
CHAPTER 2

Iterative Krylov-Subspace Solvers

Preconditioned Krylov-subspace iterations are a key ingredient in
many modern linear solvers, including in solvers that employ support
preconditioners. This chapter presents Krylov-subspace iterations for
symmetric semidefinite matrices. In particular, we analyze the conver-
gence behavior of these solvers. Understanding what determines the
convergence rate is key to designing effective preconditioners.

1. The Minimal Residual Method

The minimal-residual method (minres) is an iterative algorithm
that finds in each iteration the vector x(t) that minimizes the resid-
ual ‖Ax(t) − b‖2 in a subspace Kt of R

n. These subspaces, called the
Krylov subspaces, are nested, Kt ⊆ Kt+1, and the dimension of the
subspace usually grows by one in every iteration, so the accuracy of
the approximate solution x(t) tends to improve from one iteration to
the next. The construction of the spaces Kt is designed to allow an
efficient computation of the approximate solution in every iteration.

Definition 1.1. The Krylov subspace Kt is the subspace that is
spanned by the columns of the matrix Kt =

[
b Ab A2b · · · At−1

]
.

That is,

Kt =
{
Kty : y ∈ R

t
}

.

Once we have a basis for Kt, we can express the minimization of
‖Ax−b‖2 in Kt as an unconstrained linear least-squares problem, since

min
x∈Kt

‖Ax − b‖2 = min
y∈Rt

‖AKty − b‖2 .

There are three fundamental tools in the solution of least squares
problems with full-rank m-by-n coefficient matrices with m ≥ n. The
first tool is unitary transformations. A unitary matrix Q preserves
the 2-norm of vectors, ‖Qx‖2 = ‖x‖2 for any x (a square matrix with
orthonormal columns, or equivalently, a matrix such that QQ∗ = I).
This allows us to transform least squares problem into equivalent forms

(1) min
x

‖Ax − b‖2 = min
y

‖QAx − Qb‖2 .

1
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An insight about matrices that contain only zeros in rows n+1 through
m is the second tool. Consider the least squares problem

min
x

∥∥∥∥
[
R1

0

]
x −

[
b1

b2

]∥∥∥∥
2

.

If the coefficient matrix has full rank, then the square block R1 must be
invertible. The solution to the problem is the vector x that minimizes
the Euclidean distance between

[
R1
0

]
x and

[
b1
b2

]
is minimal. But it is

clear what is this vector: x = R−1
1 b1. This vector yields

[
R1
0

]
x =

[
b1

0

]
,

and we clearly cannot any closer. The third tool combines the first
two into an algorithm. If we factor A into a product QR of a unitary
matrix Q and an upper trapezoidal matrix R =

[
R∗

1 0
]∗

, which is
always possible, then we can multiply the system by Q∗ to obtain

min
x

‖Ax − b‖2 = min
x

‖QRx − b‖2

= min
x

‖Rx − Q∗b‖2

= min
x

∥∥∥∥
[
R1

0

]
x − Q ∗ b

∥∥∥∥
2

.

We can now compute the minimizer x by substitution. Furthermore,
the norm of the residual is given by ‖(Q∗b)n+1: m‖2.

In principle, we could solve (1) for y using a QR factorization of
AKt. Once we find y, we can compute x = Kty. There are, however,
two serious defects in this approach. First, it is inefficient, because
AKt is dense. Second, as t grows, Atb tends to the subspace spanned
by the dominant eigenvectors of A (the eigenvectors associated with the
eigenvalues with maximal absolute value). This causes Kt to become
ill conditioned; for some vectors x ∈ Kt with ‖x‖2 = 1, the vector y
such that x = Kty has huge elements. This phenomenon will happen
even if we normalize the columns of Kt to have unit norm, and it causes
instabilities when the computation is carried out using floating-point
arithmetic.

We need a better basis for Kt for stability, and we need to exploit
the special properties of AKt for efficiency. Minres does both. It uses
a stable basis that can be computed efficiently, and it it combines the
three basic tools in a clever way to achieve efficiency.

An orthonormal basis Qt for Kt would work better, because for x =
Qtz we would have ‖z‖2 = ‖x‖2. There are many orthonormal bases for
Kt. We choose a particular basis that we can compute incrementally,
one basis column in each iteration. The basis that we use consists of the
columns of the Q factor from the QR factorization of Kt = QtRt, where
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Qt is orthonormal and Rt is upper triangular. We compute Qt using
Gram-Schmidt orthogonalization. The Gram-Schmidt process is not
always numerically stable when carried out in floating-point arithmetic,
but it is the only efficient way to compute Qt one column at a time.

