

TEL-AVIV UNIVERSITY

RAYMOND AND BEVERLY SACKLER FACULTY OF

EXACT SCIENCES

SCHOOL OF COMPUTER SCIENCE

Cilk on CC-NUMA Machines

Thesis submitted in partial fulfillment of the requirements for the

M.Sc. degree of Tel-Aviv University by

Eitan Ben Amos

The research work for this thesis has been carried out at Tel-Aviv

University under the direction of Prof. Sivan Toledo

July 2006

Abstract

This thesis shows how to improve the performance of Cilk Programs when

executed on CC-NUMA Distributed Shared Memory Machines. The work was

carried out on a SGI Origin 2000 Machine (highly scalable CC-NUMA DSM

machine). The thesis also presents improvements to the cilk2c translator to

generate code that is compatible with ANSI C. this makes it possible to use

Cilk with compilers other than gcc which promise better binary code

generation, compatibility with existing vendor libraries and the use of vendor

specific features by the Cilk program. Completion of this phase enabled to

compile the Cilk example programs which are available in the Cilk

distribution package with both the MIPS-Pro compiler and the Intel C

Compiler. The Mips-Pro compiler shortened the running time of the example

programs by 10-30 percent. The Intel compiler shortened the running times by

20% on average with a large range of changes.

A later phase introduced a new scheduler to the Cilk runtime. This scheduler is

aware of the NUMA architecture and enables optimization not available in the

original work-stealing scheduler such as preferring to steal work from

physically nearby CPUs over distant CPUs and enabling placement of memory

buffers on specific physical nodes. The later one creates the potential for new

optimization and research in the field of data placement of parallel algorithms

that was not addressed in this thesis.

3

TABLE OF CONTENTS

Table of Contents ...4
Chapter 1 ..6

INTRODUCTION... 6
1.1 Contribution of the Thesis ... 7
1.2 outline of this Thesis.. 9

Chapter 2 ..11
background and related work .. 11
2.1 CILK overview and background... 11
2.2 programming with CILK... 12
2.3 compiling and running Cilk programs .. 16
2.4 shared memory model ... 17
2.5 Inlets... 19
2.6 The Cilk model of multithreaded computation... 21
2.7 Cilk performance on NUMA machines .. 23
2.8 Explicit memory placement... 25

Chapter 3 ..35
Porting cilk to a non-gcc compiler .. 35
3.1 portability code changes of the runtime library .. 37
3.2 portability code changes of the compile driver... 37
3.3 portability code changes of the compile driver... 40
3.4 Performance comparisons ... 49
3.5 portability to Other compilers ... 56

Chapter 4 ..59
NUMA aware work-stealing scheduler... 59

Chapter 5 ..71
Explicit Memory Placement.. 71
5.1 checking Irix memory affinity .. 72
5.2 memory placement effect on the numa-aware scheduler............................. 75
5.3 the dplace library ... 76
5.4 Explicit memory placement in Cilk.. 78

Chapter 6 ..87
test programs used to understand/verify system behavior.. 87
6.1 Virtual address -> Physical address.. 87
6.2 the ut_malloc_place.c program... 88
6.3 the dplace tool.. 88
6.4 Which processor is executing a thread ... 90
6.5 binding pthreds to processors.. 90

4

Chapter 7 ..91
conclusion .. 91

Chapter 8 ..93
appendixes.. 93
Appendix A – Inlet transformations.. 93

bibliography..100

5

C h a p t e r 1

INTRODUCTION

Traditionally, software has been written for serial computation. A program

was executed by a single computer having a single CPU – only one instruction

may be executed at any moment in time.

Parallel computing is the simultaneous use of multiple compute resources to

solve a computational problem. Compute resources can include a single

computer with multiple CPUs, multiple computers connected over a network

or any combination of these forms.

The purpose of parallel processing is to perform the computation faster than

can be done with a single processor by using a number of processors

concurrently. The need for faster solutions and for solving large problems

arises in wide variety of applications. These include traditional applications

such as weather and climate modeling, chemical physical and biological

modeling, as well as commercial applications such as parallel databases, data

mining, oil exploration, web search engines and computer-aided design of

drugs.

Parallel computers can be classified according to variety of architectural

characteristics. However, most of the existing machines can be broadly

grouped into two classes: machines with shared memory architectures (such as

the SGI Origin and commodity Intel Pentium based machines) and machines

6

with distributed-memory architecture (such as the IBM SP systems and

clusters of workstations and servers).

In shared memory machines, processors communicate with one another by

writing and reading regions of memory that are accessible by all the

processors. In distributed memory architectures, processors communicate with

one another by sending and receiving messages which are sent over a

communication channel.

The Cilk language (version 5.3 was used for this thesis) was designed for the

shared memory architecture [1]. Cilk is a language for multithreaded parallel

programming that is based on ANSI C. Cilk is designed for general-purpose

parallel programming. It is especially effective for exploiting dynamic, highly

asynchronous parallelism, which can be difficult to exploit in data-parallel or

message-passing style. Unlike many other multithreaded programming

systems, Cilk is algorithmic in that the runtime system employs a scheduler

that allows the performance of programs to be estimated accurately [2] based

on abstract complexity measures. Chapter two further describes the details of

the Cilk language and its work stealing scheduler.

1.1 CONTRIBUTION OF THE THESIS

The first contribution of this thesis is in making the Cilk distribution (cilk2c

translator, runtime library and compiler driver) compliant with the ANSI C

standard. The code was enhanced in areas that were not portable from the gcc

compiler to the native compiler of the platform, the SGI MIPS Pro compiler

suit (version 7.4) - this work also makes it easier to port the code to other

7

ANSI C compliant compilers (as attempted later on with the Intel C

Compiler).

Having the runtime compile with the native compiler showed improved

performance even before optimizing the code. Analysis of the performance

gain of using the native compiler of the platform and using the vendor

supplied BLAS library can be seen in [3]. In that article, the authors have

criticized the intimate connections between Cilk (version 5.2.1) and gcc, and

specifically the limitation on linking non-Cilk libraries. Being unable to link

Cilk programs with vendor supplied libraries forced them to code the low level

BLAS routines that were used as the building blocks of the implemented

algorithms. They made some tests to measure the performance impact of using

gcc instead of the vendor compiler and also of coding the low-level BLAS

routines instead of using the vendor library (Sun's perflib library). They

measured that the lack of native BLAS costs a factor of 1.2–1.4, while the

switch to gcc increases the costs to a factor of 1.5–1.9 (accumulated). This is

an example of the value of native BLAS library and compiler. On newly

introduced processors (e.g., Intel IA-64) the gain might be considerably higher

since the vendor compiler is highly optimized while gcc needs time to digest

the new processor architecture and features.

The second contribution is a new scheduler that is aware of the additional

hierarchies which are introduced by the NUMA architecture. It attempts to

take these into consideration when scheduling the tasks of a Cilk program. The

scheduler was implemented for the SGI Irix operating system using Origin

2000 hardware. It uses advanced operating system features that are specific for

this operating system and hence requires the ability to compile and link the

Cilk programs with the vendors' native compiler and libraries. These libraries

8

offer sophisticated features such as binding threads to processors, management

of memory placement over the distributed shared physical memory and setting

memory allocation policies.

The scheduler that was developed in order to better support NUMA

architecture maintains this algorithmic feature which is important when it

comes to analyzing the work, critical path and parallelism.

1.2 OUTLINE OF THIS THESIS

The rest of the thesis is organized as follows. In Chapter 2 I present Cilk. This

chapter explains the language syntax, the transformation into ANSI C code

and the tools used to compile and link Cilk programs. In chapter 3 I present the

work done to make Cilk compile using the MIPS Pro compiler suit (the

compiler from SGI for its Origin distributed shared memory machines).

Compiling the examples that come with Cilk with this compiler shows

improved performance for almost all of them. It shows that support for the

vendor compiler can improve the performance of the final code considerably

and has value on its own even before turning to sophisticated machine specific

techniques such as the NUMA architecture. To further validate the portability

of Cilk I have also tested with the Intel C Compiler for Linux. These tests also

showed considerable performance improvement which further justifies the

need to support non gcc compiler. In chapter 4 I present the NUMA aware

scheduler that was developed as part of this thesis. The chapter first presents

the idea behind the scheduler and then continues to present the techniques that

were used in order to implement the scheduler and verify that it is working as

expected. In chapter 5 I present the problem of memory placement and how it

9

can be addressed with explicit memory placement - this ends with scalability

tests of matrix multiplication and cholesky factorization codes. In chapter 6 I

present some test programs that were used to understand the behavior of the

Irix operating system and its accompanying libraries. Chapter 7 wraps up with

conclusions of the achievements of this work.

10

C h a p t e r 2

BACKGROUND AND RELATED WORK

The following chapter presents an overview of the Cilk language (version 5.3)

together with its tools [1]. This is not a complete reference of the language as

such a reference is available through [1].

2.1 CILK OVERVIEW AND BACKGROUND

Cilk 5.3 is a language for multithreaded parallel programming based on ANSI

C. Cilk is designed for general-purpose parallel programming, but is especially

effective for exploiting dynamic, asynchronous parallelism. Unlike many other

multithreaded programming systems, Cilk is algorithmic in that the runtime

system employs a scheduler that allows the performance of programs to be

estimated accurately [2] based on abstract complexity measures.

Cilk is made up of the Cilk runtime system and the Cilk compiler. Prior to the

Cilk development made during this thesis, Cilk was intended to run on Unix-

like systems, provided that gcc, POSIX threads, and GNU make are

available. The philosophy behind Cilk is that a programmer should concentrate

on structuring the program to expose parallelism and exploit locality, leaving

the runtime system with the responsibility of scheduling the computation to

run efficiently on a given platform. Cilk has a runtime system that takes care

of details like load balancing, and communication protocols. An exceptional

advantage of Cilk over other multithreaded languages is that Cilk is

11

algorithmic in that the runtime system guarantees efficient and predictable

performance.

The theory behind Cilk is based on research of scheduling multithreaded

computations, and especially of the performance of work-stealing. The work

stealing model has been a focal point in the development of Cilk. The results

from this research led to the development of a performance model that predicts

the efficiency of a Cilk program using two simple parameters: work and

critical-path length [2, 4, 5]. Beginning with version 3, Cilk features an

implementation of dag consistent distributed shared memory [6, 7].

Informally, a dag consistent memory model for a deterministic programs

means that thread A reading from memory can observe the value written by

thread B only if there is a serial execution order that is consistent with the

DAG and in which the read made by A can observe the write made by B.

2.2 PROGRAMMING WITH CILK

The basic Cilk language consists of C with additional three keywords to

indicate parallelism and synchronization. When a Cilk program is executed on

a single processor it has the same semantics as the C program that results when

the Cilk keywords are deleted. This C program is named the serial

elision or C elision of the Cilk program. A very simple example of a

Cilk program is a recursive program to compute the nth Fibonacci number. A

C program to compute the nth Fibonacci number is shown in Figure 2.1(a).

The Cilk program to compute the nth Fibonacci number in parallel is seen in

Figure 2.1(b). Pay attention to the great similarity between the 2 programs. In

12

fact, the only differences between them are the inclusion of the library header

file "cilk.h" and the 3 Cilk keywords (cilk, spawn, and sync) that expose

the parallelism of the code.

#include <stdlib.h>
#include <stdio.h>

int fib (int n)
{
 if (n<2) {
 return (n);
 } else {
 int x, y;
 x = fib (n-1);
 y = fib (n-2);
 return (x+y);
 }
}

int main (int argc, char
*argv[])
{
 int n, result;
 n = atoi(argv[1]);
 result = fib (n);
 printf ("Result: %d\n",
result);
 return 0;
}

#include <stdlib.h>
#include <stdio.h>
#include <cilk.h>

cilk int fib (int n)
{
 if (n<2) {
 return n;
 } else {
 int x, y;
 x = spawn fib (n-1);
 y = spawn fib (n-2);
 sync;
 return (x+y);
 }
}

cilk int main (int argc,
char *argv[])
{
 int n, result;
 n = atoi(argv[1]);
 result = spawn fib(n);
 sync;
 printf ("Result: %d\n",
result);
 return 0;
}

Figure 2.1(a): A serial C
program to compute the
nth Fibonacci number.

Figure 2.1(b): A parallel
Cilk program to compute
the nth Fibonacci number.

