
CHAPTER 3

Computing the Cholesky Factorization of Sparse

Matrices

In many support preconditioners, the preconditioner B is factored
before the iterations begin. The Cholesky factorization of B allows
us to efficiently solve the correction equations Bz = r. This chapter
explains the principles behind the factorization of sparse symmetric
positive definite matrices.

1. The Cholesky Factorization

We first show that the Cholesky factorization A = LLT of a sym-
metric positive-definite (spd) matrix A always exists.

A matrix A is positive definite if xT Ax > 0 for all 0 �= x ∈ R
n. The

same definition extends to complex Hermitian matrices. The matrix is
positive semidefinite if xT Ax ≥ 0 for all 0 �= x ∈ R

n and xT Ax = 0 for
some 0 �= x ∈ R

n.
To prove the existence of the factorization, we use induction and

the construction shown in Chapter XXX. If A is 1-by-1, then xT Ax =
A11x

2
1 > 0, so A11 ≥ 0, so it has a real square root. We set L11 =

√
A11

and we are done. We now assume by induction that all spd matrices
of dimension n − 1 or smaller have a Cholesky factorization. We now
partition A into a 2-by-2 block matrix and use the partitioning to
construct a factorization,

A =

[
A11 AT

21

A21 A22

]
.

Because A is spd, A11 must also be spd. If it is not positive definite,
then a vector y �= 0 such that yTA11y ≤ 0 can be extended with zeros
to a vector x such that xT Ax ≤ 0. Therfore, A11 has a Choleskyh
factor L11 by induction. The Cholesky factor of a nonsingular matrix
must be nonsingular, so we can define L21 = A21L

−T
11 (L−T

11 denotes the
inverse of LT

11). The key step in the proof is to show that the Schur
complement A22 − L21L

T
21 = A22 − A21A

−1
11 AT

21 is also positive definite.
Suppose for contradition that it is not, and let z �= 0 be such that

1

1. THE CHOLESKY FACTORIZATION 2

zT
(
A22 − L21L

T
21

)
z ≤ 0. We define

x =

[−A−1
11 AT

21z
z

]
=

[
w
z

]
.

Now we have

xT Ax = wT A11w + wTAT
21z + zT A21w + zT A22z

=
(
A−1

11 AT
21z

)T
A11

(
A−1

11 AT
21z

) − 2zT A21

(
A−1

11 AT
21z

)
w + zT A22z

= zT A21A
−1
11 AT

21z − 2zT A21A
−1
11 AT

21z + zT A22z

= zT
(
A22 − L21L

T
21

)
z

≤ 0 ,

which is impossible, so our supposition was wrong. Because A22 −
L21L

T
21 is spd, it has a Cholesky factor L22 by induction. The three

blocks L11, L21, and L22 form a Cholesky factor for A, since

A11 = L11L
T
11

A21 = L21L
T
11

A22 = L21L
T
21 + L22L

T
22 .

Symmetric positive semidefinite (spsd) matrices also have a Cholesky
factorization, but in floating-point arithmetic, it is difficult to compute
a Cholesky factor that is both backward stable and has the same rank
as A. To see that a factorization exists, we modify the construction
as follows. If A is 1-by-1, then if it is singular than it is exactly zero,
in which case we can set L = A. Otherwise, we partition A, selecting
A11to be 1-by-1. If A11 �= 0, then it is invertible and we can continue
with the same proof, except that we show that the Schur complement
is semidefinite, not definte. If A11 = 0, then it is not hard to show that
A21 must be zero as well. This implies that the equation A21 = L21L

T
11

is zero on both sides for any choice of L21. We set L21 = 0 and continue.
The difficulty in a floating-point implementation lies in deciding

whether a computed A11 would be zero in exact arithmetic. In gen-
eral, even if the next diagonal element A11 = 0 in exact arithmetic, in
floating-point it might be computed as a small nonzero value. Should
we round it (and A21) to zero? Assuming that it is a nonzero when in
fact is should be treated is a zero leads to an unstable factorization.
The small magnitude of the computed L11 can cause the elements of
L21 to be large, which leads to large inaccuracies in the Schur comple-
ment. On the other hand, rounding small values to zero always leads
to a backward stable factorization, since the rounding is equivalent to

2. WORK AND FILL IN SPARSE CHOLESKY 3

a small perturbation in A. But rounding a column to zero when the
value in exact arithmetic is not zero causes the rank of L to be smaller
than the rank of A. This can later cause trouble, since some vectors b
that are in the range of A are not in the range of L. In such a case,
there is no x such that LLT x = b even if Ax = b is consistent.

2. Work and Fill in Sparse Cholesky

When A is sparse, operations on zeros can be skipped. For example,
suppose that

A =

⎡
⎣2 0 · · ·

0 3
...

. . .

⎤
⎦ =

⎡
⎢⎣
√

2 0 · · ·
0

√
3

...
. . .

⎤
⎥⎦

⎡
⎢⎣
√

2 0 · · ·
0

√
3

...
. . .

⎤
⎥⎦

T

.

There is no need to divide 0 by
√

2 to obtain L2,1 (the element in
row 2 and column 1; from here on, expressions like L2,1 denote matrix
elements, not submatrices). Similarly, there is no need to subtract
0 × 0 from the 3, the second diagonal element. If we represent zeros
implicitly rather than explicitly, we can avoid computations that have
no effect, and we can save storage. How many arithmetic operations
do we need to perform in this case?

Definition 2.1. We define η(A) to be the number of nonzero ele-
ments in a matrix A. We define φalg(A) to be the number of arithmetic
operations that some algorithm alg performs on an input matrix A,
excluding multiplications by zeros, divisions of zeros, additions and
subtractions of zeros, and taking square roots of zeros. When the algo-
rithm is clear from the context, we drop the subscript in the φ notation.

Theorem 2.2. Let SparseChol be a sparse Cholesky factorization
algorithm that does not multiply by zeros, does not divide zeros, does
not add or subtract zeros, and does not compute square roots of zeros.
Then for a symmetric positive-definite matrix A with a Cholesky factor
L we have

φSparseChol(A) =
n∑

j=1

(
1 + η (Lj+1: n) +

η (Lj+1: n) (η (Lj+1: n) + 1)

2

)

=

n∑
j=1

O
(
η2 (Lj+1: n)

)
.

Proof. Every arithmetic operation in the Cholesky factorization
involves an element or two from a column of L: in square roots and
divisions the output is an element of L, and in multiply-subtract the

2. WORK AND FILL IN SPARSE CHOLESKY 4

two inputs that are multiplied are elements from one column of L. We
count the total number of operations by summing over columns of L.