We now show how to compute, given Qt =
[
q1 · · · qt

]
, the next

basis column qt+1. The key to the efficient computation of qt+1 is the
special relationship of the matrices Qt with A. We assume by induction
that Kt = QtRt and that rt,t �= 0. If rt,t = 0, then it is not hard to
show that the exact solution x is in Kt, so we would have found it in
one of the previous iterations. If we reached iteration t, then x �∈ Kt,
so rt,t �= 0. Expanding the last column of Kt = QtRt, we get

At−1b = r1,tq1 + r2,tq2 + · · ·+ rt−1,tqt−1 + rt,tqt .

We now isolate qt to obtain

qt = r−1
t,t

(
At−1b − r1,tq1 − r2,tq2 − · · · − rt−1,tqt−1

)
,

so

Aqt = r−1
t,t

(
Atb − r1,tAq1 − r2,tAq2 − · · · − rt−1,tAqt−1

)
.

Because qt ∈ Kt, clearly Aqt ∈ Kt+1. Furthermore, if we reached itera-
tion t + 1, then Aqt �∈ Kt, because if Aqt ∈ Kt then x ∈ Kt. Therefore,
we can orthogonalize Aqt with respect to q1, . . . , qt and normalize to
obtain qt+1

q̃t+1 = Aqt − (q∗t Aqt) qt − · · · − (q∗1Aqt) q1

qt+1 = q̃t+1/ ‖q̃t+1‖2 .

These expressions allows us not only to compute qt, but also to
express Aqt as a linear combination of q1, . . . qt, qt+1,

Aqt = ‖q̃t+1‖2 qt+1 + (q∗t Aqt) qt + · · ·+ (q∗1Aqt) q1

= ht+1,tqt+1 + ht,tqt + · · · + h1,tq1 ,

where ht+1,t = ‖q̃t+1‖2, and where hj,t = q∗j Aqt for j ≤ t. The same
argument also holds for Aq1, . . . , Aqt−1, so in matrix terms,

AQt = Qt+1H̃t .

The matrix H̃t ∈ R
(t+1)×t is upper Hessenberg: in column j, rows j +2

to t + 1 are zero. If we multiply both sides of this equation from the
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left by Q∗
t , we obtain

Q∗
t AQt = Q∗

t Qt+1H̃t

=

⎛
⎜⎜⎝

1
. . .

1
0 · · · 0

⎞
⎟⎟⎠ H̃t

=
(
H̃t

)
1: t,1: t

.

We denote the first t rows of H̃t by Ht to obtain

Q∗
t AQt = Ht .

Because A is symmetric, Ht must be symmetric, and hence tridiagonal.
The symmetry of Ht implies that in column j of Ht and H̃t, rows
1 through j − 2 are also zero. This is the key to the efficiency of
minres and similar algorithms, because it implies that for j ≤ t − 2,
hj,t = q∗j Aqt = 0; we do not need to compute these inner products and

we do not need to subtract
(
q∗j Aqt

)
qj from Aqt in the orthogonalization

process. As we shall shortly see, we do not even need to store qj for
j ≤ t − 2.

Now that we have an easy-to-compute orthonormal basis for Kt, we
return to our least-squares problem

min
x∈Kt

‖Ax − b‖2 = min
y∈Rt

‖AKty − b‖2

= min
z∈Rt

‖AQtz − b‖2

= min
z∈Rt

‖Qt+1H̃tz − b‖2 .

Our strategy now is to compute the minimizer z from the expression
in the last line. Once we compute z, the minimizer x in Kt is x = Qtz.
To compute the minimizer, we use the equality

arg min
z∈Rt

‖Qt+1H̃tz − b‖2 = arg min
z∈Rt

‖H̃tz − Q∗
t+1b‖2

= arg min
z∈Rt

‖H̃tz − ‖b‖2e1‖2 ,

where e1 is the first unit vector. The equality Q∗
t+1b = ‖b‖2e1 holds

because Qt+1 is the orthogonal factor in the QR factorization of Kt+1,
whose first column is b. To solve this least-squares problem, we will use
a QR factorization H̃t = VtUt of H̃t: the minimizer z is then defined by
Utz = ‖b‖2V

∗
t e1. Because H̃t ∈ R

t×t is triadiagonal we can compute its
QR factorization with a sequence of of t − 1 Givens rotations, where
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the ith rotation transforms rows i and i − 1 of H̃t and of ‖b‖2e1. A
Given rotation is a unitary matrix of the form⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
cos θ sin θ
− sin θ cos θ

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We choose θ so as to anihilate the subdiagonal element in column i of
H̃t.