Figure 2.1: A Comparison of Cilk vs. C code to compute the requested

Fibonacci number as described in [1]. Notice the similarity between the two

programs.

The keyword cilk identifies a Cilk procedure, which is the parallel

equivalent of a C function. A Cilk procedure may spawn sub-procedures in

13

parallel and synchronize (wait) for their completion. A Cilk procedure

definition has an argument list and body, both identical to that of a C function.

Most of the work in a Cilk procedure is executed serially, just like in C, but

parallelism is created when the invocation of a Cilk procedure is preceded by

the spawn keyword. A spawn is the parallel equivalent of a C function call

and just like a C function call, when a Cilk procedure is spawned, execution

proceeds to the child. However, unlike a C function call in which the parent is

not resumed until its child returns, in Cilk, the parent can continue to execute

in parallel with the child. In fact, the parent can continue to spawn off children,

producing a high degree of parallelism. Scheduling the spawned procedures on

the processors of the parallel computer is the responsibility of the Cilk

scheduler.

Figure 2.2: The Cilk model of multithreaded computation as described in [1].
Each procedure, shown as a rounded rectangle, is broken into sequences of
threads, shown as circles. A downward edge indicates the spawning of a sub-
procedure. A horizontal edge indicates the continuation to a successor thread.
An upward edge indicates the returning of a value to a parent procedure. All
three types of edges are dependencies which constrain the order in which
threads may be scheduled.

14

A Cilk procedure cannot safely use the return values of the children it has

spawned until it executes a sync statement. A sync statement will cause the

procedure to suspend until all of its children have completed. In case all of the

children of a procedure have already completed then it can continue execution

immediately with very little overhead. The procedure resumes/continues its

execution at the point following the sync statement. The sync statement is

thus a local barrier in the sense that it waits only for the spawned children of

the procedure to complete rather than waiting for all procedures currently

executing. In the Fibonacci example, a sync statement is required before the

statement "return (x+y)", to prevent the summation of x and y before

they are both computed. A Cilk programmer uses spawn and sync keywords

to expose the parallelism in a program, and the Cilk runtime system takes the

responsibility of scheduling the procedures efficiently.

A Cilk program execution can be visualized as a directed acyclic graph as is

illustrated in Figure 2.2. A Cilk program execution consists of a collection of

procedure instances, each is made of a sequence of non-blocking threads. In

Cilk, a thread is the longest sequence of instructions that ends with a spawn,

sync, or return (either explicit or implicit) statement. The first thread that is

executed upon procedure activation is the procedure's initial thread. The rest of

the threads that make up the procedure are successor threads. At runtime, the

binary spawn relation causes procedure instances to be structured as a rooted

tree.

A correct execution of a Cilk program must obey all the dependencies that are

visualized by the DAG. Some scheduling restrictions are implemented by the

Cilk scheduler while others must be handled by the Cilk programmer.

15

2.3 COMPILING AND RUNNING CILK PROGRAMS

The Cilk 5.3 distribution installs the cilk command, which is a special

version of the gcc compiler. More accurately the command changes the gcc

compiler driver to accept new command line switches, activate the cilk2c

translator and chain the various tools to compile a Cilk file (preprocessing,

cilk2c translation, compiling and linking). cilk accepts the same arguments

as the gcc compiler and in addition some new command line switches to

control Cilk specific issue. Compiling the source code for the Fibonacci

example from figure 2.1(b) requires the following command line (all other

gcc switches such as –g –W, etc. can be used as well):

> cilk –O3 fib.cilk -o fib

In order to execute the program do the following:

> ./fib --nproc 8 100

This executes the program using 8 worker threads and output the value of the

100th Fibonacci number.

During development, this command was replaced with a driver program

named cilkc (or cilkclocal). This driver parses the command line

switches and decides whether the file requires standard compilation (files with

extensions of ".c", ".o", ".s", etc) or that it is a file with ".cilk" extension in

which case it requires the cilk2c translator in order to transform it to C code

that will be compiled in later phases to produce an object file.

16

Cilk related compilation switches compile the code so that it collects statistics

about the execution of the program (such as the maximum depth of the DAG

and the amount of work in the DAG). These statistics can then be used by the

developer to understand the bottlenecks in the program and enhance the

program in order to achieve better performance and scalability. Various levels

of statistics exist and the more statistics being collected the more it affects the

program behavior.

2.4 SHARED MEMORY MODEL

Cilk supports the shared memory model. Sharing occurs when 2 different

procedure instances that execute in parallel (be it instances of the same

procedure or not) access a global variable or indirectly by passing a pointer to

spawned procedures, allowing multiple procedures to access the (possibly

stack based) object that is addressed by the pointer. Accessing shared objects

in parallel can cause nondeterministic anomalies. Consequently, it is important

to understand the basic semantics of shared memory model used by Cilk.

Figure 2.4 shows two Cilk procedures, foo() and bar(). The procedure foo()

passes the variable x to the procedure bar() by reference, and then foo()

proceeds to read x before the sync. The procedure bar() may be scheduled

concurrently and in that case it reads x through the pointer px. Sharing the

value of x in this way is safe because the shared variable x is assigned in foo()

before bar() is spawned, and no write accesses happen on x thereafter.

Figure 2.5 shows a modified version of the Cilk procedures in that we saw in

Figure 2.4. Here, the procedure foo() passes the variable x to the procedure

17

bar() by reference, but now foo() proceeds to modify x before the sync. As a

result, it is not clear what value will be seen when the procedure bar() reads x

through pointer px: The value at the time the variable was passed, the value

after foo() has modified x, or something else (in case the update of x is non

atomic). In addition, it is not clear which value of x will the procedure foo()

see because the procedure bar() might have already increased it. This situation

(called a data race) causes a nondeterministic behavior of the program. In most

cases, non-determinism of this sort represents a programming error.

cilk int foo (void)
{
int x = 0, y;
spawn bar(&x);
y = x + 1;
sync;
return (y);

}
cilk void bar (int *px)
{
printf("%d", *px + 1);
return;

}

Figure 2.4: Passing the spawned

procedure bar an argument consisting

of a pointer to the variable x leads to

the sharing of x. This code was taken

from [1].

cilk int foo (void)
{
int x = 0;
spawn bar(&x);
x = x + 1;
sync;
return (x);

}
cilk void bar (int *px)
{
*px = *px + 1;
return;

}

Figure 2.5: Nondeterministic

behavior may result from shared

access to the variable x when x is

updated. This code was taken from

[1].

18

2.5 INLETS

In most cases, when a spawned procedure returns a value, it is simply stored

into a variable in the frame of its parent, as in the following example:

x = spawn foo(y);

But in some occasions, you need a more complex method of incorporating the

returned value into the parent's frame. Cilk provides the inlet feature for

this purpose.

An inlet is essentially a C function that is defined inside a Cilk procedure

(similar to an inner function). Up till now we have see that Cilk requires a

separate statement in order to spawn a Cilk procedure, as is seen above. But

when the spawn is performed as an argument to an inlet call then an

exception to this rule is allowed. In this case, the procedure is spawned, and

upon its return, the inlet is invoked with the result that was returned from

the child procedure. In the meantime, control of the parent procedure proceeds

to the statement that follows the inlet.

19

cilk int fib (int n)
{
int x = 0;

inlet void sum (int result)

 {
x += result;
return;

}

if (n<2) {
 return n;
} else {
sum(spawn fib (n-1));
sum(spawn fib (n-2));
sync;
return (x);

}
}

Figure 2.6: Using an inlet to compute the n Fibonacci number as it appears
in [1].

th

Figure 2.6 illustrates how to code the fib() function using inlets. The inlet

sum() is defined to take the parameter result (returned by a returning Cilk

procedure call) and add it to the variable x that is defined in the frame of the

containing procedure, fib(). The variables of fib() are accessible within sum(),

because sum() is an internal function of fib().

Because an inlet is very similar to a C function it also has similar

restrictions to that of C functions. These prevent it from containing spawn

and sync statements making the inlet consist of a single Cilk thread.

However, it is not entirely the same as a C function because Cilk provides

special statements that can only be executed inside an inlet.

It may happen that an inlet is operating on the variables of a procedure frame

concurrently with the procedure itself or other inlets of the procedure. Cilk

20

guarantees that the threads of a procedure instance, including its inlets, operate

atomically with respect to one another. This relives the programmer from the

need to worry that variables in a frame are being updated by multiple threads

(of the procedure) concurrently.

2.6 THE CILK MODEL OF MULTITHREADED COMPUTATION

This section briefly explores the major characteristics of Cilk's algorithmic

model in order to understand the efficient scheduling that is guaranteed by the

Cilk runtime system and scheduler.

Previously we have seen that a Cilk program can be visualized as a DAG. To

execute a Cilk program correctly, the scheduler must enforce all of the

dependencies in the DAG. These dependencies allow many ways of

scheduling the threads of the DAG. The two most important decisions made

by the scheduler are the order in which the DAG unfolds and the mapping of

the threads to processors. Fortunately, every Cilk program generates a DAG

that can be scheduled efficiently [5].

The Cilk runtime system implements a provably efficient scheduling policy

that is based on randomized work-stealing. Locally, a processor executes

procedures in ordinary serial order (just like C), thereby traversing the spawn

tree in a depth-first order. When a child procedure is spawned, the processor

saves local variables of the parent on the bottom of a stack and begins to work

on the child procedure. When the child returns, the bottom of the stack is

popped (just like C) and the execution resumes for the parent procedure.

During the execution of a Cilk program, a processor will run out of work (in

21

fact, upon startup only one thread has work to do and all others must steal in

order to do useful work). When in that state, the processor asks another

processor that is selected at random for work to do. When work is available on

the selected processor, it is stolen from the top of the stack, that is, the end

opposite to the one normally used by the worker when working locally. The

following part was taken from section 2.8 of [1].

Cilk's work-stealing scheduler executes any Cilk computation in nearly

optimal time. From an abstract theoretical perspective, there are two

fundamental limits to how fast a Cilk program could run. Let us denote with

Tp the execution time of a given computation on P processors. The work of the

computation is the total time needed to execute all threads in the DAG. We

can denote the work with T1, since the work is essentially the execution time

of the computation on one processor. Notice that with T1 work and P

processors, the lower bound Tp ≥ T1/P must hold. The second limit is based on

the program's critical-path length, denoted by T∞, which is the execution time

of the computation on an infinite number of processors, or equivalently, the

time needed to execute threads along the longest path of dependency. The

second lower bound is simply Tp ≥ T∞.

 Cilk's work-stealing scheduler executes a Cilk computation on P processors in

time Tp ≤ T1/P + O(T∞), which is asymptotically optimal. Empirically, the

constant factor hidden by the big O is often close to 1 or 2 [5], and the formula

 Tp ≈ T1/P + T∞ (2.1)

is a good approximation of runtime. This performance model holds for Cilk

programs that do not use locks.

22

We can explore this performance model using the notion of parallelism, which

is defined as P' = T1/T∞. The parallelism is the average amount of work for

every step along the critical path. Whenever P << P', that is, the actual number

of processors is much smaller than the parallelism of the application, we have

equivalently that T1/P >> T∞. Thus, the model predicts that Tp ≈ T1/P, and

therefore the Cilk program is predicted to run with almost perfect linear

speedup. The measures of work and critical-path length provide an algorithmic

basis for evaluating the performance of Cilk programs over the entire range of

possible parallel machine sizes (Note that this theoretical model neglects

important practical issues such as cache behavior, locality, etc but

nevertheless, it has proven to be practical even so).

2.7 CILK PERFORMANCE ON NUMA MACHINES

The idea that Cilk suffers scalability problems on large NUMA machines is

evident in [21] in which the authors have implemented a parallel Sparse

Cholesky factorization algorithm using Cilk and attempted to optimize the

algorithm and the code for scalability on the SGI Origin 3000 shared memory

supercomputer. They show that the code is competitive with other codes for

single processor tests. This implies that the serial code achieves high

performance without regard to the parallel performance that is also related to

many other factors such as scheduling, synchronization overhead, system

architecture and more. They also show that the code scales well on SMPs with

up to 16 processors but once more processors are added, the performance

actually drops. They indicate that “when the memory system is too slow, as in

an Origin 3000 with more than 16 processors, the overheads incurred by our

code are intolerable” As one of the reasons for the performance drop. On this

23

Origin 3000 machine, up to 16 processors can communicate through a single

router. When more than 16 processors participate in the computation, some of

the memory accessed must go through a link between the 2 routers, which

slow down the accesses. Figure 2.7 shows their graphs of parallel code

performance and in these graphs we can see that the problem is also evident in

the SCSL library which is supplied by the system vendor.

