotropic y ∂u
∂n = 0, 100cx = cy, diagonal modification at a corner.

taucs ccs matrix* taucs ccs generate mesh2d(int n,char *which);

The second generator creates a finite-differences discretization of ∂2u
∂x2 + ∂2u

∂y2 +

∂2u
∂z2 using an X-by-Y-by-Z mesh, with Neumann boundary conditions.

taucs ccs matrix* taucs ccs generate mesh3d(int X, int Y, int Z);

The last generator creates a random m-by-n dense matrix. If flags is
TAU SYMMETRIC, the routine returns a symmetric matrix.

The library includes several additional generators that are not documented
in this version.

23

Changelog

5 May 2002 Version 2.0. Added in this version:

• Complex routines, mutiple precisions, and generic routines
• Extensive automated testing for memory leaks and failure-handling

21 January 2002 Added the LDLT factorization. It was mentioned in the doc-
umentation all along, but the code was missing from the distribution. I
also added detailed information about the LDLT routines.

12 December 2001 Version 1.0. Added in this version:

• Out-of-core sparse Cholesky and associated I/O routines.
• Relaxed and amalgamated supernodes.
• Cholesky factorization of the inverse.
• Gremban-Miller and other support-tree preconditioners (only the

Gremban-Miller ones are fully documented, however).
• Faster construction of Vaidya’s perconditioners when the input ma-

trix has no positive elements outside the main diagonal. In such
cases, TAUCS now uses a specialized routine that constructs a pre-
conditioner based on maximum spanning trees rather than more
general maximum weight bases. The savings depends on the ma-
trix, but in our experiments with 2D problems the new routine is
about 3 times faster than the old one.

• More matrix generators.

26 July 2001 Added symbolic/numeric routines to allow efficient factorization
of multiple systems with the same nonzero structure. Also some perfor-
mance improvements to the construction of Vaidya preconditioners.

28 June 2001 Added a routine to convert a supernodal factor to a compressed-
column factor. Cleaned up memory management in construction of
AMWB preconditioners; if they fail all the memory is deallocated before
the routine returns.

27 June 2001 Included missing Fortran sources in the tarball; Fixed a missing
reference in the documentation; added routines to permute vectors.

24 June 2001 Version 0.9. Initial release.

References

[1] R. Barret, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadeplphia,
PA, 1993.

24

[2] Marshall Bern, John R. Gilbert, Bruce Hendrickson, Nhat Nguyen, and
Sivan Toledo. Support-graph preconditioners. Submitted to the SIAM
Journal on Matrix Analysis and Applications, 29 pages, January 2001.

[3] Erik G. Boman. A note on recursive Vaidya preconditioners. Unpublished
manuscript, February 2001.

[4] Erik G. Boman, Doron Chen, Bruce Hendrickson, and Sivan Toledo.
Maximum-weight-basis preconditioners. To appear in Numerical Linear
Algebra with Applications, 29 pages, June 2001.

[5] Robert Bridson and Wei-Pai Tang. Ordering, unisotropy, and factored
sparse approximate inverses. SIAM Journal on Scientific Computing,
21(3):867–882, 1999.

[6] Doron Chen and Sivan Toledo. Implementation and evaluation of
Vaidya’s preconditioners. Technical Report, 17 pages, February 2001.

[7] Doron Chen and Sivan Toledo. Implementation and evaluation of
Vaidya’s preconditioners. Submitted to Preconditioning 2001 to be held
in Tahoe, California, 3 pages, 2001.

[8] John R. Gilbert and Sivan Toledo. High-performance out-of-core sparse
LU factorization. In Proceedings of the 9th SIAM Conference on Parallel Pro-
cessing for Scientific Computing, San-Antonio, Texas, 1999. 10 pages on
CDROM.

[9] K.D. Gremban, G.L. Miller, and M. Zagha. Performance evaluation of a
parallel preconditioner. In 9th International Parallel Processing Symposium,
pages 65–69, Santa Barbara, April 1995. IEEE.

[10] Keith D. Gremban. Combinatorial Preconditioners for Sparse, Symmetric, Di-
agonally Dominant Linear Systems. PhD thesis, School of Computer Science,
Carnegie Mellon University, October 1996. Technical Report CMU-CS-96-
123.

[11] J. H. Reif. Efficient approximate solution of sparse linear systems. Com-
puters and Mathematics with Applications, 36(9):37–58, 1998.

[12] H. M. Tufo and P. F. Fischer. Fast parallel direct solvers for coarse grid
problems. To appear in the Journal of Parallel and Distributed Comput-
ing.

[13] Pravin M. Vaidya. Solving linear equations with symmetric diagonally
dominant matrices by constructing good preconditioners. Unpublished
manuscript. A talk based on the manuscript was presented at the IMA
Workshop on Graph Theory and Sparse Matrix Computation, October
1991, Minneapolis.

25