One difficulty that arises is that z = zt changes completely in every
iteration, so to form x = Qtz, we need to either store all the columns
of Qt to produce the approximate solution x, or to recompute Qt again
once we obtain a z that ensures a small-enough residual. Fortunately,
there is a cheaper alternative that only requires storing a constant
number of vectors. Let Mt = QtU

−1
t , and let w = Utz. Instead of

solving for z, we only compute w = ‖b‖2V
∗
t e1. Because the ithe rotation

only transforms rows i−1 and i of ‖b‖2e1, we can compute w one entry
at a time. Since x = Qtz = QtU

−1
t Utz = Mtw, we can accumulate

x using the columns of Mt. We compute the columns of Mt one at a
time using the triangular linear system UtMt = Qt; in iteration t, we
compute the last column of Mt from Ut and the last column of Qt.

2. The Conjugate Gradients Algorithm

Minres is a variant of an older and more well-known algorithm
called the Conjugate Gradients method (cg). The Conjugate Gradi-
ents method is only guaranteed to work when A is symmetric positive
definite, whereas minres only requires A to be symmetric. Conju-
gate Gradients also minimizes the norm of the residuals over the same
Krylov subspaces, but not the 2-norm but the A−1-norm,

‖Ax(t) − b‖A−1 =
√

(Ax(t) − b)
∗
A−1 (Ax(t) − b) .

This is equivalent to minimizing the A-norm of the error,

‖x − x(t)‖A =
√

(x − x(t))
∗
A (x − x(t)) .

Minimizing the A-norm of the residual may seem like an odd idea,
because of the dependence on A in the measurement of the residual
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minres(A, b)
q1 = b/‖b‖2 � the first column of Qt

w1 = ‖b‖2 � the first element of the vector w
for t = 1, 2, . . . until convergence

compute Aqt

q̃t+1 = Aqt − (q∗t Aqt) qt −
(
q∗t−1Aqt

)
qt−1

Ht+1,t = ‖q̃t+1‖2

Ht,t = q∗t Aqt

Ht−1,t = q∗t−1Aqt

qt+1 = q̃t+1/ ‖q̃t+1‖2

� Apply rotation t − 2 to H : ,t

Rt−2,t = st−2Ht−1,t

if t > 2 then Ut−1,t = ct−2Ht−1,t else Ut−1,t = Ht−1,t

� Apply rotation t − 1 to H : ,t

Ut−1,t = ct−1Ut−1,t + st−1Ht,t

if t > 1 then Ut,t = −st−1Ut−1,t + ct−1Ht,t else Ut,t = Ht,t

compute [ ct −st
st ct

], the Givens rotation such

that [ ct −st
st ct

]
[

Ut,t

Ht+1,t

]
=
[

anything
0

]
� Apply rotation t to H : ,t

Ut,t = ctUt,t + stHt+1,t

� Apply rotation t to form w = Utz = V ∗
t ‖b‖e1

wt+1 = −stwt

wt = ctwt

mt = r−1
t,t (qt − Ut−1,tmt−1 − Ut−2,tmt−2) � next column of M

x(t) = x(t−1) + wtmt

end for

Figure 1. Minres. To keep the pseudo-code simple,
we use the convention that vectors and matrix/vector
elements with nonpositive indices are zeros. By this con-
vension, x(0) = q0 = m0 = m−1 = 0, and so on. In an
actual code, this convension can be implemented either
using explicit zero vectors or using conditionals.

and the error. But there are several good reasons not to worry. First,
we use the 2-norm of the residual as a stoping criterion, to stop the
iterations only when the 2-norm is small enough, not when the A−1-
norm is small. Second, even when the stopping criterion is based on
the 2-norm of the residual, Conjugate Gradients usually converges only
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slightly slower than minres. Still, the minimization of the 2-norm of
the residual in minres is more elegant.

Why do people use Conjugate Gradients if minres is more theoret-
ically appealing? The main reason that that the matrices Mt = QtR

−1
t

and Rt that are used in minres to form x(t) can be ill conditioned.
This means that in floating-point arithmetic, the computed x(t) are
not always accurate minimizers. In the Conjugate Gradients method,
the columns of the basis matrix (the equivalent of Mt) are A-conjugate,
not arbitrary. This reduces the inaccuracies in the computation of the
approximate solution in each iterations, so the method is numerically
more stable than minres.

We shall not derive the details of the Conjugate Gradient method
here. The derivation is similar to that of minres (there are also other
ways to derive cg), and is presented in many textbooks.