Figure 2.7: The parallel performance of the new dense Cholesky factorization
on matrices of order 2000 (left) and 4000 (right), taken from [21].

The authors speculate that the second reason for the performance drop is the

allocation of the entire matrix using a single memory allocation which will

probably place the entire block on a single memory node. This might overload

the memory subsystem of the node on which the memory is placed. It might

also overload the memory links through which every remote memory access is

performed from the node on which a processor is placed to the node on which

the matrix is placed. They did not use memory placement or memory

migration mechanisms to try to alleviate the problem.

24

The limitations seen so far in the Cholesky factorization code will be

addressed in this thesis and an attempt will be made to improve the scalability

of the Cilk code in order to use more processors efficiently.

2.8 EXPLICIT MEMORY PLACEMENT

Explicit Memory Placement was not on the checklist of this thesis. Attempting

to use this technology was decided only after completing the implementation

of the NUMA-aware scheduler and performing preliminary tests that showed

no change compared to the original Cilk scheduler. Further tests pointed at the

bad initial memory placement achieved with Irix and the MIPS-Pro runtime

library as the cause for the problem. The work on Explicit Memory Placement

was executed in the hope that it will eliminate the bad initial memory

placement seen that far and enable the NUMA-aware scheduler to reveal its

potential.

Searching the internet for information on explicit memory placement for

pthreads based programs on Irix gave very little information apart from the

SGI minimal documentation and none of them had information on

tests/implementations that have tried to measure the performance gain from

using this technology. At that point, I did not look for information on similar

models (such as the widely used OpenMP standard) which later on proved to

have the same problems due to poor performance of the Irix OS, the placement

library, etc. Following is a survey of similar problems that were found in

research on OpenMP which supports the final results shown in this thesis with

Explicit Memory Placement. This survey was executed only after all attempts

25

to improve the memory placement failed and other models were investigated

to try to explain what might be wrong.

In [15] we can find the description of the various memory placement policies

available for the Software developer and how they can be used with compiler

directives of the MIPS-Pro compiler. The directives are available for Fortran

programs and also for C/C++ programs which use the OpenMP standard but

are not available for pthreads-based programs – these programs must either

use the low-level MLD API or the dplace library which is built on top of the

MLD API; the dplace library has a very small and simple API consisting of

only two C functions to execute a single dplace command or all commands

within a given file.

The document also enumerates the various memory placement policies which

are supported by Irix:

First Touch - places memory pages in the node where they are first “touched”,

that is, referenced by a CPU.

Round Robin - distributes all data memory for the program across the nodes in

which the program runs. Each new virtual page is allocated in a different node.

Dynamic Page Migration - When migration is enabled, Irix keeps track of the

source of the references to each page of memory. When a page is being used

predominately from a different node, Irix copies the page contents to the node

that is using it, and resets the page tables to direct references to the new

location. This effectively migrates the memory page to the node which uses it

most.

26

Explicit Memory Placement - enables the program to request specific

placement of the pages of a memory buffer on system nodes.

In the description of Explicit Memory Placement, the document indicates that

“Dynamic migration is a relatively expensive operation: besides the overhead

of a daemon that uses hardware counters to monitor page usage, a migration

itself entails a memory copy of data and the forced invalidation of translate

look aside registers in all affected nodes. For this reason, migration is not

enabled by default. (The system administrator can turn it on for all programs,

but this is not recommended)”. These are quite unpromising words from the

vendor about the technology but it still needs to be tested with real life code to

see the performance and overheads.

In [16], the author attempts to evaluate the CC-NUMA DSM machines and

one of the test machines was the SGI Origin 3000 machine (a second

generation to the Origin 2000 model on which this thesis was executed). The

Origin 3000 maintains the same architecture as the Origin 2000 with various

improvements such as twice as fast interconnects (3.2 GB/sec vs. 1.6 GB/sec),

lower latency over the NUMALink, double memory per node (8GB vs. 4 GB),

four processors per node (instead of two) and more.

This work used several test programs to measure the performance and latency

of various memory access patterns using multiple placements of thread and

memory, showing the degradation of performance as the memory moves from

local to remote node over several routers (Chapter 4). Section 4.4 specifically

attempts to asses the performance gain that is possible when using data

placement. From these tests, the author indicates that it did not manage to see

the operating system relocating pages between different nodes even when the

test program was using extreme access patterns (e.g.: allocating memory on

27

the most distant node from where the executing thread is running and

accessing only that memory for some time). This test was executed many

times and yet the author has seen no data relocation in any run.

The next test attempted to measure the effect on performance of Explicit

Memory Placement and Migration. Migration of memory pages will usually

pay off when a thread is heavily accessing the memory pages such that the

time spent on migrating the memory to the local node would be smaller than

the latency paid on cache misses (which cause the remote memory to be

accessed). It is hard to say what is the point at which the migration would pay

off and this was tested by Nathan who designed a specific benchmark for this

question. The results showed “an astonishingly low bandwidth” on page

migration. He summarizes the test by postulating that the high kernel overhead

of page migration (requires multiple node CPU synchronization, TLB flushes,

etc) is the responsible for the low migration bandwidth and indicate in the

results section that the usefulness of the page migration feature are nowhere

near the theoretical peak which explain why Irix, by default, is reluctant to

dynamically migrate pages without a programmer hint.

All in all, the results of [16] show that “the use of memory migration, either by

explicit programming or by overriding the system default to become more

aggressive in its implicit memory migration, is almost never useful for

enhancing the performance of the code”. He continues with “Even the value of

programmer initiated memory migration is questionable, as the time penalty

imposed by migrating memory would be hard to regain”. These highly

unpromising words conclude chapter 4.

Having the results from using the Explicit Memory Placement in Cilk, the

notes from Irix in [15] indicating that “Dynamic migration is a relatively

28

expensive operation” and also the conclusion of [16], it is quite understandable

why SGI wouldn’t recommend on this feature as it usually only degrades

performance.

In [17] the authors have investigated the performance implications of data

placement in OpenMP programs running on cc-NUMA machines. They show

that “due to the low remote-to-local memory access latency ratio of state-of-

the-art cc-NUMA architectures, reasonably balanced page placement schemes,

such as round-robin or random distribution of pages incur modest performance

losses”. They also show that “performance leaks stemming from suboptimal

page placement schemes can be remedied with a smart user-level page

migration engine”. The applicability of their scheme to the Cilk language is

doubtful as it is based on “exploiting the iterative structure of most parallel

codes”. They also implemented experiments that support the effectiveness of

these mechanisms. Luckily, they have implemented their tests on the SGI

Origin 2000 machine which was used for this thesis as well and so some of

their results and observations can more easily be used here although Cilk

Algorithms are recursive in nature rather than iterative.

The first question posed by the authors was “up to what extent can data

distribution affect the performance of OpenMP programs”. Their tests covered

4 memory placement policies (First Touch, Round Robin, Random and Worst

Case Page Placement). Their results showed that the “First Touch” policy is

the optimal memory placement policy. They then compared the performance

of all policies to the performance of the optimal policy and show that there is

indeed a noticeable difference, meaning that the data placement has indeed a

“significant impact on the performance of OpenMP Programs although this

impact is not as pronounced as expected for reasonably balanced distributions

29

of pages among processors, like round-robin and random distribution” in their

words. They also feel that the main reason for the lower-than-anticipated

memory placement effect is due to the very low remote-to-local memory

access latency ratio.

In order to investigate the performance implications of data placement they

implemented a user-level library called UPMLib that implemented page

migration and used it in tests of OpenMP programs which have iterative

behavior. These tests show that for the test programs they used, the “smart

page migration engine can be as effective as a system that performs accurate

initial data distribution, without losses in performance”. The algorithms and

heuristics that were used in the UPMLib user-level library might also be

adaptable to other programming models but this was not checked in this thesis

and it can be the subject of future work on Cilk. The library itself seems to

have intricate relationships with the OpenMP compile directive and would not

be easily portable to other languages/parallelism-models.

The user-level page migration library was tested with 5 OpenMP algorithms,

each with all 4 placement policies and compared with an identical run aided

with the migration library. The results show that for a worst-case placement,

which had very low performance, the library improved performance

considerably (90% on average) but for the other placement policies, the

improvement was modest (10-20%) which means that with a reasonable

placement policy supported by the system there is still a performance

improvement but it is much less clear.

They also tried to measure the possible performance gain from activating the

page migration feature of the Irix kernel and found it to be negligible. The

tests also showed the First-Touch placement policy was competitive to the

30

Optimal Static Placement (less than 12% difference) which means that

attempting to improve the First Touch Policy might not worth the trouble.

In [18] the authors have explored placement policies for DSM machines and

report that “Even with the very simple policy of First-Use placement, we find

significant improvements over Round-Robin placement for many applications

on both hardware and software–coherent systems”. The performance

improvement they saw was 20%-40%.

They further continue and indicate that “we have also investigated the

performance impact of more sophisticated policies, including hardware

support for page placement, dynamic page migration and page replication. We

were surprised to find no performance advantage for the more sophisticated

policies; in fact in most cases performance of our applications suffered”. This

supports the conclusions made by [16] about migration and placement.

The final words of [17] together with the conclusions of [16] further amplify

the conclusions for page migration and page placement as they were seen

during the work carried out for this thesis.

In [19] the authors claim to have implemented a User-Level runtime library

which implements the page migration policy such that it performs better than

the operating system provided mechanism and also “demonstrate that

OpenMP programs with user-level dynamic page migration are effectively

immune to the page placement strategy of the operating system and have

robust, non-degrading performance even with the worst possible initial page

placement”. Although this sounds very promising it was tested on OpenMP

programs which have iterative behavior in the sense that “they execute the

same parallel computation for a number of iterations”. This behavior makes

31

“well-defined execution points at which the program can obtain an accurate

snapshot of its complete memory reference pattern”. The library also uses a

modified compiler to “identify the hot memory areas of the application virtual

address space which are likely to contain candidate pages for migration and

instrument the programs to invoke the monitoring and page migration services

of the runtime system”.

These assumptions are not necessarily true for fine-grain recursive programs

written using Cilk and in addition, the requirement for a modified compiler to

identify the hot spots introduces work which is out of the scope for this thesis.

The requirement for a modified compiler hurts the portability of the system

which is a major concern for a system that is meant for use outside the

authors’ lab.

The authors state multiple motivations for their research which points to the

ineffectiveness of the current page migration of existing commercial system.

These motivations are the truly important part of [19] for this thesis as they

bind the page migration and page placement policies to conclude that the

combination of these two is the blame for the scalability problems on large

DSM machines.

Some of the motivations listed in [19] are:

• “Although results from simulations in previous works have indicated

that dynamic page migration is an effective technique to reduce

memory latency on cache-coherent NUMA systems [24, 25], the real

implementations of dynamic page migration on SGI Origin 2000 and

Sun Wildfire have not demonstrated analogous results”.

32

• “Performance evaluations of the Origin 2000 from its vendor have not

reported any results with parallel benchmarks using the Irix page

migration engine” [23, 26]. This might suggest that the vendor cannot

find good reasons to use the feature.

• “A preliminary evaluation of the Sun Wildfire prototype with OLTP

workloads reported also no results with dynamic page migration

enabled in the system [27]. A more recent evaluation of the Wildfire

[20] has shown with a synthetic experiment that page migration can

improve computational throughput in the long-term, but suffers from

poor responsiveness and performs significantly worse compared to

coherent memory replication at the granularity of a cache line”.

• “A relevant study of the complete SPLASH-2 benchmark suite on a

large-scale Origin 2000 has shown that page migration was ineffective

in dealing with the problems introduced by the operating system’s

page placement strategy and some programs required hand-tuned page

placement to scale reasonably [28]

All of these motivations and especially the last one (which is of special interest

because it uses the same system as in this thesis) further emphasize the

inapplicability of the page migration on the Origin 2000 and also point at the

initial page placement strategy as the cause for scalability problem.