Let us count the operations in which elements of Lj : n,j are involved.
First, one square root. Second, divisions of η (Lj+1: n) by that square
root. We now need to count the operations in which elements from
this column update the Schur complement. To count these operations,
we assume that the partitioning of A is into a 2-by-2 block matrix, in
which the first diagonal block consists of j rows and columns and the
second of n − j. The computation of the Schur complement is

Aj+1: n,j+1: n−Lj+1: n,1: jL
T
j+1: n,1: j = Aj+1: n,j+1: n−

j∑
k=1

Lj+1: n,kL
T
j+1: n,k .

This is the only Schur-complement computation in which Lj : n,j is in-
volved under this partitioning of A. It was not yet used, because it has
just been computed. It will not be used again, because the recursive
factorization of the Schur complement is self contained. The column
contributes one outer product Lj+1: n,jL

T
j+1: n,j. This outer product

contains η2 (Lj+1: n) nonzero elements, but it is symmetric, so only its
lower triangle needs to be computed. For each nonzero element in this
outer product, two arithmetic operations are performed: a multiplica-
tion of two elements of Lj+1: n and a subtraction of the product from
another number. This yields the total operation count. �

Thus, the number of arithmetic operations is asymptotically pro-
portional to the sum of squares of the nonzero counts in columns of L.
The total number of nonzeros in L is, of course, simply the sum of the
nonzero counts,

η(L) =

n∑
j=1

η (Lj+1: n) .

This relationship between the arithmetic operation count and the nonzero
counts shows two things. First, sparser factors usually (but not always)
require less work to compute. Second, a factor with balanced nonzero
counts requires less work to compute than a factor with some relatively
dense columns, even if the two factors have the same dimension and
the same total number of nonzeros.

The nonzero structure of A and L does not always reveal everything
about the sparsity during the factorization. Consider the following

2. WORK AND FILL IN SPARSE CHOLESKY 5

matrix and its Cholesky factor,

A =

⎡
⎢⎢⎣

4 2 2
4 2 −2

2 2 6
2 −2 6

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2
2

1 1 2
1 −1 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2
2

1 1 2
1 −1 2

⎤
⎥⎥⎦

T

.

The element in position 4, 3 is zero in A and in L, but it might fill
in one of the Schur complements. If we partition A into two 2-by-2
blocks, this element never fills, since

A3: 4,3: 4 − L3: 4,1: 2L
T
3: 4,1: 2 =

[
6

6

]
−

[
1 1
1 −1

] [
1 1
1 −1

]

=

[
6

6

]
−

[
2 0
0 2

]

=

[
4

4

]
.

However, if we first partition A into a 1-by-1 block and a 3-by-3 block,
then the 4, 3 element fills in the Schur complement,

A2: 4,2: 4 − L2: 4,1L
T
2: 4,1 =

⎡
⎣ 4 2 −2

2 6
−2 6

⎤
⎦ −

⎡
⎣0

1
1

⎤
⎦ [

0 1 1
]

=

⎡
⎣ 4 2 −2

2 6
−2 6

⎤
⎦ −

⎡
⎣0 0 0

0 1 1
0 1 1

⎤
⎦

=

⎡
⎣ 4 2 −2

2 5 −1
−2 −1 5

⎤
⎦ .

When we continue the factorization, the 4, 3 element in the Schur com-
plement must cancel exactly by a subsequent subtraction, because we
know it is zero in L (The Cholesky factor is unique). This example
shows that an element can fill in some of the Schur complements, even
if it zero in L. Clearly, even an position that is not zero in A can be-
come zero in L due to similar cancelation. For some analyses, it helps
to define fill in a way that accounts for this possibility.

Definition 2.3. A fill in a sparse Cholesky factorization is a row-
column pair i, j such that Ai,j = 0 and which fills in at least one Schur
complement. That is, Ai,j = 0 and Ai,j − Li,1: kL

T
1: k,j �= 0 for some

k < j.

3. AN EFFICIENT IMPLEMENTION OF SPARSE CHOLESKY 6

3. An Efficient Implemention of Sparse Cholesky

To fully exploit sparsity, we need to store the matrix and the factor
in a data structure in which effect-free operations on zeros incur no
computational cost at all. Testing values to determine whether they
are zero before performing an arithmetic operation is a bad idea: the
test takes time even if the value is zero (on most processor, a test
like this takes more time than an arithmetic operation). The data
structure should allow the algorithm to implicitly skip zeros. Such a
data structure increases the cost of arithmetic on nonzeros. Our goal is
to show that in spite of the overhead of manipulating the sparse data
structure, the total number of operations in the factorization can be
kept proportional to the number of arithmetic operations.

Another importan goal in the design of the data structure is memory
efficiency. We would like the total amount of memory required for
the sparse-matrix data structure to be proportional to the number of
nonzeros that it stores.

Before we can present a data structure that achieves these goals, we
need to reorder the computations that the Cholesky factorization per-
form. The reordered variant that we present is called column-oriented
Cholesky. In the framework of our recursive formulations, this variant
is based on repartitioning the matrix after the elimination of each col-
umn. We begin with a partitioning of A into the first row and column
and the rest of the matrix,

A =

[
A1,1 AT

2: n,1

A2: n,1 A2: n,2: n

]
.

We compute L1,1 =
√

A1,1 and divide A2: n,1 to by the root to obtain
L2: n,1. Now comes the key step. Instead of computing all the Schur
complement A2: n,2: n −L2: n,1L

T
2: n,1, we compute only its first column,

A2: n,2 − L2: n,1L
T
2,1. The first column of the Schur complement allows

us to compute the second column of L. At this point we have com-
puted the first two columns of L and nothing else. We now view the
partitioning of A as

A =

[
A1:2,1:2 AT

3: n,1:2

A3: n,1:2 A3: n,3: n

]
=

[
L1:2,1:2

L3: n,1:2 L3: n,3: n

] [
L1:2,1:2

L3: n,1:2 L3: n,3: n

]T

.

We have already computed L1:2,1:2 and L3: n,1:2. We still need to com-
pute L3: n,3: n. We do so in the same way: computing the first column
of the Schur complement A3: n,3−L3: n,1:2L

T
3,1: 2 and eliminating it. The

algorithm, ignoring sparsity issues, is shown in Figure XXX.

3. AN EFFICIENT IMPLEMENTION OF SPARSE CHOLESKY 7

for j = 1: n
Sj : n = Aj : n,j − Lj : n,1:j−1L

T
j,1: j−1

Lj,j =
√

Sj

Lj+1: n,j = Sj+1: n/Lj,j

end

Figure 1. Column-oriented Cholesky. The vector S is a
temporary vector that stores a column of the Schur com-
plement. By definition, operations involving a range i : j
of rows or columns for i < 1 or j > n are not performed at
all. (This allows us to drop the conditional that skips the
computation of the Schur-complement column for j = 1
and the computation of the nonexisting subdiagonal part
of the last column of L; in an actual algorithm, these con-
ditionals would be present, or the processing of j = 1 and
j = n would be performed outside the loop.)