3. Convergence-Rate Bounds

The appeal of Krylov-subspace iterations stems to some extent from
the fact that their convergence is easy to understand and to bound.

The crucial step in the analysis is the expression of the residual
b − Ax(t) as a application of a univariate polynomial p̃ to A and a
multiplication of the resulting matrix p̃(A) by b. Since x(t) ∈ Kt, x(t) =
Kty for some y. That is, x(t) = y1b + y2Ab + · · ·ytA

t−1b. Therefore,

b − Ax(t) = b − y1Ab − y2A
2b − · · · − ytA

tb .

If we denote p(z) = 1 − y1z − y2z
2 − · · · − ytz

t = 1 − zp̃(z), we obtain
b − Ax(t) = p(A)b.

Definition 3.1. Let x(t) ∈ Kt be an approximate solution of Ax =
b and let r(t) = b−Ax(t) be the corresponding residual. The polynomial
p̃t such that x(t) = p̃t(A)b is called the solution polynomial of the
iteration and the polynomial pt(z) = 1 − zp̃(z) is called the residual
polynomial of the iteration.

Figure 2 shows several minres residual polynomials.
We now express p(A) in terms of the eigendecomposition of A. Let

A = V ΛV ∗ be an eigendecomposition of A. Since A is Hermitian, Λ is
real and V is unitary. We have

p(A)b = p (V ΛV ∗) b = V p(Λ)V ∗b ,

so

(2)
∥∥b − Ax(t)

∥∥
2

= ‖p(A)b‖2 = ‖V p(Λ)V ∗b‖2 = ‖p(Λ)V ∗b‖2 .
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n=15, MINRES polynomials of degrees  1, 4, 13 n=200, MINRES polynomials of degrees  4, 13

n=200, MINRES polynomials of degrees  4, 13 n=200, MINRES polynomials of degrees  4, 13

Figure 2. Minres residual polynomials of four linear
problems. The order n of the matrices is shown in each
plot, as well as the degree of the polynomials. The eigen-
values of the matrices are shown using gray tick marks
on the x axis. In all but the bottom-right plot the solu-
tion vector is a random vector; in the bottom-right plot,
the solution vector (and hance also the right-hand side)
is a random combination of only 100 eigenvectors of A,
those associated with the 100 smallest eigenvalues.

We can obtain several bounds on the norm of the residual from this
expression. The most important one is∥∥b − Ax(t)

∥∥
2

= ‖p(Λ)V ∗b‖2

≤ ‖p(Λ)‖2 ‖V ∗b‖2 = ‖p(Λ)‖2 ‖b‖2

=
n

max
i=1

{|p (λi)|} ‖b‖2 .

The last equality follows from the facts that p(Λ) is a diagonal matrix
and that the 2-norm of a diagonal matrix is the largest absolute value
of an element in it. This proves the following result.
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Theorem 3.2. The relative 2-norm of the residual in the tth iter-
ation of minres, ∥∥b − Ax(t)

∥∥
2
/ ‖b‖2 ,

is bounded by maxn
i=1 {|p (λi)|} for any univariate polynomial p of degree

t such that p(0) = 1, where the λi’s are the eigenvalues of A.

We can strenghen this result by noting that if b is a linear combi-
nation of only some of the eigenvectors of A, then only the action of p
on corresponding eigenvalues matters (not on all the eigenvalues). An
example of this behavior is shown in the bottom-right plot of Figure 2.
More formally, from (2) we obtain

‖p(Λ)V ∗b‖2 =

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

p(λ1)(v
∗
1b)

p(λ2)(v
∗
2b)

...
p(λn)(v

∗
nb)

⎤
⎥⎥⎦
∥∥∥∥∥∥∥∥

2

.

In general, if b is orthogonal or nearly orthogonal to an eigenvector vj of
A, then the product p(λj)(v

∗
j b) can be small even if p(λj) is quite large.

But since right-hand sides b with this property are rare in practice, this
stronger bound is not useful for us.