The outcome of this survey is that the Explicit Memory Placement that is built

using memory migration primitives that have a low performance on their own,

together with an ineffective initial placement of allocated memory causes the

Explicit Memory Placement mechanism to perform poorly as well. This makes

33

the two technologies ineffective to achieve greater scalability and

performance.

34

C h a p t e r 3

PORTING CILK TO A NON-GCC COMPILER

Since the early development of the Cilk language, Cilk had always maintained

intimate relationship with the gcc compiler. This was apparent in the Cilk

runtime library, in the code generated by cilk2c transformations and in the

way gcc was extended to allow compilation of ".cilk" files. Making all these

components work with native compiler and libraries of the vendor was an

important step towards the development of a NUMA aware scheduler. NUMA

is a relatively new architecture1, so it was clear from the beginning of the

design of the NUMA aware scheduler that the scheduler would not be portable

across platforms. Having the code tied to a specific vendor meant that using its

native compiler for improved performance would not hurt portability.

Moreover, it was apparent from my early attempts on the SGI machine that

most of the advanced features that the Irix OS offer the developer are not

standard in any way and some important tools come with their libraries. These

issues made it clear that we should have Cilk compile without relying on gcc

in order to clear the way for later usage of the more advanced features of the

vendor's compiler and libraries.

Making Cilk work with the vendor tools did not necessarily mean that the code

had to be ANSI compliant. It was possible and simpler to fork the code and

make the specific version of Cilk work with vendor tools, abandoning gcc

1 Commercial CC-NUMA machines were introduced at the mid 1990’s (the Sequent STING and the SGI

Origin 2000 were both introduced at 1996). These systems were influenced by the research done in the
late 1980’s and early 1990’s on scalable shared-memory systems, including the Stanford DASH [12]
and FLASH [13] projects, the MIT alewife [14] and more.

35

altogether. However, this would mean that the work will be lost afterward

since the code will not contribute anything to the development of the Cilk

open-source project. It was important for me to contribute the work back to the

Cilk open source project and the best way to do so was to make the code more

portable so that it can be used with more tools rather than with other tools.

This portability approach had several important advantages:

• The code could always be tested against the standard tools. This was

very important for sanity testing during development in order to make

sure there's no regression of other issues. It was also important for the

final result in order to have a single version on which we can compare

the performance of Cilk programs compiled with multiple compilers

and measure the performance difference. A large difference would

justify the portability on its own without the need for future benefits.

• The Cilk maintainer was interested in the portability of Cilk to new

compilers. This was also important for me in order to ensure that my

work will help others who will use Cilk in the future rather than

simply be forgotten.

• It should be easier now to port Cilk to other tools. On some

architectures there are very big differences between the vendor

compilers (plus libraries) and gcc. One example is the Intel IA-64

architecture for which the Intel compiler generates code that is more

than twice as fast as gcc floating point computation. On such a

platform, being able to use the vendor compiler gives a major

performance boost. The IMPACT project reports a speedup of up to

36

2.3 over gcc when testing the performance of various tools such as

gzip, bzip2, vortex and more with their enhanced Itanium compiler.

3.1 PORTABILITY CODE CHANGES OF THE RUNTIME LIBRARY

Most of the runtime system was portable as is. Some work was required for

cleanup of the code because the MIPS-Pro compiler is stricter than gcc and

issues lots of warnings on code that is completely clean of warning when

compiled with gcc. Other small issues were assembly language macros

(read/write barriers, atomic register-memory exchange, etc) that had to be

implemented using MIPS Pro language extensions (intrinsic compiler

functions rather than assembly language), 64 bit ABI support, differences in

how to specify function inlining, etc.

3.2 PORTABILITY CODE CHANGES OF THE COMPILE DRIVER

The compiler driver mimics the behavior of gcc as it parses the command line

switches and decides what tools (preprocessor, compiler, linker, and cilk2c)

need to be invoked and what part of the CLI relates to each tool. For instance,

compiling a ".c" file requires activating a preprocessor, then compiler and then

maybe a linker. Some command line switches relate to a single phase (such as

specifying a macro definition) while others relate to multiple phases (such as

ABI). The driver adds support for compilation of a ".cilk" file while all other

standard file extensions were delegated to gcc for full treatment. A ".cilk" file

requires 3 phases until it is made into a C file that can be compiled by gcc:

37

• A preprocessing phase to get a Cilk file with expansion of macros.

• A transformation of the Cilk constructs into equivalent C constructs

and emitting proper calls to the Cilk runtime library. This phase

requires cilk2c to process the code that was generated by the

previous phase. cilk2c then generates code which uses many

macros defined by the runtime system in order to make the generated

code both shorter and simpler to understand by a human developer as

it is quite simple to see most of the correlations between the original

Cilk source code and the generated C source code.

• Activation of the preprocessor again in order to have all the macros

used by the C code generator translated into C code.

When these 3 phases are completed we need to execute the same phases as

any standard C file compilation requires. The driver program automates all of

these phases into a single command line whose structure was the same as that

of gcc only with the additional support for files with the ".cilk" extension.

When moving from gcc to MIPS-Pro, the compiler being used is not known

to the driver program because of the decision to support them both: It might

be either one of these compilers (support for Intel Compiler for Linux was

added later on and other compilers might be supported in the future). So the

compiler to be used needs to be indicated through a new command line switch

targeted for the driver program. When this parameter is set, the parsing of the

rest of the command line has to be dependent on the compiler being used.

Although gcc and MIPS Pro have similar command line syntax, it is not

entirely identical and so some of the existing parsing was made valid only

when using gcc while new parsing was added for the case when using MIPS

38

Pro. Moreover, sometimes cilk2c is required to inject a command line

switch to achieve a certain behavior yet the switch to be used must be

different depending on the compiler being used. One example is the use of a

switch to indicate for the C preprocessor that a file with “.cilk” extension

should be parsed as a C file (gcc recognizes the –x switch while the Intel C

Compiler treats this as instruction set generation directive that will cause the

code to execute only on certain processors).

In addition there are differences not noticeable from the command line syntax

such as:

• Multi-pass linker (gcc) vs. a single-pass linker (MIPS Pro): single-

pass linker forces libraries to be specified on the command line in the

order of their dependence. When processing modules on the

command line, the IRIX loader (ld) requires that at least one

reference to an unresolved symbol appear before inclusion of the

library that resolves that reference [8]. Because the Cilk runtime

libraries are added to the link phase without having them specified by

the user, the driver must add them at the correct place in the list of

arguments in order for the link to be successful. Simply inserting the

Cilk runtime libraries usually causes a link failure because of missing

symbols (which are in the badly placed library).

• The Cilk driver program used the "-include" switch of gcc in

order to cause compiled ".cilk" files to include Cilk runtime header

files without forcing the programmer to include them in the Cilk

source code. MIPS-Pro does not support this switch or an equivalent.

This problem was solved by using a temporary file into which the

original Cilk file is copied with the proper inclusion of runtime

39

header files generated in the beginning of that file. Using additional

standard preprocessor directives cause the compiler to generate

warning/error messages with proper files name and line numbers that

the Cilk developer can understand.

The driver program maintained the use of gcc for the preprocessor phase

because of requests from the MIT group (who developed some new features

in parallel with my work and wanted to avoid future code merge problems).

Later on this was handled by that team as well and the package could be

compiled without gcc installation at all.

3.3 PORTABILITY CODE CHANGES OF THE COMPILE DRIVER

Last and most important was to make the cilk2c tool and the C code that it

generates compile with an ANSI C compiler in general and with the MIPS-

Pro compiler in specific. The code that was generated by cilk2c suffered 2

major portability problems:

• Cilk inlets were implemented as inner functions which are not

supported by ANSI C.

• Initializing automatic variables at the point of definition requires

some tricks to ensure that they are properly initialized in the

generated code.

3.3.1 Supporting inlets

A special treatment was required to support Cilk inlets. Inlets are described in

chapter 2 as special functions which allow the incorporation of the result of a

40

spawn without assigning it first into a variable and it has a few more

interesting features such as ensuring atomicity of access to parents frame

variables between the inlet and the parent, etc. Because inlets are very similar

in their syntax to inner functions, they were implemented as such by

cilkc2c because gcc supports inner functions for the C language (as

opposed to ANSI C compliant compilers) and such support is much easier to

implement. For example, an inlet IN declared inside a Cilk procedure PROC

was transformed by cilk2c into a C function IN_C that was an inner

function in the output of the transformation of PROC into a C function called

PROC_C. This was convenient because an inner function has access to local

variables and formal arguments of the parent procedure in a natural way (as

required for inlets) but it meant a lot of trouble for other compilers that do not

support inner functions. Because cilk2c transforms the code using

recursion to traverse the AST of the transformed module, it is easier to

implement local transformations than non-local transformations. In "local

transformations" I refer to a transformation made when the AST traversal

points to a node N in which all of the information that is required for the

transformation is available from N and its children. The side effect of the

transformation (add/delete/update AST nodes) is also performed only on

nodes that are accessible though N and its children. This kind of

transformation is natural for Cilk (which is a small extension of ANSI C)

because it transforms the new construct of the Cilk language into equivalent

implementation using C constructs, one block at a time. Getting rid of these

inner functions required the extraction of the inner function logic into a

standard global scope C function but this does not allow the inner function to

access variables from its enclosing function scope. The solution was to pack

all the variables of the outer function into a structure before the call to the

inlet generated function, pass a pointer to that structure into the inlet

41

generated function and unpack the variables upon return (some variables

might be updated by the inlet function and that update needs to be reflected

into the outer function). The code of inlet itself is transformed to use the

variables from the structure rather than expecting them on the stack. This

solution is clean in terms of portability though it has a performance downside

(packing and unpacking the automatic variables of the procedures which are

used in the inlet). The performance downside was decided to be a non-issue

because the inlets are not the construct with which the programmer expresses

parallelism and from its atomicity behavior it is clear that it can degrade

performance and parallelism because of the implicit synchronization. So a

Cilk developer must ensure that inlets are not used too much in the code or

otherwise the code will not be able to achieve linear speedup. The inlet code

now has to be transformed so that every usage of a variable from the scope of

the containing Cilk procedure, will access the variable through the new

structure pointer introduced by the cilk2c translator into the function

signature. This requires the code to know the scope of every variable yet it is

already computed by the Data Flow module and the information is available

at the tree node. An example of this change can be seen in Appendix A.

Figure A.1 shows a Cilk procedure which uses an inlet constructs. Figure A.2

shows the C code that was originally generated by cilk2c – the code uses

an inner function. Figure A.3 shows the C code that is generated by cilk2c

after making inlets implementation using standard C function (global scope).

3.3.2 Supporting initialized automatic variables

Another problematic case was related to the transformation of Cilk procedures

which define automatic variables and initialize them upon declaration. gcc

supports an extension called “statement as expression” which means that a C

expression can be made to include code that ANSI supports only as a

42

statement - this includes the ability to declare new variables inside such an

expression.

Every Cilk worker manages its part of the cactus stack. This management

implies that prior to a spawn, the caller pushes a frame onto the stack, then it

calls the function in a standard C convention and upon return from the called

function it pops the frame from the stack. The frames maintain the state of the

spawning function at the point that the spawn was made so that another worker

that steals it can reconstruct the stack based variables. To accomplish this,

cilk2c generates for a Cilk procedure named PROC a structure that is

named PROC_frame. This structure contains all automatic variables of the

procedure PROC. The variables of the frame are updated with the variables

from the stack before the frame is pushed into the cactus stack.

43

typedef struct {
 int i;
 char c;
 int* pi;
} a_type_t;

static int number = 123456789;
static const a_type_t a_type_const = {
 1234,
 'z',
 &number
};

cilk void func (void)
{
 int num = 1;
 a_type_t a_type = a_type_const;
 long time;

 < statements … >
} /* end of procedure */

Figure 3.1: A Cilk procedure declaring 3 stack-based variables. First 2 are
transformed while the third is not.

The problem begins when in some cases there is no need for the stack variable

and only the variable inside the frame object is used. One example is the

"Slow Clone" which is called by the scheduler once a steal occurs and as such

it receives the frame with the state of the function. Instead of copying the

variables from the frame structure into local stack variables, it can work

directly with the variables from the frame object – so it will not declare the

variables on the stack as the Cilk procedure did. In this case, the initialization

of the stack variable in the Cilk procedure is translated into initialization of the

corresponding variable in the frame object (at the beginning of the function).

