EXCERCISE: ELEMENT-BY-ELEMENT
APPROXIMATIONS

SIVAN TOLEDO AND GIL SHKLARSKI

In this exercise we will develop code that takes a finite-elements
matrix in which the null space of all the element matrices is the constant
vector and approximates it by another finite-elements matrix in which
the element matrices are all weakly diagonally dominant.

Our input is a matrix K given as an explicit sum K =) _ K., where
each K, is symmetric positive semidefinite with only 3 nonzero rows
and columns. The rank of every K, is exactly 2 and the constant vector
is in its null space. The elements represent a discretization of physical
problem. You generate the K.’s using the MATLAB command

>> m = generate_simple_model (1000, ’poisson’,true);

The number 1000 is a target number of unknowns in the discretization;
the actual number will vary a bit. If you pass true in the last argu-
ment, you will see the geometry of the two-dimensional finite-elements
mesh that was used. The function generate_simple_model returns a
structure with three members: the number of unknowns, the number
of elements, and an array of the K.’s. Each K, is represented by a
dense 3-by-3 matrix and an array of 3 global row/column indices.

>>m
m =

total num vars: 1008

n_elements: 1860
elements: [1860x1 struct]
>> m.elements (1)
ans =
matrix: [3x3 double]
local to_global: [1 17 2]

(1) Write a MATLAB function assemble (m) that takes the represen-
tation of K that generate_simple model returns and returns
an explicit sparse matrix K. Verify that K has the right size
and the correct rank and null space (the constant vector). This
function can be implemented efficiently, but it is enough to just
make it work. Debug your code on small problems.

>> m
>> A

generate_simple model (1000, ’poisson’,true);

assemble(m) ;
1



EXCERCISE: ELEMENT-BY-ELEMENT APPROXIMATIONS 2

>> x = rand(1008,1);

>> b Axx;

>> m2 = approximate_model(m);

>> B = assemble(m2);

>> 7, make B nonsigular by enforcing z(1)=0 on Bz=r

>>

(2) Generate a random solution vector and a right-hand side, and

try to solve the problem using MINRES or preconditioned Con-
jugate Gradients with no preconditioning. Try to get a sense
for the scaling of the solver (performance as a function of prob-
lem size). You can either solve the singular system or force one
unknown to zero by adding 1 to one diagonal element in K.

>> Kes = generate_simple model (1000, ’poisson’,true);

>> K = assemble(Kes);
>> x = rand(1008,1);
>> b = K*x;

>> xhat = minres(K,b,1e-8,1000);

(3) Now write a function that approximates a single dense matrix
K, by a symmetric and weakly diagonally dominant matrix
L.. Assume that K, is positive semidefinite and that its null
space is spanned by the constant vector. Scale L,to ensure that
MK, L) > 1.

(a) Generate the incidence matrix V' of the clique (whose size
is the order of K,).

(b) Decompose K., = UUT. You can use the eigendecomposi-
tion of [E’e.

(¢) Compute UtV (you can compute U™ directly from the
cigendecomposition of K,).

(d) Compute the diagonal matrix D that scales the columns
of UtV D to unit 2-norm.

(e) Compute a weakly diagonally-dominant approximation V D?VT,

(f) Scale VD?*VT to ensure A\(K,, .V D?*VT) > 1 and return
aVD?*VT.

(4) Implement a wrapper approximate_model that takes the element-
by-element representation of K and returns an approximation
L =3, L. in which every L. is a weakly diagonally-dominant
approximation of K,. The distinction betweenK, and Ke (and
similarly for L. and [:e) is that the first is a large sparse ma-
trix and the second is just the nonzero rows and columns of it.
Assemble L and verify that the order and null space of L are
correct.



EXCERCISE: ELEMENT-BY-ELEMENT APPROXIMATIONS 3

>> Les = approximate_model (Kes) ;
>> L = assemble(Les);

(5) Modify L to ensure that it is nonsingular and use it as a pre-
conditioner. How is the convergence related to the problem
size?

>> xhat = minres(K,b,1e-8,1000,L);

(6) Use the Splitting Lemma to bound A(K, L) from above and
below (you will need to explicitly compute bounds on A(K,, L.),
but the computation of a, should yield them for free). Compare
the bound to the actual extreme eigenvalues of (K, L). Is it
tight? (Computing the exact eigenvalues is expensive for large
K’s, so start from small ones.)

>> e = sort(eig(pinv(full(L))*full(K)));
>> [min(e(2:end)) max(e(2:end))]