We now present a data structure for the efficient implementation
of sparse column-oriented Cholesky. Our only objective in presenting
this data structure is show that sparse Cholesky can be implemented in
time proportional to arithmetic operations and in space proportional to
the number of nonzeros in A and L. The data structure that we present
is not the best possible. Using more sophisticated data structures, the
number of operations in the factorization and the space required can
be reduced further, but not asymptotically.

We store A using an array of n linked lists. Each linked list stores
the diagonal and subdiagonal nonzeros in one column of A. Each struc-
ture in the linked-list stores the value of one nonzero and its row index.
There is no need to store the elements of A above its main diagonal,
because (1) A is symmetric, and (2) column-oriented Cholesky never
references them. There is also no need to store the column indices in
the linked-list structures, because each list stores elements from only
one column. The linked lists are ordered from low row indices to high
row indices.

We store the already-computed columns of L redundantly. One
part of the data structure, which we refer to as columns, stores the
columns of L in exactly the same way we store A. The contents of
the two other parts of the data structure, called cursors and rows,
depend on the number of columns that have already been computed.
Immediately before step j begins, these parts contains the following
data. Cursors is an array of n pointers. The first j − 1 pointers, if

3. AN EFFICIENT IMPLEMENTION OF SPARSE CHOLESKY 8

set, point to linked-list elements of columns. Cursorsi points to the
first element with row index larger than j in columnsi, if there is such
an element. If not, it is not set (that is, it contains a special invalid
value). The other n− j +1 elements of cursors are not yet used. Like
columns, rows is an array of linked list. The ith list stores the elements
of Li,1: j−1, but in reverse order, from high to low column indices. Each
element in such a list contains a nonzero value and its column index.

The column S of the Schur complement is represented by a data
structure s called a sparse accumulator. This data structure consists of
an array s.values of n real or complex numbers, an array s.rowind of
n row indices, and array s.exists of booleans, and an integer s.nnz

that specifies how many rows indices are actually stored in s.rowind.
Here is how we use these data structures to compute the factor-

ization. Step j begins by copying Aj : n,j to s. To do so, we start by
setting s.nnz to zero. We then traverse the list that represents Aj : n,j.
For a list element that represents Ai,j, we increment s.nnz, store i in
s.rowinds.nnz store Aij in s.valuesi, and set s.existsi to a true value.

Our next task is to subtract Lj : n,1:j−1L
T
j,1: j−1 from S. We traverse

rowsj to find the nonzero elements in LT
j,1: j−1. For each nonzero Lj,k

that we find, we subtract Lj : n,kL
T
k,j = Lj,kLj : n,k from S. To subtract,

we traverse columnsk starting from cursorsk. Let Li,k be a nonzero
found during this traversal. To subtract Lj,kLi,k from Si, we first check
whether s.existsi is true. If it is, we simply subtract Lj,kLi,k from
s.valuesi. If not, then Si was zero until now (in step j). We increment
s.nnz, store i in s.rowinds.nnz store 0 − Lj,kLi,k in s.valuesi, and set
s.existsi to a true. During the traversal of columnsk, we many need to
advance cursorsk to prepare it for subsequent steps of the algorithm.
If the first element that we find in the travelral has row index j, we
advance cursorsk to the next element in columnsk. Otherwise, we do
not modify columnsk.

Finally, we compute Lj : n,j and insert it into the nonzero data struc-
ture that represents L. We replace s.valuesj by its square root. For
each rows index i �= j stored in one of the first s.nnz entries of s.rowind,
we divide s.valuesi by s.valuesj . We now sort elements 1 though
s.nnz of s.rowind, to ensure that the elements columnsj are linked in
ascending row order. We traverse the row indices stored in s.rowind.
For each index i such that s.valuesi �= 0, we allocate a new element
for columnsj , link it to the previous element that we created, and store
in it i and s.valuesi. We also set s.existsi to false, to prepare it for
the next iteration.

3. AN EFFICIENT IMPLEMENTION OF SPARSE CHOLESKY 9

We now analyze the number of operations and the storage require-
ments of this algorithm.

Theorem 3.1. The total number of operations that the sparse-
cholesky algorithm described above performs is Θ(φ(A)). The amount
of storage that the algorithm uses, including the representation of its
input and output, is Θ(n + η(A) + η(A)).

Proof. Let’s start with bounding work. Step j starts with copy-
ing column j of A into the sparse accumulator, at a total cost of
Θ(1 + η(Aj : n,j)). No aritmetic is performed, but we can charge these
operations to subsequent arithmetic operations. If one of these values is
modified in the accumulator, we charge the copying to the subsequent
multiply-subtract. If not, we charge it to either the square root of the
diagonal element or to the division of subdiagonal elements. We cannot
charge all the copying operations to roots and divisions, becuase some
of the copied elements might get canceled before they are divided by
Lj,j.

The traversal of rowsj and the subtractions of scaled columns of L
from the accumulator are easy to account for. The processing of an
element of rowsj is charged to the modification of the diagonal, Sj =
Sj − L2

j,k. The traversal of the suffix of columnsk performs 2η(Lj : n,k)
arithmetic operations andΘ(η(Lj : n,k)) non-arithmetic operations, so
all operations are accounted for.

After the column of the Schur complement is computed, the al-
gorithm computes a square root, scales η(Lj : n,j) − 1 elements, sorts
the indices of Lj : n,j, and creates a linked-list to hold the elements of
Lj : n,j. The total number of operations in these computations is clearly
O(η2(Lj+1: n,j)), even if we use a quadratic sorting algorithm, so by us-
ing Theorem 2.2, we conclude that the operation-count bound holds.

Bounding space is easier. Our data structure includes a few arrays
of length n and linked lists. Every linked-list element represents a
nonzero in A or in L, and every nonzero is represented by at most
two linked-list elements. Therefore, the total storage requirements is
Θ(n + η(A) + η(A)). �

The theorem shows that the only way to asymptotically reduce the
total number of operations in a sparse factorization is to reduce the
number of arithmetic operations. Similarly, to asymptotically reduce
the total storage we must reduce the fill. There are many ways to
optimize and improve both the data structure and the algorithm that

3. AN EFFICIENT IMPLEMENTION OF SPARSE CHOLESKY 10

we described, but these optimizations can reduce the number of oper-
ations and the storage requirements only by a constant multiplicative
constant.

Improvements in this algorithm range from simple data-structure
optimizations, through sophisticated preprocessing steps, to radical
changes in the representation of the Schur complement. The most
common data-structure optimization, which is used by many sparse
factorization codes, is the use of compressed-column storage. In this
data structure, all the elements in all the columns list are stored in
two contiguous arrays, one for the actual numerical values and an-
other for the row indices. A integer third array of size n + 1 points
to the beginning of each column in these arrays (and to the location
just past column n). Preprocessing steps can upper bound the number
of nonzeros in each column of L (this is necessary for exact preallo-
cation of the compressed-column arrays) and the identity of potential
nonzeros. The prediction of fill in L can can eliminate the conditional
in the inner loop that updates the sparse accumulator; this can signif-
icantly speed up the computation. The preprocessing steps can also
construct a compact data structured called the elimination tree of A
that can be used for determining the nonzero structure of a row of L
without maintaining the rows lists. This also speeds up the computa-
tion significantly. The elimination tree has many other uses. Finally,
multifrontal factorization algorithms maintain the Schur complement
in a completely different way, as a sum of sparse symmetric update
matrices.