But some stack-based variables are not required to be saved in the frame and

the declaration of these remains exactly as in the original Cilk procedure. The

problem here is that a C function starts with declaration of variables and then

44

proceeds with the function body. In the function body, there cannot be any

new variable declarations (without declaring a new block). But the translated

initialization of the frame object variable is not a declaration and hence it ends

the declarative part of the function and begins the function body. So if the next

variable was not transformed and remains a standard C definition then it will

cause the compiler to generate an error since the declaration of the new

variable is considered to be in the function body. A solution was required to

allow us to mix the definitions of automatic variables with the initialization of

those variables that exist only in the frame object (because it is imperative to

maintain the initialization order in case the variables are dependent on one

another). In Figure 3.1 we see a simple Cilk procedure to be transformed to C

code. The original translation appears in Figure 3.2.

As we can see in Figure 3.2, the generated code used a gcc extension to ANSI

C which allows "Statements and Declarations in Expressions" (excerpt from

gcc online documentation: "A compound statement enclosed in parentheses

may appear as an expression in GNU C. This allows you to use loops,

switches, and local variables within an expression. Recall that a compound

statement is a sequence of statements surrounded by braces; in this construct,

parentheses go around the braces.").

Figure 3.3 show an ANSI-C solution to the same problem. The solution is to

declare the same stack-based variable that was originally declared in the Cilk

procedure and previously removed in the generated C code (because the

equivalent variable in the frame object was used instead). This allows the

initialization of the variable to remain exactly as is written in the Cilk

procedure. The value is then copied onto the frame object using memcpy()

which allows the copying of any object size and hence can handle any

45

primitive or complex data type. In order for this memcpy() call to be valid in

the declarative part of the function its return value is assigned to yet another

temporary variable which is never used later on and hence will be removed by

the optimizer. At first it might seem to be an overkill to initialize an automatic

variable and then copy it into the equivalent frame object variable using a

function call but this code relies on the fact that when using memcpy() for

small objects, the optimizer removes the call to memcpy() (which is an

intrinsic function and not an actual function call) and replaces it with simple

assembly move instructions. On Intel Pentium III using gcc, copying up to 3

memory words with memcpy() (32 bit each) is translated to the required

number of move instructions. Similar behavior was seen on Microsoft Visual

C++ compiler and it will probably be similar when using other high end

optimizing compiler (for which Cilk might be ported in the future) since most

of them support such simple libc functions as intrinsic functions. Because

the original automatic variable is never used apart from being copied, it is easy

for the optimizer to remove it altogether and use only the frame variable. For

simple variables and arrays it was tested that the gcc optimizer initializes the

frame object variable directly without bothering with the stack-based

temporary variable at all. With MIPS-Pro this was not the case – the

memcpy() is implemented such that it assumes that the source and

destination buffers may overlap and it causes the compiler to miss the full

optimization potential in some cases (this can be fixed using the "-

OPT:memcpy_cannot_overlap=ON" command-line switch which tells

the compiler that memcpy() can assume that the source and destination

buffers do not overlap). Using the OPT:memcpy_cannot_overlap

optimization switch should not cause trouble because most other compilers

assume that the source and destination buffers do not overlap and hence

require portable software not to assume that they can overlap (for the case of

46

possible overlapping there’s the memmove() ANSI C function). With this

switch turned on, MIPS-Pro yields similar behavior to that of gcc for this

case.

Later on, a different solution was suggested by Bradley C. Kuszmaul of MIT

who is the maintainer of the Cilk project. His solution can be seen in Figure

3.4 – it is both portable and efficient since it has no function call and it doesn’t

need to rely on optimization capabilities of the compiler other than simple

ones such as removing an unused variable, etc. For arrays, we still use

memcpy() as a solution but it is not common to find large stack-based arrays

and even less common to find them initialized upon declaration. So there's no

real performance issue here.

int _cilk_func (void)
{
 int num = 1;
 int _cilk_temp0 = ({ a_type_t _cilk_temp1 =
a_type_const;
 _cilk_frame->scope1.a_type = _cilk_temp1;
 _cilk_temp0;
 }
);
 long time;

 < statements … >
} /* end of function */

Figure 3.2: The original C code that was generated by cilk2c from the
Cilk procedure in Figure 3.1. It uses the "statement as expression" gcc
syntax which causes a compilation error with other compilers.

47

int _cilk_func (void)
{
 int _cilk_temp1 = 1;
 void *_cilk_temp0 =
 memcpy (&_cilk_frame->scope1.num,
 &_cilk_temp1,
 sizeof (_cilk_temp1));
 a_type_t _cilk_temp3 = a_type_const;
 void *_cilk_temp2 =
 memcpy (&_cilk_frame->scope1.a_type,
 &_cilk_temp3,
 sizeof (_cilk_temp3));
 long time;

 < statements … >
} /* end of function */

Figure 3.3: The first ANSI-C code that was generated by cilk2c from the
Cilk procedure in Figure 3.1.

int _cilk_func (void)
{
 int _cilk_temp0 = 1;
 void *_cilk_temp1 =
 ((_cilk_frame->scope1.num = _cilk_temp0),
 &_cilk_temp1);
 a_type_t _cilk_temp2 = a_type_const;
 void *_cilk_temp3 =
 ((_cilk_frame->scope1.a_type = _cilk_temp2),
 &_cilk_temp3);
 long time;

 < statements … >
} /* end of function */

Figure 3.4: The final ANSI-C code that was generated by cilk2c from the
Cilk procedure in Figure 3.1.

48

3.4 PERFORMANCE COMPARISONS

This section presents performance comparisons of various programs and the

benefits that come with the support for the native compiler and libraries. The

first comparison is made for all of the deterministic Cilk example programs

(those available with the distribution). Each of these programs is compiled as

is without changing any of its code to exploit the specific machine on which

the measurements were made, with the gcc compiler and also with the MIPS-

Pro compiler. Each program is then executed 5 times and the average of each

program execution time is used for the comparison.

Because we measure only the changes due to the different compiler, we run all

programs using a single processor although they are written as parallel

programs. The details of hardware on which the measures were taken are:

• Machine: SGI Origin 2000

• CPU: 300 MHz IP27

• L1 Cache Size: 32KB for Instructions, 32KB for Data

• L2 Cache Size: 8 MB unified instruction/data

• Total Main Memory: 8 GB

• Node Memory : 512 MB

All tests were executed such that no swap is used.

The compilers that were used were:

49

• gcc 2.95.2 (the newer 3.3.4 version is available on the host but Cilk

fails to compile with it because of missing supporting libraries. This

problem is also seen on other platforms such as Solaris with new gcc

installations and highlights the fact the gcc might have trouble on

some systems while the vendor tools are more likely to perform well

out of the box).

• MIPS-Pro 7.4

Performance of Mips-Pro Compiler Vs. gcc Compiler

0.00

10.00

20.00

30.00

40.00

50.00

60.00

fib
.ci

lk

bu
ck

et.
cilk

ch
ole

sk
y.c

ilk

cil
ks

ort
.ci

lk
ck

.ci
lk

fft.
cil

k

he
at.

cilk
lu.

cilk

matm
ul.

cil
k

plu
.ci

lk

qu
ee

ns
.ci

lk

rec
tm

ul.
cil

k

sp
ac

em
ul.

cil
k

str
as

se
n.c

ilk

Test Program

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

gcc Compiler Running Time Mips-Pro Compiler Running Time

Figure 3.5: Comparison of running times for the example Cilk programs when
compiled with MIPS-Pro vs. those compiled with gcc.

As the above graph shows, most test programs perform better when they are

compiled with MIPS-Pro. The next diagram shows the relative gain of the native

compiler.

50

Performance gain of MIPS-Pro Compiler Vs. gcc
Compiler

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

fib
.ci

lk

bu
ck

et.
cilk

ch
ole

sk
y.c

ilk

cilk
so

rt.c
ilk

ck
.ci

lk
fft.

cilk

he
at.

cilk
lu.

cil
k

matm
ul.

cilk

plu
.ci

lk

qu
ee

ns
.ci

lk

rec
tm

ul.
cilk

sp
ac

em
ul.

cilk

str
as

se
n.c

ilk

Test Program

R
un

ni
ng

 T
im

e
R

at
io

 B
et

w
ee

n
M

IP
S-

Pr
o

co
m

pi
le

d
co

de
 &

 g
cc

co

m
pi

le
d

co
de

Mips-Pro Compiler Performance Gain

Figure 3.6 The ratio between the running time of the program compiled with
MIPS-Pro and the program compiled with gcc. A value < 1 indicate that the
program compiled with MIPS-Pro yields higher performance.

The second test case measures the benefits of the native compiler/libraries

support for parallel code executions. In this case I have improved 2 of the

example programs that came with the Cilk distribution. Both of these

examples solve the matrix multiplication problem which is a well studied

problem.

• The first program (matmul.cilk) solves the matrix multiplication problem

by a simple recursive algorithm which divides one of the 3 dimensions of

the matrices into 2 halves and initiates the 2 sub-computations in parallel.

When the matrices are small enough the recursion ends and the

multiplication is executed in one of 2 ways:

51

o Using three simple nested loops as in Ci,j = Σ(Ai,j * Bj,k)

o Call the Native BLAS library (SCSL) that is available from SGI.

• The second program solves the matrix multiplication problem by using the

strassen algorithm which has a lower complexity than the simple textbook

solution. In this algorithm we have 3 phases (additions, multiplications and

then additions again) and all three phases are implemented with parallel

Cilk code in order to achieve scalability with a large number of processors.

When the matrices are small enough, the recursion ends and the

multiplication is executed in one of 2 ways:

o Implement recursive algorithm which divides each computation

into 8 sub-computations again and again until the matrices are

small enough to compute them with a three nested loops as in Ci,j =

Σ(Ai,j * Bj,k).

o Call the Native BLAS library (SCSL) that is available from SGI.

Both of these programs (each with its 2 flavors for the base case) are compared

with the performance of the SGI Scientific Library (SCSL) which is written by

SGI specifically for their machines and hence should achieve higher

performance. SCSL computes the matrix multiplication using the OpenMP

standard which allows the use of multiple processors in a DSM machine.

Performance Results:

First is the comparison of the performance of the OpenMP version vs. a simple

textbook solution that uses SCSL for the base case (the version which doesn’t

use SCSL at all has very low performance and was removed).

52

OpenMP vs. Textbook + SCSL (vanilla)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

CPU

R
un

ni
ng

 T
im

e
(s

ec
)

OpenMP Textbook + SCSL, Vanilla

Figure 3.7 The running time of the matmul.cilk program which uses SCSL
for base case compared with the OpenMP SCSL library.

These results show that the use of SCSL together with the efficient scheduling

of Cilk yields similar performance to those achieved with the OpenMP version

that is written by the machine vendor for any number of processors.

Second is the comparison of the performance of the OpenMP version vs. an

implementation of the strassen algorithm that uses SCSL for the base case.

These results show that the use of SCSL together with the more scalable

algorithm and the efficient scheduling of Cilk yields better performance than

those achieved with the OpenMP version that is written by the machine vendor

for any number of processors.

53

OpenMP vs. Strassen + SCSL (vanilla)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

CPU

R
un

ni
ng

 T
im

e
(s

ec
)

OpenMP Strassen + SCSL, Vanilla

Figure 3.8 The running time of the strassen.cilk program which uses SCSL
for base case compared with the OpenMP SCSL library.

The Cilk based code has several additional advantages including:

• Cilk uses the standard pthreads multithreading model rather than the

proprietary sproc model. SGI documentation indicates that these two

cannot be mixed together and hence one solution does not fit all. The

improved Cilk solution fits well for commercial and open-source

software which uses the standard pthreads model for portability.

• Because of the use of fine-grain scheduling, when the Cilk based

matmul is used as a building block for a larger system (e.g.: matmul is

a step in a single iteration of a cholesky factorization algorithm) the

54

system has the potential for even higher utilization because unlike

OpenMP, with Cilk we don’t need every BLAS operation to have a

barrier at the end of it. One example is when the higher levels of the

computation are parallel and hence multiple matmul operations might

be performed in parallel. In the OpenMP model, the matmul operation

would have a barrier and hence all processors either work on that

operation or remain unused.