Theorem 3.2 states that if there are low-degree polynomials that
are low on the eigenvalues of A and assume the value 1 at 0, the min-
res converges quickly. Let us examine a few examples. A degree-n
polynomial p can satisfy p(0) = 1 and p(λi) = 0 simulteneously for any
set of n nonzero eigenvalues λ1, . . . , λn. Therefore, in the absense of
rounding errors minres must converge after n iterations to the exact
solution. We could also derive this exact-convergence result from the
fact that Kn = R

n, but the argument that we just gave characterizes
the minres polynomials at or near convergence: their roots are at or
near the eigenvalues of A. If A has repeated eigenvalues, then it has
fewer than n distinct eigenvalues, so we expect exact convergence after
fewer than n iterations. Even if A does not have repeated eigenvalues,
but it does have only a few tight clusters of eigenvalues, then minres
will converge quickly, because a polynomial with one root near every
cluster and a bounded derivative at the roots will assume low values
at all the roots. On the other hand, a residual polynomial cannot have
small values very close to 0, because it must assume the value 1 at
0. These examples lead us to the most important observation about
Krylov-subspace solvers:

Symmetric Krylov-subspace iterative methods for solv-
ing linear systems of equations Ax = b converge quickly
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if the eigenvalues of A form a few tight clusters and
if A does not have eigenvalues very close to 0.

Scaling both A and b can cluster the eigenvalues or move them away
from zero, but has no effect at all on convergence. Scaling up A and
b moves the eigenvalues away from zero, but distributes them on a
larger interval; scaling A and b down clusters the eigenvalues around
zero, but this brings them closer to zero. Krylov-subspace iterations
are invariant to scaling.

This observation leads to two questions, one analytic and one con-
structive: (1) Exactly how quickly does the iteration converges given
some characterization of the spectrum of A? (2) How can we alter the
specturm of A in order to accelerate convergence? We shall start with
the second question.

4. Preconditioning

Suppose that we have a matrix B that approximates A (in a sense
that will become clear shortly), and whose inverse is easier to apply
than the inverse of A. That is, linear systems of the form Bz = r
are much easier to solve for z than linear systems Ax = b. Perhpas
the sparse Cholesky factorization of B is cheaper to compute than A’s,
and perhaps there is another inexpensive way to apply B−1 to r. If B
approximates A in the sense that B−1A is close to the identity, then an
algorithm like minres will converge quickly when applied to the linear
system

(3)
(
B−1A

)
x = B−1b ,

because the eigenvalues of the coefficient matrix B−1A are clustered
around 1. We will initialize the algorithm by computing the right-hand
side B−1, and in every iteration we will multiply qt by A and then apply
B−1 to the product. This technique is called preconditioning.

The particular form of preconditioning that we used in (3) is called
left preconditioning, because the inverse of the preconditioner B is ap-
plied to both sides of Ax = b from the left. Left preconditioning is not
appropriate to algorithms line minres and Conjugate Gradients that
exploit the symmetry of the coefficient matrix, because in general B−1A
is not symmetric. We could replace minres by a Krylov-subspace iter-
ative solver that is applicable to unsymmetric matrices, but this would
force us to give up either the efficiency or the optimality of minres
and Conjugate Gradients.

Fortunately, if B is symmetric positive definite, then there are forms
of preconditioning that are appropriate for symmetric Krylov-subspace
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n=225, MINRES polynomial of degree  9 n=225, MINRES polynomial of degree  9

Figure 3. Minres residual polynomials for a 15-by-
15 two-dimensional mesh (both graphs). The graph on
the left shows polynomial from the application of min-
res directly to the original linear problem Ax = b,
and the graph on the right shows a polynomial from
the application of minres to a preconditioned problem(
L−1AL−T

) (
LT x

)
= (L−1b). The scaling of the axes in

the two graphs are the same.

solvers. One form of symmetric preconditioning solves

(4)
(
B−1/2AB−1/2

) (
B1/2x

)
= B−1/2b

for x. A clever transformation of Conjugate Gradients yields an itera-
tive algorithm in which the matrix that generates the Krylov subspace
is
(
B−1/2AB−1/2

)
, but which only applies A and B−1 in every iteration.

In other words, B−1/2 is never used, not even as a linear operator. We
shall not show this transformation here.

We will show how to use a simpler but equally effective form of
preconditioning. Let B = LLT be the Cholesky factorization of A. We
shall solve

(5)
(
L−1AL−T

) (
LT x

)
= L−1b

for y = LT x using minres, and then we will solve LT x = y by substitu-
tion. To form the right-hand side L−1b, we solve for it by substitution
as well. The coefficient matrix L−1AL−T is clearly symmetric, so we
can indeed apply minres to it. To apply the coefficient matrix to qt

in every iteration, we apply L−T by substitution, apply A, and apply
L−1 by substitution.