The number of basic computational operations in an algorithm is
not an accurate predictor of its running time. Different algorithms have
different mixtures of operations and different memory-access patterns,
and these factors affect running times, not only the total number of
operations. We have seen evidence for this in Chapter XXX, were we
have seen cases where direct solvers run at much higher computational
rates than iterative solvers. But to develop fundamental improvements
in algorithms, it helps to focus mainly on operation counts, and in
particular, on asymptotic operation counts. Once new algorithms are
discovered, we can and should optimize them both in terms of operation
counts and in terms of the ability to exploit cache memories, multiple
processors, and other architectural features of modern computers. But
our primary concern here is asymptotic operation counts.

4. CHARACTERIZATIONS OF FILL 11

4. Characterizations of Fill

If we want to reduce fill, we need to characterize fill. Definition 2.3
provides an characterization, but this characterization is not useful for
predicting fill before it occurs. One reason that predicting fill using
Definition 2.3 is that it for cancellations, which are difficult to predict.
In this section we provide two other characterizations. They are not
exact, in the sense that they characterize a superset of the fill. In many
cases these characterizations are exact, but not always. On the other
hand, these charactersizations can be used to predict fill before the
factorization begins. Both of them are given in terms of graphs that
are related to A, not in terms of matrices.

Definition 4.1. The pattern graph of an n-by-n symmetric matrix
A is an undirected graph GA = ({1, 2, . . . n}, E) whose vertices are the
integers 1 through n and whose edges are pairs (i, j) such that Ai,j �= 0.

Definition 4.2. Let G be an undirected graph with vertices 1, 2, . . . , n.
A vertex elimination step on vertex j of G is the transformation of
G into another undirected graph eliminate(G, j). The edge set of
eliminate(G, j) is the union of the edge set of G with a clique on the
neighbors of j in G whose indices are larger than j,

E(eliminate(G, j)) = E(G) ∪ {(i, k) | i > j

k > j

(j, i) ∈ E(G)

(k, i) ∈ E(G)} .

The fill graph G+
A of A is the graph

G+
A = eliminate(eliminate(· · · eliminate(GA, 1) · · ·), n − 1), n) .

The edges of the fill graph provide a bound on fill

Lemma 4.3. Let A be an n-by-n symmetric positive-definite matrix.
Let 1 ≤ j < i ≤ n. If Ai,j �= 0 or i, j is a fill element, then (i, j) is an
edge of G+

A.

Proof. The elimination of a vertex only adds edges to the graph.
The fill graph is produced by a chain of vertex eliminations, starting
from the graph of A. If Ai,j �= 0, then (i, j) is an edge of the graph of
A, and therefore also an edge of its fill graph.

We now prove by induction on j that a fill element i, j is also an
edge (i, j) in

eliminate(eliminate(· · · eliminate(GA, 1) · · ·), j − 2), j − 1) .

4. CHARACTERIZATIONS OF FILL 12

The claim hold for j = 1 because Li,1 �= 0 if and only if Ai,1 �= 0.
Therefore, there are no fill edges for j = 1, so the claims holds. We
now prove the claim for j > 1. Assume that i, j is a fill element, and
let S(j) be the Schur complement just prior to the jth elimination step,

S(j) = Aj : n,j : n − Lj : n,1: j−1L
T
j : n,1: j−1 = Aj : n,j : n −

j−1∑
k=1

Lj : n,kL
T
j : n,k .

Since i, j is a fill element, S
(j)
i,j �= 0 but Ai,j = 0. Therefore, Li,kLj,k �= 0

for some k < j. This implies that Li,k �= 0 and Lj,k �= 0. By induction,
(i, k) and (j, k) are edges of

eliminate(· · · eliminate(GA, 1) · · ·), k − 1) .

Therefore, (i, j) is an edge of

eliminate(eliminate(· · · eliminate(GA, 1) · · ·), k − 1), k) .

Since edges are never removed by vertex eliminations, (i, j) is also an
edge of

eliminate(eliminate(· · · eliminate(GA, 1) · · ·), j − 2), j − 1) .

This proves the claim and the entire lemma. �
The converse is not true. An element in a Schur complement can

fill and then be canceled out, but the edge in the fill graph remains.
Also, fill in a Schur complement can cancel exactly an original element
of A, but the fill graph still contains the corresponding edge.

The following lemma provides another characterization of fill.

Lemma 4.4. The pair (i, j) is an edge of the fill graph of A if and
only if GA contains a simple path from i to j whose internal vectices
all have indices smaller than min(i, j).

Proof. Suppose that GA contains such a path. We prove that
(i, j) edge of the fill graph by induction on the length of the path. If
path contains only one edge then (i, j) is an edge of GA, so it is also
an edge of G+

A. Suppose that the claim holds for paths of length � − 1
or shorter and that a path of length � connects i and j. Let k be the
smallest-index vertex in the path. The elimination of vertex k adds
an edge connecting its neighbors in the path, because their indices are
higher than k. Now there is a path of length �−1 between i and j; the
internal vertices still have indices smaller than min(i, j). By induction,
future elimination operations on the graph will create the fill edge (i, j).

To prove the other direction, suppose that (i, j) is an edge of G+
A. If

(i, j) is an edge of GA, a path exists. If not, the edge (i, j) is created by
some elimination step. Let k be the vertex whose elimination creates

5. PERFECT AND ALMOST-PERFECT ELIMINATION ORDERINGS 13

this edge. We must have k < min(i, j), otherwise the kth elimination
step does not create the edge. Furthermore, when k is eliminated, the
edges (k, i) and (k, j) exist. If they are original edge of GA, we are
done—we have found the path. If not, we use a similar argument to
show that there must be suitable paths from i to k and from k to j.
The concatenation of these paths is the sought after path. �

5. Perfect and Almost-Perfect Elimination Orderings

The Cholesky factorization of symmetric positive definite matri-
ces is numerically stable, and symmetrically permuting the rows and
columns of an spd matrix yields another spd matrix. Therefore, we
can try to symmetrically permute the rows and columns of a sparse
matrix to reduce fill and work in the factorization. We do not have to
worry that the permutation will numerically destabilize the factoriza-
tion. In terms of the graph of the matrix, a symmetric row and column
pemutation corresponds to relabeling the vertices of the graphs. In
otherwords, given an undirected graph we seek an elimination ordering
for its vertices.

Some graphs have elimination orderings that generate no fill, so that
G+

A = GA. Such orderings are called perfect-elimination orderings. The
most common example are trees.