The next graph shows that the use of Cilk together with SCSL yield highly

scalable code in terms of processors in addition to achieving high performance

of the serial code (mostly from SCSL) for the Textbook algorithm. The

strassen algorithm is less scalable and yet yields even better running time

results at the end of the day. Comparing both of these algorithms show that the

lack of scalability stems from the algorithm and its implementation rather than

from the Cilk system. This scalable and efficient solution is a winner for

scientific computing.

Speedup of Textbook/Strassen Solutions + SCSL base case

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

CPU

Sp
ee

du
p

Speedup of Strassen Solution + SCSL base case Linear Speedup

Speedup of Textbook Solution + SCSL base case

55

Figure 3.9 The speedup of the matmul.cilk program which uses SCSL for
base case compared with the speedup of the OpenMP SCSL library.

3.5 PORTABILITY TO OTHER COMPILERS

In order to check that the final code was indeed portable in general rather than

adapted to the SGI/Irix platform, I’ve tried to take the code to a Linux 2.4

system and compile the Cilk example programs with the latest Intel C

compiler which is known for its high performance code generation and might

be a viable candidate for usage in the development of high performance

applications.

To compile the examples programs, runtime libraries and cilk2c translator

took only 2-3 hours of programming and debugging time. Most of the time

was required to figure out that some command line switches should be added

/changed and this required the driver program to support the parsing of these

new command line switches. Other than that, most programs ran out of the box

with the following performance comparison to the gcc compiler.

The details of hardware on which the measures were taken are:

• Machine: Intel Pentium 4 CPU

• CPU Speed: 1600MHz, Stepping 10

• L1 Instruction Cache: 12 KB

• L1 Data Cache: 8KB

56

• L2 cache Size: 256 KB

• Memory: 512 MB

• Input Test cases did not exhaust the physical memory.

Performance of Intel C Compiler Vs. gcc Compiler

0
20
40
60
80

100
120
140

fib
.ci

lk

ch
olesk

y.c
ilk

cilk
so

rt.c
ilk

fft.
cilk

heat.
cilk lu.ci

lk

matm
ul.c

ilk

plu.ci
lk

rectm
ul.c

ilk

sp
ace

mul.c
ilk

str
as

se
n.ci

lk

Test Program

A
ve

ra
ge

 R
un

ni
ng

 T
im

e

gcc Compiler Running Time Intel Compiler Running Time

Figure 3.10 Performance Comparison of example programs which are
compiled with gcc and with the Intel C Compiler.

As the above diagram shows, most test programs perform better when they are

compiled with the Intel Compiler. The next diagram shows the relative gain of

the native compiler in order to see more clearly the gain.

57

Performance Gain of Intel C Compiler Vs. gcc Compiler

0

0.2

0.4

0.6

0.8

1

1.2

fib
.ci

lk

ch
olesk

y.c
ilk

cilk
so

rt.c
ilk

fft.
cilk

heat.c
ilk

lu.
cilk

matm
ul.c

ilk

plu.ci
lk

rectm
ul.c

ilk

sp
ace

mul.c
ilk

str
ass

en.c
ilk

Test Program

A
ve

ra
ge

 R
un

ni
ng

 T
im

e

Intel Compiler Performance Gain

Figure 3.11 The ratio between the running times of a program that is
compiled with the Intel C Compiler and the same program that is compiled
with gcc. A value < 1 indicate that the Intel Compiler yields higher
performance.

Now that Cilk operates with 3 different compilers and 4 Operating Systems its

quite clear that moving to a new OS/compiler which supports the GNU build

system (autoconf, configure, make, etc) should be fairly easy.

58

C h a p t e r 4

NUMA AWARE WORK-STEALING SCHEDULER

This chapter describes the work done in order to improve the Cilk scheduler so

that it takes the NUMA (CC-NUMA is the same in the context of this chapter)

architecture into account when steal attempts are made. In a NUMA machine,

a processor can access different parts of the system memory in the same way it

access its local memory. However, the processor pays the penalty in terms of

the time it takes to access the remote memory as well as increasing the load on

the communication links that connect the system nodes (so at some point these

overloaded links might become the bottleneck). For a multithreaded program

to scale from an SMP system to a NUMA system we need that the memory

allocation scheme would be such that a memory allocation request made by a

processor will always attempt to locate a local memory for that processor. This

will ensure that as long as processors allocate the memory they use, the

memory access is local and no contention on memory modules or

communication resources arise.

In Cilk, this becomes more complicated because we do not know which

worker thread executes a Cilk thread, when are threads stolen, which processor

steals from which other processor, which processors of the system participate

in the execution of the Cilk program, etc. When a worker thread T1 steals work

from worker T2, it uses memory allocated by T2 – assuming T2 allocated

memory on its local node, that memory now becomes remote for T1 and as the

2 threads might be executing on any physical processor it might cause T1 to

use memory that is on the farthest end of the system. The goal of the NUMA

59

aware scheduler is to improve the runtime scheduler so that it is more suitable

for NUMA systems thereby achieving better scalability in terms of processors

as well as providing APIs to Cilk programmers so that they will also be able to

take this information into account and improve the performance of their

implementation.

In order to allow easy comparison of the different schedulers and open the

door for future ones, a small set of operations was defined to be required from

the scheduler implementation. These include:

1. Global initialization of the scheduler.

2. Per-worker scheduler initialization.

3. Victim selection.

4. Per-worker scheduler termination.

5. Global termination of the scheduler.

The victim selection API is the most important since it implements the policy

by which the scheduler selects from where to steal. Current Cilk scheduler

implements this by selecting a victim from among the other workers in a

uniform random distribution. On a NUMA machine, this victim selection

policy is not ideal because we want to maximize the locality of memory. We

want to keep the memory that we use close to the CPU and assuming that a

thread manages to allocate most of its memory on the local node, stealing from

a nearby CPU is preferable to stealing from a remote CPU since the memory

that was local to the allocating CPU will be relatively close to the stealing

CPU.

60

Using this separation API, 3 schedulers were implemented. The first one

merely wraps the original Cilk scheduler (victim CPU is selected by uniform

random distribution). It allows a reference implementation to which a new

scheduler can be compared and it is termed as the "vanilla" scheduler. The

second one takes into account the distance between processors. When a

processor requests a victim, it selects one of the closest processors to the

requesting processor. If that steal attempt fails, it will select a processor that is

next in distance. This continues to increase the distance until we select the

most distant group of processors. If stealing from the most distant group of

processors fails, we wrap and start all over again with the group of closest

processors. Selecting from increasingly distant processors ensure that we

cannot get into a situation in which distant processors have lots of work but we

always attempt to steal from closer processors and therefore we fail again and

again burning cycles for nothing. The problem with this scheduler is that it

undermines important theoretical issues of the original Cilk work stealing

scheduler which is heavily based on the fact that every processor has a chance

of being selected (probability plays an important role). However, the approach

of selecting a closer processor sound reasonable and it should be compared

with.

To address the theoretical issues of the Cilk scheduler, a third scheduler was

implemented. This one also prefers closer processors over distant processors

but only by giving higher probability for closer processors to be selected as

victims. This means that in every victim selection request, every processor still

has the chance of being selected and the theory of work stealing schedulers

can be adapted for this non-uniform distribution. This is similar to the work

that was done for the Distributed Cilk scheduler by Keith H. Randall in his

Ph.D. Thesis [6]. In Distributed Cilk, the scheduler was changed to prefer

61

stealing from local processors (on an SMP machine that is participating in the

Network wide computation) rather than stealing from a processor that is

accessed over the network. The scheduler is analyzed to show that if that

preference is made by a "local bias" strategy (instead of stealing randomly

with uniform distribution it steals with a biased distribution) rather than

"maximally local" strategy (always still from a processor on the local SMP if

there is work on that SMP) then we can retain the provably-good properties of

the work-stealing scheduler.

In order to be able to take into account the distances between the processors of

a NUMA machine we need to identify the topology of that system. Topology

refers to various issues such as:

1. Processors on the same memory controller might share external cache

and they surely share the same physical memory. So stealing from

another processor on the same memory controller should be of highest

probability.

2. Processors on the same board use the same physical memory but not

necessarily the same memory controller and its associated cache.

Stealing from such a processor doesn’t require the memory access to

go over the communication link resulting faster access times and lower

link utilization. Lower link utilization enables higher scalability in

terms of CPUs.

3. Processors with different number of routers/communication-links

between them. The more links and routers that a memory access must

travel, the longer it takes to get the reply and the more bandwidth is

used of the available system communication bandwidth.

62

All of this information needs to be identified. Identifying this information is

made in a platform dependent manner since there is no standard OS APIs for

these services.

Since this work was carried out on SGI machines running Irix OS, a utility

program was written to extract the information from the OS. This program

generates a matrix of size N * N (N = Number of system processors) that

indicate the distance between every 2 processors. What really matters is that

we need a more distant processor to have a larger value in the distance matrix

so that we can assign increasing probability of selection to processors with

lower distance.

The tool for SGI machines (called sgi_numa_explorer) uses the "/hw"

file system to build a graph in which vertices are devices (CPU, memory,

routers, etc) and edges are connecting 2 vertices if data can travel between

these 2 devices (memory bus, communication link). The tool uses the Dijkstra

algorithm from the Boost library [9] in order to find the shortest path from a

processor to every other processor (this is usually the path used by the

hardware to access the remote memory node). The distance from processor I to

processor J indicate the distance of the processor on node I from the memory

that is installed in node J. the distance matrix that is generated by this tool is

written to a file that is later read by the Cilk runtime scheduler when it

initializes (the tool can be incorporated into the Cilk runtime library and in that

case, every processor can perform its own Dijkstra algorithm to compute

distance of every other processor from it in parallel).

When trying to maintain the computation close to the memory it is using, it is

much simpler when the worker threads are bounded to specific processors. On

a small SMP this is not required because the OS scheduler will usually

63

schedule a worker thread on the same processor it used, if possible and hence

cache use is optimized. Memory is no issue because the same physical

memory is used by all the processors. Cilk programs running this way adapt

quite nicely even for varying number of available processors as the workload

on the machine changes over time.

When aiming for large NUMA machines, programs are executed in one of 2

common methods:

• Using batch systems in which processors are usually allocated to a job

from its beginning to its end.

• Using a standard shell (Interactive mode in SGI lingo). In this case the

threads compete for processors with other programs and hence they

usually migrate over time to more and more processors.

Moreover, it might be important to select specific processors such as those

with faster processors, those with more local memory on board, those close to

the graphics engine, etc.

The NUMA schedulers implemented as part of this thesis assume that a set of

processors is allocated for the Cilk program. The specific processors can be

specified at command line or they can be found by the scheduler when the

worker threads begin execution and are allocated physical processors by the

OS. In any case, once the processors are known, the worker threads are bound

to these processors (one worker thread per processor) and from that moment

till the end of the execution, we have a bidirectional mapping of a processor

ID with a worker thread ID. This information is used in many ways such as:

64

1. Knowing the processor on which a thread is running without querying

the OS saves expensive system calls.

2. Having each thread maintaining its scheduling information in its local

memory so that it is as close as possible and no contention arises

between different worker threads while they make steal attempts.

3. Allowing the Cilk programmer to query the processor on which it is

running enables algorithm implementation optimizations such as

allocating memory buffers on physical memory that is on a specific

board, telling whether a memory is local to a worker thread and at

what distance it is, etc. although the documentation of the Irix OS

memory management system specifies that when using multiple

threads, each one allocates memory on its own local board and only

when this is not possible it allocates memory on other boards, simple

test programs show that this is not exactly the case (at least when using

pthreads) and hence further optimizations can be made to the memory

access patterns.

Once we have for every processor I the distance vector of every other

processor from I and we know that a worker thread with ID I' will always be

bound to the same processor I, we are missing only the weights of the different

distances. For the new scheduler we allow the programmer to specify the

weights for the different distances so that their effect can be tested on the

specific system on which the program is supposed to run. Such values will be

dependent on the machine architecture, the ratio of memory access latency

between local and non local memory, the memory access pattern of the

specific algorithm, cache hit ratio, etc. Once the programmer sets the weights

65

for each distance the scheduler needs to define the probability function that

will yield the required ratio between the processors.