Figure 3 shows the spectrum and one minres polynomial for two
matrices: a two-dimensional mesh and the same mesh preconditioned
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as in (5) with a Joshi preconditioner B. We can see that this partic-
ular preconditioner causes three changes in the spectrum. The most
important change is the small eigenvalues of L−1AL−T are much larger
than the small eigenvalues of A. This allows the minres polynomial
to assume much smaller vaues on the spectrum. The minres polyno-
mials must assume the value 1 at 0, so they tend to have large values
on the neighborhood of 0 as well. Therefore, a specturm with larger
smallest eigenvalues leads to faster convergence. Indeed, the precondi-
tioned problem decreased the size of the residual by a factor 10−14 in 46
iterations, whereas the unpreconditioned problem took 110 iterations
to achieve a residual with a similar norm. Two other changes that the
preconditioner caused are a large gap in the middle of the spectrum,
which is a good thing, and a larger largest eigenvalue, which is not. But
these two changes are probably less important than the large increase
in the smallest eigenvalues.

The different forms of preconditioning differ in the algorithmic de-
tails of the solver, but they all have the same spectrum.

Theorem 4.1. Let A be a symmetric matrix and let B = LLT be a
symmetric positive-definite matrix. A scalar λ is either an eigenvalue
of all the following eigenvalue problems or of none of them:

B−1Ax = λx

B−1/2AB−1/2y = λy

L−1AL−T z = λz

Aw = λBw

Proof. The following relations prove the equivalence of the specta:

x = B−1/2y

y = B1/2x

x = L−T z

z = LT x

x = w

�

We can strengthen this theorem to also include certain semidefinite
preconditioners.

Theorem 4.2. Let A be a symmetric matrix and let B = LLT be
a symmetric positive-semidefinite matrix such that null(B) = null(A).
Denote by X+ the pseudo-inverse of a matrix X. A scalar λ is either
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an eigenvalue of all the following eigenvalue problems or of none of
them:

B+Ax = λx(
B+
)1/2

A
(
B+
)1/2

y = λy(
L+
)
A
(
L+
)T

z = λz

Aw = λBw

Proof. We note that null(L+) = null((L+)T ) = null(B+) = null(B) =
null(A). Therefore, λ = 0 is an eigenvalue of all the above problems.
If λ �= 0 is an eigenvalue of one of the above problems, then the corre-
sponding eigenvector is not in null(A). This implies that the relations
defined in the proof of Theorem 4.1, with inverses replaced by pseudo-
inverses, define relations between nonzero vectors. Therefore, λ is an
eigenvalue of all the eigenvalue problems. �

Even though the different forms of preconditioning are equivalent
in terms of the spectra of the coefficient matrices, they are different
algorithmically. If symmetry is not an issue (e.g., if A itself is unsym-
metric), the form B−1A is the most general. When A is symmetric, we
usually require that B is symmetric positive-definite (or semi-definite
with the same null space as A). In this case, the form B−1/2AB−1/2,
when coupled with the transformation that allows multiplications only
by B−1 (and not by B−1/2), is more widely applicable than the form
L−1AL−T , because the latter requires a Cholesky factorization of B,
whereas in the former any method of applying B−1 can be used.

One issue that arizes with any form of preconditioning is the defini-
tion of the residual. If we apply minres to

(
L−1AL−T

) (
LT x

)
= L−1b,

say, it minimizes the 2-norm of the preconditioned residual

L−1b − (L−1AL−T
) (

LT x(t)
)

= L−1b − L−1Ax(t) = L−1
(
b − Ax(t)

)
.

Thus, the true residual b − Ax(t) in preconditioned minres may not
be minimal. This is roughly the same issue as with the norms used
in Conjugate Gradients: we minimize the residual in a norm that is
related to A.

5. Chebyshev Polynomials and Convergence Bounds

The link between Krylov-subspace iterations and polynomials sug-
gests another idea. Given some information on the spectrum of A, we
can try to analytically define a sequence p̃t of solution polynomials such
that for any b the vector x(t) ≡ p̃t(A)b ∈ Kt is a good approximation
to x, the exact solution of Ax = b. More specifically, we can try to
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define p̃t such that the residuals b−Ax(t) are small. We have seen that
the residual can be expressed as pt(A)b, where pt(z) = 1 − zp̃t(z) is
the residual polynomial. Therefore, if p̃t is such that pt assumes low
values on the eigenvalues of A and satisfies pt(0) = 1, then x(t) is a
good approximate solution. This idea can be used both to construct
iterative solvers and to prove bounds on the convergence of methods
like minres and Conjugate Gradients.

One obvious problem is that we do not know what the eigenvalues
of A are. Finding the eigenvalues is more difficult than solving Ax = b.
However, in some cases we can use the structure of A (even with pre-
conditioning) to derive bounds on the smallest and largest eigenvalues
of a positive-definite martrix A, denoted λmin and λmax.