Lemma 5.1. If GA is a tree or a forest, then G+
A = GA.

Proof. On a tree or forest, any depth-first-search postorder is a
perfect-elimination ordering.

By Lemma 4.4, all the fill edges occur within connected components
of GA. Therefore, it is enough to show that each tree in a forest has
a perfect-elimination ordering. We assume from here on that GA is a
tree.

Let v be an arbitrary vertex of GA. Perform a depth-first traversal
of GA starting from the root v, and number the vertices in postorder:
give the next higher index to a vertex v immediately after the traversal
returns from the last child of v, starting from index 1. Such an ordering
guarantees that in the rooted tree rooted at v, a vertex u has a higher
index than all the vertices in the subtree rooted at u.

Under such an ordering, the elimination of a vertex u creates no fill
edges at all, because u has at most one neighbor with a higher index,
its parent in the rooted tree. �

Most graphs do not have perfect-elimination orderings, but some
orderings are almost as good. The elimination of a vertex with only one
higher-numbered neighbor is called a perfect elimination step, because

6. SYMBOLIC ELIMINATION AND THE ELIMINATION TREE 14

it produces no fill edge. Eliminating a vertex with two higher-numbered
neighbors is not perfect, but almost: it produces one fill edge. If GA

contains an isolated path

v0 ↔ v1 ↔ v2 ↔ · · · ↔ v� ↔ v�+1

such that the degree of v1, v2, . . . , v� in GA is 2, then we can eliminate
v1, . . . , v� (in any order), producing only � fill edges and performing
only Θ(�) operations. This observation is useful if we try to sparsify a
graph so that the sparsified graph has a good elimination ordering.

6. Symbolic Elimination and the Elimination Tree

We can use the fill-characterization technique that Lemma 4.3 de-
scribes to create an efficient algorithm for predicting fill. Predicting
fill, or even predicting just the nonzero counts in rows and columns
of the factor, can lead to more efficient factorization algorithms. The
improvements are not asymptotic, but they can be nonetheless signifi-
cant.

The elimination of vertex k adds to the graph the edges of a clique,
a complete subgraph induced by the higher-numbered neighbors of k.
Some of these edges may have already been part of the graph, but some
may be new. If we represent the edge set of the partially-eliminated
graph using a clique-cover data structure, we efficiently simulate the
factorization process and enumerate the fill edges. An algorithm that
does this is called a symbolic elimination algorithm. It is symbolic in
the sense that it simulates the sparse factorization process, but without
computing the numerical values of elements in the Schur complement
or the factor.

A clique cover represents the edges of an undirected graph using
an array of linked lists. Each list specifies a clique by specifying the
indices of a set of vertices: each link-list element specifies one vertex
index. The edge set of the graph is the union of the cliques. We can
create a clique-cover data structure by creating one two-vertex clique
for each edge in the graph.

A clique cover allows us to simulate elimination steps efficiently.
We also maintain an array of vertices. Each element in the vertex
array is a doubly-linked list of cliques that the vertex participates in.
To eliminate vertex k, we need to create a new clique containing its
higher-numbered neighbors. These neighbors are exactly the union of
higher-than-k vertices in all the cliques that k participates in. We can
find them by traversing the cliques that k participates in. For each
clique q that k participates in, we traverse q’s list of vertices and add
the higher-than-k vertices that we find to the new clique. We add a

6. SYMBOLIC ELIMINATION AND THE ELIMINATION TREE 15

vertex to the new clique at most once, using a length-n bit vector to
keep track of which vertices have already been added to the new clique.
Before we move on to eliminate vertex k + 1, we clear the bits that we
have set in the bit vector, using the vertices in the new clique to indicate
which bits must be cleared. For each vertex j in the new clique, we
also add the new clique to the list of cliques that j participates in.

The vertices in the new clique, together with k, are exactly the
nonzero rows in column k of a cancellation-free Cholesky factor of A.
Thus, the symbolic-elimination algorithm predicts the structure of L if
there are no cancellations.

We can make the process more efficient by not only creating new
cliques, but merging cliques. Let q be a clique that k participates in,
and let i > k and j > k be vertices in q. The clique q represents
the edge (i, j). But the new clique that the elimination of k creates
also represents (i, j), because both i and j belong to the new clique.
Therefore, we can partially remove clique q from the data structure.
The removal makes the elimination of higher-than-k vertices belonging
to it cheaper, because we will not have to traverse it again. To remove
q, we need each element of the list representing q to point to the element
representing q in the appropriate vertex list. Because the vertex lists
are doubly-linked, we can remove elements from them in constant time.

Because each clique either represents a single nonzero of A or the
nonzeros in a single column of a cancellation-free factor L, the total
size of the data structure is Θ(η(A) + η(L) + n). If we do not need to
store the column structures (for example, if we are only interested in
nonzero counts), we can remove completely merged cliques. Because
we create at most one list element for each list element that we delete,
the size of the data structure in this scheme is bounded by the size of
the original data structure, which is only Θ(η(A) + n).

The number of operations in this algorithm is Θ(η(A) + η(L) + n),
which is often much less than the cost of the actual factorization,

φ(A) =
n∑

j=1

O
(
η2 (Lj+1: n)

)
.

To see that this is indeed the case, we observe that each linked-list
element is touched by the algorithm only twice. An element of a clique
list is touched once when it is first created, and another time when the
clique is merged into another clique. Because the clique is removed
from vertex lists when it is merged, it is never referenced again. An
element of a vertex list is also touched only once after it is created.

7. MINIMUM-DEGREE ORDERINGS 16

Either the element is removed from the vertex’s list before the vertex
is eliminated, or it is touched during the traveral of the vertex’s list.

The process of merging the cliques defines an important structure
that plays an important role in many sparse-matrix factorization algo-
rithms, the elimination tree of A. To define the elimination tree, we
name some of the cliques. Cliques that are created when we initialize
the clique cover to represent the edge set of GA have no name. Cliques
that are formed when we eliminate a vertex are named after the vertex.
The elimination tree is a rooted forest on the vertices {1, 2, . . . , n}. The
parent π(k) of vertex k is the name of the clique into which clique k is
merged, if it is. If clique k is not merged in the symbolic-elimination
process, k is a root of a tree in the forest. There are many alternative
definitions of the elimination tree. The elimination tree has many appli-
cations. In particular, it allows us to compute the number of nonzeros
in each row and column of a cancellation-free Cholesky factor in time
almost linear in η(A), even faster than using symbolic elimination.

7. Minimum-Degree Orderings

The characterization of fill in Lemma 4.3 also suggests an order-
ing heuristic for reducing fill. If the elimination of a yet-uneliminated
vertex creates a clique whose size is the number of the uneliminated
neighbors of the chosen vertex, it makes sense to eliminate the vertex
with the fewer uneliminated neighbors. Choosing this vertex minimizes
the size of the clique that is created in the next step and minimizes the
arithmetic work in the next step. Ordering heuristics based on this
idea are called minimum-degree heuristics.

