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1 Introduction

In the last couple of years it has been realized that Gaussian elimination for sparse matrices arising
from certain elliptic PDEs can be done in O(n log(1/ε)) flops, where n is the number of unknowns
and ε is a user-specified tolerance [Chandrasekaran and Gu]. The resulting solver will also be
backward stable with an error of O(ε). The techniques used to achieve this speedup has some
commonality with ideas from domain decomposition, multi-grid, incomplete factorizations, and
other areas. However, the algorithms have also shown speedups on random sparse positive-definite
matrices, making it clear that some novel ideas are at play.

It has also been known for sometime that one can use the ideas of the Fast Multi-pole Method
(FMM) of Greengard and Rokhlin, to do Gaussian elimination of dense matrices that arise from the
discretization of two-dimensional integral equations in O(n1.5) flops, and from three-dimensional
integral equations in O(n2) flops [Rokhlin and Starr]. This greatly improves the competitiveness
of integral equation methods.

However, what has not been realized widely is that these same complexities can also be achieved
quite simply by converting the dense matrices to sparse matrices and using standard sparse matrix
solvers! This can be viewed as an extension of the column stretching techniques for sparse
matrices [Grcar]. In brief this is how it is done. We first observe that the FMM is a technique to
do fast matrix-vector multiplication, and that the algorithm consists of a set of linear recursions
on a tree. We then label the intermediate values on the tree with new variables. Then the problem
of solving the system of linear equations can be viewed as the problem of finding the intermediate
variables and the unknown solution on the FMM tree. Since the FMM recursions are linear this
gives rise to a sparse system of equations whose incidence graph is the associated FMM tree! This
enables us to use the extensively developed techniques of sparse matrix solvers for dense integral
equation methods. We will report on experiments with this method for electromagnetic scattering
calculations.

Even more surprising, is that this idea in reverse is what is needed to speed-up Gaussian elimination
for sparse matrices. More specifically, the fill-in that occurs during Gaussian elimination can be
viewed as the discretization of an integral operator (associated with the Green’s function of the
PDE). There is nothing new about this idea, and it is well-known, especially in the domain-
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decomposition literature, and the preconditioning literature. However, till recently there has been
no way to exploit the FMM structure in the fill-in efficiently.

In this talk we will outline our approach for exploiting the structure of the fill-in during Gaussian
elimination to obtain a linear-time algorithm. At this point it is worth remarking that first forming
the fill-in and then computing its FMM structure will not be sufficient to improve the complexity.
In other words, we must compute the structure of the fill-in without forming the fill-in first! This
is a non-trivial task.

2 Low-rank off-diagonal blocks

The FMM is based on a simple idea: Green’s functions of many PDEs are smooth away from the
diagonal singularity. It follows that the associated discrete matrices will have low-rank off-diagonal
blocks. This is the property of the fill-in that we also wish to exploit. However, fill-ins are the result
of a large number of calculations, and it is not clear how to construct a low-rank representation of
a certain block without first forming the block.

Consider a simple model problem: a block tri-diagonal matrix (Ci−1 Ai Bi ), with each of
the Ai’s, Bi’s and Ci’s being tri-diagonal matrices themselves. (Such structures arise from the
discretization of elliptic PDEs on rectangular grids using 9-point stencils.) Now the key equation
during Gaussian elimination (without pivoting) of this sparse matrix is the recursion for the Schur
complements:

Si+1 = Ai+1 − CiS
−1
i Bi,

with S0 = A0. It is clear that Si is dense for i > 0.

Now, we observe that each of the Ai’s, Bi’s and Ci’s has rank-1 off-diagonal blocks (since they are
tri-diagonal). Now, we use an algebraic representation of matrices, called hierarchically semi-
separable (HSS) representation. This representation uses the minimal number of parameters to
represent a matrix which has low-rank off-diagonal blocks. Furthermore, it can be shown that the
standard matrix operations in this representation, preserve the representation, and are linear in the
length of the representation. For example, if we multiply two matrices using their HSS represen-
tation, we can find the HSS representation of their product in optimal (linear) time. Similarly, we
can find the HSS representation of the inverse, LU factorization, QR factorization, etc., in optimal
time. It follows that since the HSS representation of Ai, Bi and Ci can be found in linear time,
we can find the HSS representation of Si in linear time, without forming them explicitly! Now,
if the rank of the diagonal blocks of the Si remains small as i gets bigger, then the resulting LU
factorization will take only linear time.

The reason the rank of the off-diagonal blocks of Si remains small is that the Si are related to the
off-diagonal blocks of the Green’s function, which is smooth. We can also prove a similar result for
certain Toeplitz positive-definite sparse matrices which do not necessarily arise from PDEs.

So the phenomenon is provably true for elliptic PDEs, and seems to hold for a much larger class of
sparse matrices.

We will also discuss applications to pseudo-spectral discretizations of PDEs.
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