Suppose that we somehow obtained bounds on the extereme eigen-
values of A,

0 < ρmin ≤ λmin ≤ λi ≤ λmax ≤ ρmax .

We shall not discuss here how we might obtain ρmin and ρmax; this is
the topic of much of the rest of the book. It turns out that we can
build a sequence pt of polynomials such that

(1) pt(0) = 1, and
(2) maxz∈[ρmin,ρmax] |pt(z)| is as small as possible for a degree t poly-

nomial with value 1 at 0.

The polynomials that solve this optimization problem are derived from
Chebyshev polynomials, which can be defined using the recurrence

c0(z) = 1

c1(z) = z

ct(z) = 2zct−1(z) − ct−2(z) .

The polynomials that reduce the residual are

pt(z) =
1

ct

(
ρmax+ρmin

ρmax−ρmin

)ct

(
ρmax + ρmin − 2z

ρmax − ρmin

)
.

An Iterative Linear Solver based on Chebyshev Polyno-
mials. Our first application of Chebyshev polynomials is an iterative
Krylov-subspace solver based on them. We will refer to this solver
as the Krylov-Chebyshev solver1. The polynomials pt implicitly define
polynomials p̃t that we can use to construct approximate solutions.
The residual for an approximate solution x(t) is r(t) = b − Ax(t). If we
define x(t) = p̃t(A)b, we have r(t) = pt(A)b = b − Ap̃t(A)b.

1The algorithm that we describe below is related to a more well-known Cheby-
chev linear solver that is used with matrix splittings.
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We now derive recurrences for x(t) and r(t). To keep the notation
simple, we define ρ+ = ρmax + ρmin and ρ− = ρmax + ρmin. For the two
base cases we have

r(0) = p0(A)b = c−1
0

(
ρ+

ρ−

)
c0

(
ρ+

ρ−
I − 2

ρ−
A

)
b = Ib = b

r(1) = p1(A)b = c−1
1

(
ρ+

ρ−

)
c1

(
ρ+

ρ−
I − 2

ρ−
A

)
b

=

(
ρ+

ρ−

)−1(
ρ+

ρ−
I − 2

ρ−
A

)
b = b − 2

ρ+

Ab .

This implies that

x(0) = 0

x(1) =
2

ρ+
b .

For t ≥ 2 we have

pt(A)b = c−1
t

(
ρ+

ρ−

)
ct

(
ρ+

ρ−
I − 2

ρ−
A

)
b

= c−1
t

(
ρ+

ρ−

)(
2

(
ρ+

ρ−
I − 2

ρ−
A

)
ct−1

(
ρ+

ρ−
I − 2

ρ−
A

)
− ct−2

(
ρ+

ρ−
I − 2

ρ−
A

))
b

= c−1
t

(
ρ+

ρ−

)(
2

(
ρ+

ρ−
I − 2

ρ−
A

)
ct−1

(
ρ+

ρ−

)
pt−1 (A) − ct−2

(
ρ+

ρ−

)
pt−2 (A)

)
b

= c−1
t

(
ρ+

ρ−

)(
2

(
ρ+

ρ−
I − 2

ρ−
A

)
ct−1

(
ρ+

ρ−

)
r(t−1) − ct−2

(
ρ+

ρ−

)
r(t−2)

)
.

To compute r(t) from this recurrence, we need r(t−1) and r(t−2), three
elements of the sequence ct(ρ+/ρ−), and one multiplication of a vector
by A. Therefore, we can compute r(t) and ct(ρ+/ρ−) concurrently in a
loop. From the recurrence for r(t) we can derive a recurrence for x(t),

r(t) = pt(A)b

= c−1
t

(
ρ+

ρ−

)(
2ρ+

ρ−
ct−1

(
ρ+

ρ−

)
r(t−1) − 4

ρ−
Act−1

(
ρ+

ρ−

)
r(t−1) − ct−2

(
ρ+

ρ−

)
r(t−2)

)

= c−1
t

(
ρ+

ρ−

)(
2ρ+

ρ−
ct−1

(
ρ+

ρ−

)(
b − Ax(t−1)

)
− 4

ρ−
Act−1

(
ρ+

ρ−

)
r(t−1)

−ct−2

(
ρ+

ρ−

)(
b − Ax(t−2)

))
.
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n=200, Chebyshev polynomials of degrees  4, 13 n=200, Chebyshev polynomials of degrees  4, 13

Figure 4. Chebyshev residual polynomials for two 200-
by-200 matrices with different spectra, where ρmin = λmin

is set at the minimal eigenvalue and ρmax = λmax is set at
the largest eigenvalue. The two matrices have the same
extreme eigenvalues but otherwise their spectra is very
different. The Chebyshev polynomials depend only on
ρmax and ρmin. Compare to the minres polynomials for
the similar spectra in Figure 2.

so

x(t) = p̃t(A)b

= c−1
t

(
ρ+

ρ−

)(
2ρ+

ρ−
ct−1

(
ρ+

ρ−

)
x(t−1)

+
4

ρ−
ct−1

(
ρ+

ρ−

)
r(t−1)

−ct−2

(
ρ+

ρ−

)
x(t−2)

)
.