There are two problems in the minimum-degree idea. First, not all
the edges in the new cliques are new; some of them might be part of GA

or might have already been created by a previous elimination step. It
is possible to minimize not the degree but the actual new fill, but this
turns out to be more expensive algorithmically. Minimizing fill in this
way also turns out to produce orderings that are not significantly better
than minimum-degree orderings. Second, an optimal choice for the next
vertex to eliminate may be suboptimal globally. There are families of
matrices on which minimum-degree orderings generate asymptotically
more fill than the optimal ordering. Minimum-degree and minimum-fill
heuristics are greedy and myopic. They select vertices for elimination
one at a time, and the lack of global planning can hurt them. This is
why minimum fill is often not much better than minimum fill.

8. NESTED-DISSECTION ORDERINGS FOR REGULAR MESHES 17

Even though minimum-degree algorithms are theoretically known
to be suboptimal, they are very fast and often produce effective order-
ings. On huge matrices nested-dissection orderings, which we discuss
next, are often more effective than minimum-degree orderings, but on
smaller matrices, minimum-degree orderings are sometimes more effec-
tive in reducing fill and work.

Minimum-degree algorithms usually employ data structures similar
to the clique cover used by the symbolic elimination algorithm. The
data structure is augmented to allow vertex degrees to be determined or
approximated. Maintaining exact vertex degrees is expensive, since a
vertex cover does not represent vertex degrees directly. Many successful
minimum-degree algorithms therefore use degree approximations that
are cheaper to maintain or compute. Since the minimum-degree is only
a heuristic, these approximations are not neccessarily less effective in
reducing fill than exact degrees; sometimes they are more effective.

8. Nested-Dissection Orderings for Regular Meshes

Nested-dissection orderings are known to be approximately optimal,
and on huge matrices that can be significantly more effective than other
ordering heuristics. On large matrices, the most effective orderings are
often nested-dissection/minimum-degree hybrids.

Nested-dissection orderings are defined recursively using vertex sub-
sets called separators.

Definition 8.1. Let G = (V, E) be an undirected graph with |V | =
n. Let α and β be real positive constants, and let f be a real function
over the positive integers. An (α, β, f) vertex separator in G is a set
S ⊆ V of vertices that satisfies the following conditions.

Separation:: There is a partition V1 ∪ V2 = V \ S such that for
any v ∈ V1 and u ∈ V2, the edge (u, v) �∈ E.

Balance:: |V1|, |V2| ≤ αn.
Size:: |S| ≤ βf(n).

Given a vertex separator S in GA, we order the rows and columns of
A of the separator last, say in an arbitrary order (but if G \S contains
many connected components then a clever ordering of S can further
reduce fill and work), and the rows and columns corresponding to V1

and V2 first. By Lemma 4.4, this ensures that for any v ∈ V1 and
u ∈ V2, the edge (u, v) is not a fill edge, so Lu,v = Lv,u = 0. Therefore,
the interleaving of vertices of V1 and V2 has no effect on fill, so we can
just as well order all the vertices of V1 before all the vertices of V2.

The function of the separator in the ordering is to ensure that Lu,v =
0 for any v ∈ V1 and u ∈ V2. Any ordering in which the vertices of

8. NESTED-DISSECTION ORDERINGS FOR REGULAR MESHES 18

V1 appear first, followed by the vertices of V2, followed by the vertices
of S, ensures that a |V1|-by-|V2| rectangular block in L does not fill.
A good separator is one for which this block is large. The size of S
determines the circumference of this rectangular block, because half
the circumference is |V1|+ |V2| = n − |S|. The size imbalance between
V1 and V2 determines the aspect ratio of this rectangle. For a given
circumference, the area is maximized the rectangle is as close to square
as possible. Therefore, a small balanced separator reduces fill more
effectively than a large or unbalanced separator.

By using separators in the subgraphs of GA induced by V1 and V2

to order the diagonal blocks of A that correspond to V1 and V2, we can
avoid fill in additional blocks of L. These blocks are usually smaller
than the top-level |V1|-by-|V2| block, but they are still helpful and sig-
nificant in reducing the total fill and work. If |V1| or |V2| are small,
say smaller than a constant threshold, we order the corresponding sub-
graphs arbitrarily.

Let us see how this works on square two-dimensional meshes. To
keep the analysis simple, we use a cross-shaped separator that parti-
tions the mesh into four square or nearly-square subgraphs. We assume
that GA is an nx-by-ny where nxny = n and where |nx − ny| ≤ 1. The
size of a cross-shaped separator in GA is |S| = nx + ny − 1 < 2

√
n.

To see this, we note that if nx = ny =
√

n then |S| = 2
√

n − 1. Oth-
erwise, without loss of generality nx = ny − 1 < ny, so |S| = 2nx =
2
√

nxnx < 2
√

nxny = 2
√

n. The separator breaks the mesh into four
subgraphs, each of which is almost square (their x and y dimensions
differ by at most 1), of size at most n/4. This implies that throught
the recursion, each size-m subgraph that is produced by the nested-
dissection ordering has a (0.25, 0.5,

√
m) 4-way separator that we use

in the ordering.
We analyze the fill and work in the factorization by blocks of columns.

Let S be the top-level separator and let V1, V2, . . . , V4 be the vertex sets
of the separated subgraphs. We have

η(L) = η (L : ,S) + η (L : ,V1) + η (L : ,V2) + η (L : ,V3) + η (L : ,V4)

≤ |S| (|S| + 1)

2
+ η (L : ,V1) + η (L : ,V2) + η (L : ,V3) + η (L : ,V4) .

Bounding the fill in a block of columns that corresponds to one of the
separated subgraphs is tricky. We cannot simply substitute a similar
expression to form a reccurence. The matrix A is square, but when
we analyze fill in one of these column blocks, we need to account for
fill in both the square diagonal block and in the subdiagonal block. If
u ∈ S and v ∈ V1 and Au,v �= 0, then elements in Lu,V1 can fill. A

8. NESTED-DISSECTION ORDERINGS FOR REGULAR MESHES 19

accurate estimate of how much fill occurs in such blocks of the factor
is critical to the analysis of nested dissection algorithms. If we use the
trivial bound η(Lu,V1) ≤ n/4, we get an asymptotically loose bound
η(L) = O(n1.5) on fill.

To achieve an asymptotically tight bound, we set up a recurrence
for fill in a nested-dissection ordering of the mesh. Let η̄(mx, my) be
a bound on the fill in the columns corresponding to an mx-by-my sub-
mesh (with |mx − my| ≤ 1). At most 2mx + 2my edges connect the
submesh to the rest of the mesh. Therefore we have

η̄(mx, my) ≤ (mx + my − 1) (mx + my)

2
+(mx + my − 1) (2mx + 2my)+4η̄

(mx

2
,
my

2

)
.

