
Excercise: Building Augmented Maximum

Spanning Tree Preconditioners

Sivan Toledo and Haim Avron

March 22, 2007

The goal of this question is to implement Vaidya’s augmented maximum-
spanning tree preconditioner in Matlab. We provide a skeleton of the imple-
mentation in the file ex vaidya.m. In each part of this assignment you will
develop another part of the algorithm.

The file ex vaidya.m contains several internal functions (already imple-
mented). The functions are fully documented inside the file, but we also provide
here a brief description of them.

• convert to graph. This function takes the input matrix A (or any sym-
metric diagonally-dominant matrix and returns a weighted undirected
graph GA and a vector of the row sums of A. We represent a graph G with
a Matlab structure with exactly two fields: G.n and G.edges. The field
G.n is the number of vertices, which we take to be the set {1, . . . , G.n}.
The field G.edges is an |E|-by-3 matrix that represents the graph’s edges.
Each row represents a different edge. Row [i j w] represents the edge (i, j)
with weight w.

• convert to matrix. The other direction, for converting a sparsified graph
GB to a preconditioner B.

• makesets, unionsets, and findset implement efficiently a data structure
that represents a collection disjoint sets that can be unified and queried.

Your overall goal in this exercise is to implement the function sparsify graph,
which should construct the graph GB of the preconditioner. We have provided
an almost empty skeleton of this function that simply returns the input graph
GA.

1. The first phase of building Vaidya’s preconditioner is to build a maximum
spanning tree. Implement a function kruskal that computes the max-
imum spanning of the input graph. You can use the disjoint-sets data
structure that we provide. You can also sketch the implementation of
Prim’s algorithm, another famous spanning tree algorithm, but you do
not have to implement it.

1

2. Integrate kruskal into sparsify graph to form a maximum-spanning
tree preconditioner. You can use the following Matlab code to generate
the Laplacian of a two dimensional mesh, to make it strictly diagonally-
dominant, and to visualize it. Test your code on such matrices: use them
to precondition minres and try to plot the graph of the preconditioner to
make sure that it is a tree.

>> U = mesh2d(10,10);
>> U = add vertex vectors(U,[1]);
>> A=U*U’;
>> mesh2d plot(10,10,U)
...
>> x = rand(size(A,1),1);
>> b = A*x;
>> xhat = minres(A,b,1e-8,1000,B);

3. When you call minres and pass a matrix B as a preconditioner, Mat-
lab factors B inside the minres function. Use symmmd to compute a
fill-reducing ordering p for B and use chol to factor the matrix B(p,p).
Do you get any fill?

4. To augment the tree with extra edges, we will need to convert it into a
rooted tree, with parent/child relationships between neighbors. Write a
function form rooted tree that converts a tree G to a rooted tree. The
output should be an array parent and vertex number root. Choose the
root arbitrarily.

5. Write a function build child arrays that uses the root and parent to
compute arrays first child and next child. If vertex j has children,
then first child(j) should be one of them, otherwise it should be -1.
The child i=first child(j) should be head of a linked list of the children
of j. That is, next child(i) should be the index of the next child of j,
and so on. The list should end with the index -1. In the next phases of
the algorithm it will be easier to work with this data structure than with
the parent array alone.

6. Write a function tree partition that receives a tree and a value e ∈ [0, 1]
and partitions the tree into a set of connected trees. Each subtree should
have at least n/t vertices and at most dn/t + 1, where d is the maximum
vertex degree in the tree and t = ne. We use e rather than t as the
argument to allow the same parameter value to work with matrices of
different sizes. You are free to return the vertexes that are in the subtrees
in any format you wish.

7. Implement a function augment that given a graph and a partition of its
vertices finds the subset of edges that either connect vertices in the same
subset, or are the heaviest among those that connect two specific subsets.
These edges form the augmented-spanning-tree preconditioner.

2

8. Integrate the augmentation functions into sparsify graph (instead of the
simple maximum-spanning tree).

9. Test your preconditioner on two-dimensional meshes and plot its perfor-
mance as a function of the density parameter e. Hint: to get reasonable
performance you may need to preorder both A and B using a fill-reducing
ordering computed for the preconditioner B. You can improve perfor-
mance further by factoring the reordered B yourself and passing to minres
or pcg the factor and its transpose instead of passing the reordered B.

10. (This part is optional.) You can also compare the performance of the
preconditioner to that of a Joshi preconditioner and to that of cholinc.
Can you estimate operation counts?

3