Assuming we have a random number generator that yields a uniform random

distribution we would like to implement a probability distribution function that

is dependent on the weights of the processors and the number of processors at

each distance that is fairly efficient since it is computed at runtime upon every

steal attempt that is executed. Assume we have the processors at distances 0,1,

… (D-1) with weights w0, w1, …wD-1. Assume also that we have pi processors

at distance i. The total weight of all processors (except myself, which is at

distance 0, since we don’t want that a processor will select itself as a victim)

is:

∑
=

=
Di

ii pwW
..1

)*(

The total weight of a distance group g is ∑
∈

=
gi

iig pwW)*(

It follows that ∑
=

=
Di

gWW
..1

In order to select a certain victim processor we need to draw a random number

in the range of [0 ... W-1] using a uniform random distribution (if we cannot

have the range as we want, we can always draw the random value from the

entire range of 32-bit integer, divide by the range and use the remainder). We

then need to map that value into a specific processor. We can look at it as if

processors are ordered in increasing distance order and every processor

occupies a range equals to the weight of its distance groups. The ranges of the

processor induce a set of segments with total length of W. Every distance

66

group g has processors with a total length of Wg. We can prepare a vector with

the values in which we move from one distance group to another at the

initialization of the scheduler. So given a random value r we need to scan the

vector and find the range that contains r (for a small number of discrete

distances a simple linear search will suffice. For larger configurations we can

use binary search). Assume that the range of group g which contains r begins

at Tg. We can now find the specific processor within group g by computing (r -

Tg) / wg because all processors of group g have the same weight of wg.

W=3 W=3 W=3W=4 W=4 W=2 W=2

2 processors, weight=4 3 processors, weight=3
2 proc.,

weight=2
5 proc.,

weight=1

W=1

Figure 4.1: every processor has its range as a segment and all segments
together define the range from which we draw a uniformly random number
variable.

So going from a uniformly distributed variable into a specific distribution

based on the weights of distances is made in two simple steps. This yields the

next processor to steal from.

After completing the NUMA aware scheduler, I’ve redesigned the two matrix

multiplication programs (simple Textbook algorithm, called matmul.cilk,

and the Strassen algorithm, called strassen.cilk) so that they take

advantage of the new scheduler. The amount of time that was required to code,

67

test and tune each of these programs was too high to do the same work for the

entire collection of examples programs within the Cilk distribution.

The following graph shows the performance of the matmul.cilk program

with increasing number of processors. Each of the 3 colors is for a different

scheduler. The graph show that the NUMA-aware schedulers were not as

helpful as thought at first. Analyzing the algorithm suggests that the reason for

this is that the base case of the recursion is such that the entire block of matrix

fits into the L1 cache (for high performance of the serial code) and hence the

cache hit-ratio of the actual computation (which consumes most of the running

time) is so high that the latency of a distant memory doesn’t affect the

computation very much. The same explanation fits the next graph which

describes the strassen algorithm since the difference is in the recursion of the

algorithm but they both use the same base case (serial code) and enjoy the

extremely high L1 cache hit ratio (~99%).

I conjecture from these results that further research is required in order to

experiment with other algorithms that have intrinsically lower cache hit ratio

and would be able to reveal the benefits of the NUMA-aware scheduler. If an

algorithm can be adapted to use the NUMA topology knowledge (e.g.: use per

CPU private memory pool for memory management) then further performance

improvements might be possible.

Another cause is the physical memory placement policy of the Irix OS which

undermines the foundation of the NUMA-aware schedulers. This issue is

discussed in the next chapter.

68

Textbook + SCSL with diffe rent schedule rs

0.00

50.00

100.00

150.00

200.00

250.00

300.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

CPU

R
un

ni
ng

 T
im

e
(s

ec
)

Textbook + SCSL, Vanilla Textbook + SCSL, Numa-Probabilistic Textbook + SCSL, Numa-Strict

Figure 4.2: The performance of matmul when using different schedulers.

Strassen + SCSL with different schedulers

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

CPU

R
un

ni
ng

 T
im

e
(s

ec
)

Strassen + SCSL, Vanilla Strassen + SCSL, Numa-Probabilistic Strassen + SCSL, Numa-Strict

Figure 4.3: The performance of strassen when using different schedulers.

69

Nevertheless, the NUMA aware schedulers still shows some improvement as

can be seen in the next graph. The graph shows only the graph portion for 16

processors and more in order to be able to use a much smaller scale and get a

clearer view of the performance when using many processors.

The highest performing combination is the implementation of the Strassen

algorithm with the SCSL library for the serial code using the NUMA-strict

scheduler with a running time of 16.80 seconds using 30 processors.

Compared to the performance of the OpenMP code from the vendor that runs

for 18.33 seconds we have improved by close to 10 percent.

15.00

20.00

25.00

30.00

35.00

40.00

16 18 20 22 24 26 28 30

CPU

R
un

ni
ng

 T
im

e
(s

ec
)

OpenMP Textbook + SCSL, Vanilla
Strassen, Vanilla Strassen + SCSL, Vanilla
Textbook + SCSL, Numa-Probabilistic Strassen, Numa-Probabilistic
Strassen + SCSL, Numa-Probabilistic Textbook + SCSL + dplace, Numa-Probabilistic
Textbook + SCSL, Numa-Strict Textbook + SCSL + dplace, Numa-Strict
Strassen, Numa-Strict Strassen + SCSL, Numa-Strict

Figure 4.4: Comparing all the high performing programs and schedulers.

70

C h a p t e r 5

EXPLICIT MEMORY PLACEMENT

This chapter describes the use of explicit memory placement in a parallel Cilk

program and checks what are the performance gains that can be achieved by

using it. At first, this issue was not on the work plan because Cilk was

designed such that as long as the OS memory manager allocates the memory

as close as possible to the requesting CPU (usually local to the executing

node) the locality should be maximized. To make use of this locality, Cilk

programs usually allocate the memory close to the point that the memory is

required so that the default memory allocator has the chance to optimize the

memory placement and use the closest possible physical memory. When this

assumption was checked against the documentation from SGI, it was found

that SGI designed Irix to behave just like that.

However, things turned out to be not as they are documented. The issue was

checked after the tests of the NUMA-aware schedulers (described in chapter 4)

did not yield the expected results, even when using a large number of

processors where the locality is an important aspect. After writing some test

programs to check this assumption it was clear that the system did not behave

quite as it is documented for pthreads based parallel programs (which is the

model used by Cilk).

71

5.1 CHECKING IRIX MEMORY AFFINITY

The fear that actual memory placement was not as documented required a

definitive answer as it was at the heart of the NUMA-aware schedulers. The

program "irix_pthreads_mem_affinity.c" was written in order to

test the default placement that is implemented by Irix when executing a

pthreads program. The intention is to check how many memory allocation

requests are placed on the same node on which the thread is running and how

many are placed on a different node, thereby requiring access through a router.

The program uses 8 pthreads; each is executing 100 memory allocations. The

test system was a 30 processor Origin 2000 machine.

To make things simple for the OS memory manager the program is written

such that:

1. Every pthread binds itself to its own CPU as the first thing it does

so that every pthread uses a different CPU throughout the test. This

means that the pthread is never migrated to another CPU and hence

deciding on optimal placement of its memory allocation requests

should be obvious when plenty of memory is available on all

nodes.

2. Each allocation is of 10KB and is aligned on page size (which is

16KB). The request for alignment of each and every buffer on page

size ensures that every allocation will start off a page boundary and

so it cannot use memory pages which are already allocated and

placed. This means that the memory manager decides the specific

physical placement for every allocation request – all placements of

previous allocation requests are irrelevant.

72

3. Every allocated buffer is maintained until the program terminates

(i.e.: it is not freed). This ensures that we will not allocate a buffer

that was already used and hence its physical placement was set in

the previous allocation. Following this lets the memory manager

decide on every allocation for a physical placement of the memory

pages.

4. The total memory allocated by each pthread is roughly 100*16KB

= 1.6MB. This is negligible compared with the 300+ Megabytes of

free memory that were available on every node when the tests were

executed. So there is no issue of allocating memory on another

node because there is no free memory on the local node.

When running the test program on a Origin 2000 machine with 30 processors

(2 CPU per node, 8192 MB of memory), the following results were obtained

(Each row describes the statistics gathered by one pthread):

Thread

ID

Number of allocations on local

memory

Number of allocations on

non-local memory
1. 20 80

2. 3 97

3. 19 81

4. 18 82

5. 28 72

6. 12 88

7. 22 78

8. 5 95

Summary 127 (16%) 673 (84%)

73

Figure 5.1: Local and remote memory placement of 100 unique memory

allocations (per pthread).

These results show that on average, only 16 percent of the allocation requests

are physically placed on the memory node that is local to the CPU that

requested the memory while all the other requests are placed on other memory

nodes. This is very bad for locality - it shows that the "first touch" principle

coupled with "Memory Locality Domains" does not ensure that memory

allocations are placed on local memory even when sufficient memory is

available. Running the tests several times yields similar results.

From these statistics it is obvious that explicit memory placement has the

potential to improve the performance of pthreads based programs and hence

Cilk programs which are based on pthreads. These statistics also suggest an

explanation of why do all schedulers perform quite the same, since the primary

principal on which the NUMA-aware scheduler was based (always allocate

local memory) did not hold and in fact it was behaving almost randomly,

thereby removing any gain from the biased steal attempts.

The following sections describe the work carried out to explore Explicit

Memory Placement and Page Migration in Cilk before surveying the topic on

other parallel models. As some of the conclusion of the survey on OpenMP

suggest, these results might have been guessed without doing that work but the

OpenMP topic was not surveyed early enough.

74

5.2 MEMORY PLACEMENT EFFECT ON THE NUMA-AWARE
SCHEDULER

The problem of bad memory locality placement was highly acute to the

NUMA-aware scheduler because the whole idea was to place the threads and

then attempt to steal from close by threads for which their local memory is

close to the thief - But when the close by neighbor actually allocates memory

on a distant node of the system then stealing from it yields no benefit in

comparison to the vanilla scheduler.

As a result, a solution was required to allow a Cilk program (which uses the

pthreads model rather than the native sthreads model, which is based on sproc,

of SGI) to allocate memory on a specific node. This can be coupled with

information that the Cilk run-time library has to map worker threads to

physical processors and allow the Cilk programmer to have knowledge of the

CPU on which the worker thread is running. The programmer can then

allocate the memory buffer on the node it is executing. Moreover, such a

library will enable large data structures to be physically distributed among

multiple nodes thereby further increasing the scalability of the system in cases

of huge data sets. Such data structure might use too much memory on one

node (hence causing all following allocations from that node to be directed to

other nodes) and can also reduce the overall performance because all

processors will access the huge data structure on a single physical node and

overload the communication links which connect the system nodes with the

memory module to which all nodes access.

The Irix documentation points to a vendor supplied library called dplace

which implements explicit memory placement in a manner that is agnostic to

the thread model being used. This makes the library suitable for use in Cilk

75

programs. The use of this library is possible only because of the possibility to

compile and link Cilk programs with the vendor compiler which was the first

step I’ve accomplished in this thesis.

5.3 THE DPLACE LIBRARY

The dplace library implements the highest level API for physical placement

of pages on nodes (other options are to use the Memory Locality Domain APIs

which are more complex). The dplace library accepts commands regarding

memory placement. The primary 2 commands that are used in order to place

memory are:

1. "place range <START> to <END> on memory <NODE>".

This command instructs the OS memory manager to place the

specified range of addresses (full memory pages) on the specific

memory NODE. This command has effect only if the address

range was not physically placed by this process before hand. Once

a process places a page on a specific node, the command cannot be

used to move the memory page to another node. To do that we

need the next command.

2. "migrate range <START> to <END> to memory

<NODE>".

This command instructs the OS memory manager to move the

specified range of addresses (full memory pages) from the current

node on which they physically reside to the specific memory

76

NODE. This command should be used when the memory range

was already assigned to a memory node and hence it must be

migrated.

Using both of these dplace commands enables the writing of a memory

allocation function that allocates memory with a requested size and physical

distribution so that it operates successfully no matter whether the memory it

has allocated from the C runtime library (which allocated from the OS

memory manager) was used by the process before (and hence it was already

placed on a certain node and should be migrated from it to the requested node)

or not (hence it should be placed on the specific requested node).

An important thing to note when using the dplace library functions in a

program is that when we request the dplace library to place/migrate a page,

it does not take effect immediately. Newly allocated memory-pages are

physically placed only when they are first touched (either read or write) and

this event occurs only when the page is mapped into the process address space.