The first term in the right-hand side bounds fill in the separator’s
diagonal block. The second term, which is the crucial ingredient in the
analysis, bounds fill in the subdiagonal rows of the separator columns.
The third term bounds fill in the four column blocks corresponding to
the subgraphs of the separated submesh. If we cast the recurrence in
terms of m = mxmy we obtain

η̄(m) ≤ Θ (m) + 4η̄
(m

4

)
.

By the Master Theorem CLR2ed Thm 4.1, The solution of the recur-
rence is η̄(m) = O(m log m). Since η(L) ≤ η̄(n), we have η(L) =
O(n logn). We can analyze work in the factorization in a similar way.
We set up a recurrence

φ̄(m) ≤ Θ
(
m1.5

)
+ 4

¯
φ

(m

4

)
,

whose solution leads to φ(A) = O(n
√

n). It is possible to show that
these two bounds are tight and that under such a nested-dissection
ordering for a two-dimensional mesh, η(L) = Θ(n log n) and φ(A) =
Θ(n

√
n).

For a three-dimensional mesh, a similar analysis yields η(L) =
Θ(n4/3) and φ(A) = Θ(n6/3) = Θ(n2).

In practice, we can reduce the constants by stopping the recurrence
at fairly large subgraphs, say around m = 100, and to order these
subgraphs using a minimum-degree ordering. This does not change
the asymptotic worst-case bounds on work and fill, but it usually
improves the actual work and fill counts. There are other nested-
dissection/minimum-degree hybrids that often improve the work and
fill counts without hurting the asymptotic worst-case bounds.

9. GENERALIZED NESTED-DISSECTION ORDERINGS 20

Definition 8.2. A class of graphs satisfies an (α, β, f) vertex-
separator theorem (or a separator theorem for short) if every n-vertex
graph in the class has an (α, β, f) vertex separator.

9. Generalized Nested-Dissection Orderings

When GA is not a regular mesh, the analysis becomes much harder.
When applied to general graphs, the ordering framework that we de-
scribed in which a small balanced vertex separator is ordered last and
the connected components are ordered recursively is called generalized
nested dissection.

Definition 9.1. A class of graphs satisfies an (α, β, f) vertex-
separator theorem (or a separator theorem for short) if every n-vertex
graph in the class has an (α, β, f) vertex separator.

For example, planar graphs satisfy an (2/3,
√

8,
√

n) separator the-
orem. Since nested dissection orders subgraphs recursively, we must
ensure that subgraphs belong to the same class of graphs, so that they
can be ordered effectively as well.

Definition 9.2. A class of graphs is said to be closed under sub-
graph if every subgraph of a graph in the class is also in the class.

There are two ways to use small balanced vertex separators to order
an arbitrary graph. The first algorithm, which we call the lrt algo-
rithm, guarantees an effective ordering for graphs belonging to a class
that satisfies a separator theorem and is closed under subgraph. The
algorithm receives an input a range [i, j] of indices and graph G with n
vertices, � of which may already have been ordered. If � > 0, then the
ordered vertices have indices j − � + 1, . . . , j. The algorithm assigns
the rest of the indices, i, . . . , j − �, to the unnumbered vertices. The
algorithm works as follows.

(1) If n is small enough, n ≤ (β(1−α))2, the algorithm orders the
unnumbered vertices arbitrarily and returns.

(2) The algorithm finds a small balanced vertex separator S in G.
The separator separates the graph into subgraphs with vertex
sets V1 and V2. The two subgraphs may contain more than
one connected componet each.

(3) The algorithm arbitrarily assigns indices j−�−|S|+1, . . . , j−�
to the vertices of S.

(4) The algorithm recurses on the subgraphs induced by V1 ∪ S
and by V2 ∪S. The unnumbered vertices in the first subgraph
are assigned the middle range of [i, j] and the second the first
range (starting from i).

9. GENERALIZED NESTED-DISSECTION ORDERINGS 21

We initialize the algorithm by setting � = 0 and [i, j] = [1, n].
The second algorithm, called the gt algorithm, finds a separator,

orders its vertices last, and then recurses on each connected compo-
nent of the graph with the separator removed; the vertices of each
component are ordered consecutively. In each recursive call the algo-
rithm finds a separator that separates the vertices of one component,
ignoring the rest of the graph. This algorithm does not guarantee an
effective orderings to any graph belonging to a class that satisfies a
separator theorem and is closed under subgraph; additional conditions
on the graphs are required, such as bounded degree or closure under
edge contractions. Therefore, we analyze the first algorithm.

Theorem 9.3. Let G be a graph belonging to a class that satisfies
an (α, β,

√
n) separator theroem and closed under subgraph. Ordering

the vertices of G using the LRT algorithm leades to O(n log n) fill edges.

Proof. We prove the theorem by induction on n. If n ≤ n0, the
theorem holds by setting the constant c in the big-O notation high
enough so that cn log n > n(n − 1)/2 for all n ≤ n0. Suppose that the
theorem holds for all graphs with fewer than n vertices.

The algorithm finds a separator S that splits the graph into sub-
graphs induced by V1 and by V2. We partition the fill edges into four
categories: (1) fill edges with two endpoints in S; (2) fill edges with one
endpoint in S and the other in one of the � already-numbered vertices;
(3,4) fill edges with at least one endpoint in V2 or in V2. Since there are
no fill edges with one endpoint in V1 and the other in V2, categories 3
and 4 are indeed disjoint.

The number of fill edges in Category 1 is at most |S|(|S| − 1)/2 ≤
β2n/2.

The number of fill edges in Category 2 is at most |S|� ≤ β�
√

n.
Let η̄(n, �) be an upper bound on the number of fill edges in the

ordering produced by the algorithm on a graph with n vertices, � of
which are already numbered.

The number of fill edges in Category 3 is at most η̄(|V1| + |S|, �1),
where �1 is the number of already-numbered vertices in V1 ∪ S after
the vertices of S have been numbered. Note that �1 may be smaller
than � + |S| because some of the � vertices that are initially numbered
be in V2. Similarly, the number of fill edges in Category 4 is at most
η̄(|V2| + |S|, �2).

By summing the bounds for the four categories, we obtain a recur-
rence on η̄,

(1) η̄ (n, �) ≤ β2n

2
+ β�

√
n + η̄ (|V1| + |S|, �1) + η̄ (|V2| + |S|, �2) .

9. GENERALIZED NESTED-DISSECTION ORDERINGS 22

We claim that

(2) η̄ (n, �) ≤ c′(n + �) log2 n + c′′�
√

n

for some constants c′ and c′′. Since initially � = 0, this bound implies
the O(n logn) bound on fill.