This algorithm converges more slowly than minres and Conjugate
Gradients. Minres is guaranteed to minimize the residual over all
x(t) in Kt. The solution that we obtain from the Krylov-Chebyshev
recurrences is in Kt, so it cannot yield a smaller residual than the
minres solution. Its main algorithmic advantage over minres and
Conjugate Gradients is that the polynomials p̃t that it produces depend
only on t and on ρmin and ρmax, but they do not depend on b. Therefore,
p̃t(A) is a fixed linear operator, so it can be used as a preconditioner
B−1 = p̃t(A). In contrast, the polynomials that minres and Conjugate
Gradients generate depend on b, so we cannot use these solvers as
preconditioners unless we set very strict convergence bounds, in which
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case an application of these solvers is numerically indistiguishable from
an application of A−1.

Since this algorithm does not exploit the symmetry of A, it can
be used with left preconditioning, not only with symmetric forms of
preconditioning.

Chebyshev-Based Convergence Bounds. We can also use the
Chebyshev iteration to bound the convergence of minres and Con-
jugate Gradients. The key is the following theorem, which we state
without a proof.

Theorem 5.1. Let p(z) be the Chebyshev polynomials defined above
with respect to the interval [λmin, λmax]. Denote by κ the ratio κ =
λmax/λmin. For any z ∈ [λmin, λmax] we have

|pt(z)| ≤ 2

((√
κ + 1√
κ − 1

)t

+

(√
κ + 1√
κ − 1

)−t
)−1

≤ 2

(√
κ − 1√
κ + 1

)t

.

In this theorem, 0 < λmin ≤ λmax are arbitrary positive numbers
that denote then end of the inteval that defines pt. But when these
numbers are the extreme eigenvalues of a symmetric positive definite
matrix, the ratio κ = λmax/λmin plays an important-enough role in
numerical linear algebra to deserve a name.

Definition 5.2. Let A be a symmetric semidefinite matrix, and
let λmin and λmax be its extreme nonzero eigenvalue. The ratio

κ =
λmax

λmax

= ‖A‖2

∥∥A+
∥∥

2

is called the spectral condition number of A. The definition

κ = ‖A‖ ∥∥A+
∥∥

generalizes the condition number to any matrix and to any norm.

We can use Theorem 5.1 to bound the residuals in minres.

Theorem 5.3. Consider the application of minres to the linear
system Ax = b. Let r(t) be the minres residual at iteration t. Then∥∥r(t)

∥∥
2

‖b‖2

≤ 2

(√
κ − 1√
κ + 1

)t

.

Proof. The residual r(t) is the minimal residual for any x(t) ∈
Kt. Let r̂(t) be the Krylov-Chebyshev residual for A and b and let
pt be the Krylov-Chebyshev residual polynomial. Let A = V ΛV ∗ be
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an eigendecomposition of A. The theorem follows from the following
inequalities.∥∥r(t)

∥∥
2

≤ ∥∥r̂(t)
∥∥

2
= ‖p(A)b‖2 = ‖V p(Λ)V ∗b‖2 = ‖p(Λ)V ∗b‖2

≤ ‖p(Λ)V ∗‖2 ‖b‖2 = ‖p(Λ)‖2 ‖b‖2

= max
i

{|p (λi)|} ‖b‖2

≤ max
z∈[λmin,λmax]

{|p (z)|} ‖b‖2

≤ 2

(√
κ − 1√
κ + 1

)t

‖b‖2 .

�
Similar results can be stated for the error and residual of Conjugate

Gradients in the A and A−1 norms, respectively.
For small κ, we can expect convergence to a fixed tolerance, say∥∥r(t)
∥∥

2
≤ 10−12

∥∥r(t)
∥∥

2
within a constant number of iterations. As κ

grows, √
κ − 1√
κ + 1

→ 1 − 2√
κ

,

so we are guaranteed convergence to a fixed tolerance within O(
√

κ)
iterations.