To prove the bound, we denote n1 = |V1| + |S| and n2 = |V2| + |S|
and note the following bounds:

�1 + �2 ≤ � + 2β
√

n
n ≤ n1 + n2 ≤ n + β

√
n

(1 − α)n ≤ n1, n2 ≤ αn + β
√

n

The first inequality follows from the fact that every alread-numbered
vertex in the input to the two recursive calls is either one of the �
initially-numbered vertices or a vertex of S. An initially-numbered
vertex that is not in S is passed to only one of the recursive calls;
vertices in S are be passed as already numbered to the two calls, but
there are at most β

√
n of them. The second inequality follows from

the fact that the subgraphs passed to the two recursive calls contain
together all the vertices in V = S∪V1∪V2 and that |S| ≤ β

√
n vertices

are passed to the both of the recursive calls. The third inequality
follows from the guarantees on |V1|, |V2|, and |S| under the separator
theroem.

We now prove the claim (2) by induction on n. For n smaller
than some constant size, we can ensure that the claim holds simply
by choosing c′ and c′′ to be large enough. In particular, η̄ (n, �) ≤
n(n − 1)/2, which is smaller than the right-hand side of (2) for small
enough n and large enough c′ and c′′.

For larger n, we use Equation (1) and invoke the inductive assump-
tion regarding the correctness of (2),

η̄ (n, �) ≤ β2n

2
+ β�

√
n + η̄ (|V1| + |S|, �1) + η̄ (|V2| + |S|, �2)

≤ β2n

2
+ β�

√
n + c′ (n1 + �1) log2 n1 + c′′�1

√
n1 + c′ (n2 + �2) log2 n2 + c′′�2

√
n2 .

The rest of the proof only involves manipulations of the expression in
the second line to show that for large enough c′ and c′′, it is bounded
by (2). We omit the details. �

A similar analysis yields an analysis on arithmetic operations.

Theorem 9.4. Let G be a graph belonging to a class that satisfies
an (α, β,

√
n) separator theroem and closed under subgraph. Ordering

the vertices of G using the LRT algorithm leads to O(n1.5) arithmetic
operations in the algorithm.

10. NOTES AND REFERENCES 23

These results can be applied directly to matrices whose pattern
graphs are planar, and more generally to graphs that can be embed-
ded in surfaces with a bounded genus. Such graphs are closed under
subgraph and satisfy a (2/3,

√
8,
√

n) separator theorem. Furthermore,
the separator in an n-vertex graph of this family can be found in O(n)
operations, and it is possible to show that we can even find all the sep-
arators required in all the levels of the recursive algorithm in O(n logn)
time.

For the gt algorithm, which is somewhat easier to implement and
which finds separators faster (because the separator is not included in
the two subgraphs to be recursively partitioned), a separator theorem
is not suffiecient to guarantee comparable bounds on fill and work.
To ensure that the algorithm leads to similar asymptotic bounds, one
must also assume that the graphs are closed under edge contraction or
that they have a bounded degree. However, the two algorithms have
roughly the same applicability, because planar graphs and graphs that
can be embedded on surfaces with a bounded genus are closed under
edge contraction. It is not clear which of the two algorithms is better
in practice.

The fill and work results for both the lrt and the gt algorithms can
be extended to graphs that satisfy separator theorems with separators
smaller or larger than

√
n. See the original articles for the asymptotic

bounds.
Finally, we mention that an algorithm that finds approximately

optimal balanced vertex separators can be used to find a permutation
that approximately minimizes fill and work in sparse Cholesky. The
algorithm is similar in principle to the lrt and gt algorithms. This
result shows that up to a polylogarithmic factors, the quality of vertex
separators in a graph determines sparsity that we can achieve in sparse
Cholesky.

10. Notes and References

Bandwidth and envelope reduction orderings.
The idea of nested dissection, and the analysis of nested dissection

on regular meshes is due to George XXX. The lrt generalized-nested-
dissection algorithm and its analysis are due to Lipton, Rose, and Tar-
jan XXX. The gt algorithm and its analysis are due to Gilbert and
Tarjan XXX.

EXERCISES 24

Exercises

Exercise 11. The proof of Theorem 2.2 was essentially based on
the fact that the following algorithm is a correct implementation of
the Cholesky factorization:

S = A
for j = 1: n

Lj,j =
√

Sj,j

Lj+1: n,j = Sj+1: n,j/Lj,j

for i = j + 1: n
for k = j + 1: n

Si,k = Si,k − Li,jLk,j

end

end

end

(1) Show that this implementation is correct.
(2) Show that in each outer iteration, the code inside the inner

loop, the k loop, performs η2(Lj+1: n,j) nontrivial subtractions
(subtractions in which a nonzero value is subtracted).

(3) This implementation of the Cholesky factorization is often
called jik Cholesky, because the ordering of the loops is j
first (outermost), then j, and finally k, the inner loop. In fact,
all 6 permutations of the loop indices yield correct Cholesky
factorizations; the expression inside the inner loop should is
the same in all the permutations. Show this by providing 6
appropriate Matlab functions.

(4) For each of the 6 permutations, consider the middle iteration
of the outer loop. Sketch the elements of A, the elements of L,
and the elements of S that are referenced during this iteration
of the outer loop. For the jik loop ordering shown above, A is
not referenced inside outer loop, and for L and S the sketches
shown above.

Exercise 12. In this exercise we explore fill and work in the Cholesky
factorization of banded and low-profile matrices. We say that a matrix
has a half-bandwidth k if for all i < j − k we have Aj,i = 0.

(1) Suppose that A corresponds to an x-by-y two-dimensional
mesh whose vertices are ordered as in the previous chapter.
What is the half bandwidth of A? What happens when x is
larger than y, and what happens when y is larger? Can you
permute A to achieve a minimal bandwidth in both cases?

EXERCISES 25

(2) Show that in the factorization of a banded matrix, all the fill
occurs within the band. That is, L is also banded with the
same bound on its half bandwidth.

(3) Compute a bound on fill and work as a function of n and k.
(4) In some cases, A is banded but with a large bandwidth, but in

most of the rows and/or columns all the nonzeros are closer to
the main diagonal than predicted by the half-bandwidth. Can
you derive an improved bound that takes into account the
local bandwidth of each row and/or column? In particular,
you need to think about whether a bound on the rows or on
the columns, say in the lower triangular part of A, is more
useful.

(5) We ordered the vertices of our meshes in a way that matrices
come out banded. In many applications, the matrices are not
banded, but they can be symmetrically permuted to a banded
form. Using an x-by-y mesh with x
 y as a motivating
example, develop a graph algorithm that finds a permutation
P that clusters the nonzeros of PAP T near the main diagonal.
Use a breadth-first-search as a starting point. Consider the
previous quesion in the exercise as you refine the algorithm.

(6) Given an x-by-y mesh with x
 y, derive bounds for fill and
work in a generalized-nested-dissection factorization of the ma-
trix corresponding to the mesh. Use separators that approxi-
mately bisect along the x dimention until you reach subgraphs
with a square aspect ratio. Give the bounds in terms of x and
y.