So placing a memory page and then checking where it is placed without

touching it can yield unpredictable results. If the page was already used by the

process earlier than this allocation is not the first touch and hence the page

needs to be migrated. Migration will happen, again, only when the page is

touched and hence checking where the page location is will yield its previous

location if not touched since the new allocation was made.

77

5.4 EXPLICIT MEMORY PLACEMENT IN CILK

In response to the bad locality of memory placement and by using the

dplace library, the following was implemented in order to solve the

problem:

1. A function called “malloc_place()” was written to allocate a memory

block with specific physical memory layout. This is used to distribute the

input matrices over all nodes that participate in the computation. This has

the effect that the memory access requests spread over all nodes and

hence do not overwhelm a single node for which the memory controller

would not be able to keep up. The "malloc_place()" function is a

memory allocation routine similar to "malloc()" but after the memory is

allocated it guarantees a physical distribution of the pages across physical

nodes as specified by the call parameters. The allocated buffer will have

linear addressing while making it possible to select the physical node for

every memory page. The memory should be freed as usual by the

"free()" C runtime routine.

2. A new keyword was added to the Cilk language called “Self_CPU”. It

has similar usage as the Cilk keyword “Self” which evaluate to the

worker ID that is executing the code. The new keywords, however,

evaluates to the physical CPU which is executing the thread that executes

the code. Using this keyword the code can use the “malloc_place()”

function to allocate memory on the node that executes it.

3. A new API was added to the Cilk runtime library with which every Cilk

program links – the API enables the Cilk program to retrieve the list of

processor IDs which are participating in the computation. Knowing the

78

processor IDs enables a worker thread to allocate a memory buffer and

request a specific placement.

With these 3 new features, the final versions of matmul.cilk and

strassen.cilk are implemented. These versions use the

malloc_place() API to allocate memory. This should have improved their

performance as follows:

1. The fact that the memory is allocated on the local node should increase

the performance of the programs when they use the NUMA-aware

scheduler.

Note however that the actual performance is not easily predictable as

the dplace tool documentation indicates because the migration of

memory pages is not so cheap, while the L1 + very large L2 (8 MB on

the test machine) caches hide much of the access latency of remote

memory.

2. The initial memory for the 3 matrices (C=A*B) is evenly spread across

all the nodes that participate in the parallel computation. This means

that the memory access to the matrices will be spread to all nodes

rather than to just a single one. This is highly important for the

matmul.cilk program which uses no temporary buffers – the

output matrix is computed directly from the input matrices and so all

processors read from A and B and write to C throughout the

computation.

79

We first look at the performance of the matmul program. This program uses

no temporary buffers and hence uses no memory allocation within the

recursive algorithm. This means that the performance of the

“malloc_place()” API has no effect on the performance of this code.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

CPU

R
un

ni
ng

 T
im

e
(s

ec
)

Textbook + SCSL, Vanilla Textbook + SCSL, Numa-Probabilistic
Textbook + SCSL + dplace, Numa-Probabilistic Textbook + SCSL, Numa-Strict
Textbook + SCSL + dplace, Numa-Strict

Figure 5.2: Performance of matmul w/o the use of dplace on the various

schedulers.

From the graph above, it seems that there is no performance difference

between the 3 schedulers, whether dplace was used or not. In this case, the

extremely high cache hit ratio is the only explanation to this behavior. Using

hardware counters we see that with a 30 processor test of the strassen

algorithm, the test completed in 69.6 seconds with about 99% L2 data cache

hit ratio for each processor. With such a high L2 cache hit-rate, the placement

80

of the memory is insignificant. These are executions that use the standard

memory allocation which has the bad locality as described previously.

With this low penalty of cache misses it is no wonder that the addition of new

scheduler and explicit memory placement do not affect the overall

performance too much. This further emphasize that additional research is

required with parallel algorithms that have intrinsically lower cache hit ratio

than matrix multiplication, one such algorithm is implemented by the

strassen.cilk program.

We next turn to look at the performance of the strassen algorithm in which the

nature of the algorithm requires temporary storage in each new activation

frame of the recursive algorithm and hence this code is affected by the

performance of the “malloc_place()” API and the initial memory

placement of the operating system.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

CPU

R
un

ni
ng

 T
im

e
(s

ec
)

Strassen + SCSL, Vanilla Strassen + SCSL, Numa-Probabilistic
Strassen + SCSL + dplace, Numa-Probabilistic Strassen + SCSL, Numa-Strict
Strassen + SCSL + dplace, Numa-Strict

81

Figure 5.3: Performance of strassen w/o the use of dplace on the

various schedulers.

Looking at the performance of the strassen implementation which used

dplace, it is obvious that something is definitely wrong. Theoretically,

dplace is supposed to improve performance, especially when large number

of processors are used but instead we see the opposite as it is very slow

compared to the same code which uses simple malloc(). Note that both

versions use the same (SCSL library) base case.

After testing the performance of the placement library it has become obvious

that when large buffers are allocated, it takes the OS kernel a lot of time to

place the pages on the requested nodes. This means that for a program which

makes many/large allocations (such as the strassen implementation which

requires large temporary storage); the cost of the placement exceeds the

possible gain (with the high cache hit ratio). Note that this migration cost

occurs because we usually allocate memory which is not on the requested

(local) node and hence the memory must be migrated to fulfill the request. If a

different memory manager is integrated into the Cilk system (e.g. Hoard) then

this overhead might be eliminated altogether by managing the memory of each

node in a separate pool and allocating from the proper pool as requested by the

memory allocation. Such a memory manager would obviously use dplace

for placement but it will do so very rarely when it needs to increase the pool

size rather than upon every memory allocation request.

The matmul program which is a simple textbook solution uses no temporary

storage and as such it can only benefit from the placement since the placement

time is counted on the initialization part of the program rather than on the

actual computation of the result. This version gains a slight performance

82

improvement but it is so small because of the high cache hit ratio of the L1 and

L2 caches which mitigate the latency of distant memory.

One more set of performance tests was executed using the parallel cholesky

factorization code that is found in the TAUCS library (see

http://www.cs.tau.ac.il/~stoledo/taucs/). this code shows high serial

performance and also pretty good scalability (originally tested on SGI Origin

3000 system) but once too many processors are used, its performance drops

significantly. It is an algorithm with much more complex memory access

pattern and intrinsically lower cache hit ratio.

The same code was tested with the NUMA aware version of Cilk in order to

check whether the NUMA aware scheduler and the memory placement

capabilities can improve the scalability of the implementation. The code was

tested on an input matrix that was used in the original performance tests in

[21] called “Threaded Connector/contact problem“. Because the authors used

the SGI Origin 3000 system and this thesis was executed on the SGI Origin

2000 system, the tests were also executed with the original code in order to

have a reference.

The following graph shows the performance of the original code found within

TAUCS version 2.2 using the 3 schedulers that are now supported by Cilk.

83

Cholesky Factorization Reference Code, Scheduler Effect

0

10

20

30

40

50

60

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

CPU

R
un

ni
ng

 T
im

e
(S

ec
)

Referece Code, NUMA Strict Referece Code, NUMA Probabilistic Referece Code, Vanilla

Figure 5.4: Performance of cholesky factorization with different

schedulers.

The original code shows performance that improve quite well when using up

to 12 processors but unlike the graph that is seen in figure 2.7, the performance

do not drop when adding more processors but rather simply does not improve.

Keeping in mind that the Origin 3000 is more scalable than the Origin 2000 (4

processors per system board instead of only 2, double bandwidth per

NUMALink, etc) it was expected that the performance drop would occur with

even less processors but this has not happened. This behavior is seen with both

the original code and the improved code that uses memory placement to

distribute the matrices over all the nodes that participate in the computation.

84

The following graph in figure 5.5 shows the performance of the cholesky

factorization code after it was improved to distribute the input matrix over all

the nodes that participate in the computation. This enabled us to verify the

second speculation that was made in [21] for the reason of the performance

drop. The speculation is that the allocation of the matrix using a single

memory allocation places it on a single memory node and this will overload

the memory subsystem when too many processors attempt to access the

matrix.

Cholesky Factorization, Distributed Matrix, Scheduler Effect

0

10

20

30

40

50

60

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

CPU

R
un

ni
ng

 T
im

e
(S

ec
)

Distributed Matrix, NUMA Strict Distributed Matrix, NUMA Probabilistic Distributed Matrix, Vanilla

Figure 5.5: Performance of cholesky factorization with distributed matrix

and different schedulers.

85

The graph turned out to be quite the same and means that neither the

scheduling policy, not the distribution of the matrix solves the bottlenecks of

the cholesky factorization algorithm that is found in TAUCS.

One thing to note about these performance measures is that they were

executed slightly different than in [21]. In [21] the authors wanted to compare

the performance of their implementation with the performance of other

implementations and hence measured performance of the cholesky

factorization code (which takes most of the execution time) and added the

running time of the symbolic analysis phase. In this thesis, I was interested in

the scalability and performance of the parallel Cilk code and hence did not add

the running time of the symbolic analysis which is not parallelized (using Cilk

or anything else) and have no use here.

The research of possible optimization that would be available with the

integration of a parallel scalable memory manager such as Hoard is left for

future work.

86

C h a p t e r 6

TEST PROGRAMS USED TO UNDERSTAND/VERIFY SYSTEM
BEHAVIOR

This chapter describes some of the test programs which were written in order

to understand how the Irix OS implements various issues and to check the

performance changes on select operations.

6.1 VIRTUAL ADDRESS -> PHYSICAL ADDRESS

The Irix OS manages the distributed memory of a large NUMA machine (such

as Origin 2000 and Origin 3000 series) and presents a shared memory

programming model. The OS maintains a 64-bit address space and assigns a

process with an address space of 2^31 (for 32-bit programs) or 2^40 (for 64-

bit programs). When the physical address is presented by the CPU to the HUB

that connects it to the system, the hub uses some of the high–order bits to

identify the node on which the required memory page is at. It then directs the

request over a communication link to that node. The HUB on that node will

receive the request and service it from its locally accessed memory.

The va2pa routine (implemented in the va2pa.c file) is a routine which is

given as input an address. The routine returns the node on which that memory

address is physically stored. This information is not usually required when

programming a NUMA machine but it was used heavily in test programs in

87

order to find out how to force a certain physical distribution of allocated

memory (it can be found at [29]).

6.2 THE UT_MALLOC_PLACE.C PROGRAM

This program demonstrate how to allocate a buffer with size that is a multiple

of the system page size and have a specific physical distribution of the buffer

(which has linear addressing) over the requested physical nodes.

The program uses the "malloc_place()" function for the memory

allocation. It contains code to demonstrate how to achieve some physical

distributions. This can be used to test that memory is allocated as requested (of

course it will not have proper physical placement in case memory is not

available on the requested node but it can be found on another node).

6.3 THE DPLACE TOOL

The term "dplace" stands for 2 different things:

• The name of a stand alone development tool which accepts a binary

program to execute and a placement file that specifies the system

nodes to use, processors to execute the program threads, memories on

which the memory pages are physically placed, etc. Because the tool

accepts the placement commands together with the binary program,

the commands cannot be adapted to dynamic behavior of the program

(e.g.: a dynamically allocated memory buffer has an address range

88

that is unknown in advance and hence that memory buffer cannot be

affected by these commands).

• The name of a library with which any program can link. The library

exports 2 API functions. One accepts the name of a file containing

commands to be executed – this can be used for implementing the

stand alone tool using this library. The second accepts one command

at a time. These APIs can be used from within a program by inserting

calls to the dplace library from within the code. Such commands can

be generated dynamically and are the ones used for the

implementation of the "malloc_place()" function.

An example of a dpalce commands file for the stand alone tool is the

"dplace_spec_1.txt" file which can be used with some Cilk binary that is

instructed to use 2 worker threads (the file addresses 3 threads but one is the

main thread created by the OS, not a Cilk worker thread). Using the standard

UNIX "ps –T" we can see the processor which executes the program and

verify it is the same as we've requested.

An example pthreads program that demonstrates the capabilities of the dplace

library (actually used during development to make sure the behavior of the

library is well understood) is "dplace_spec_1.c". The program generates

commands to place the pthreads on specific system nodes, allocate memory

with a specific physical distribution and then change the memory placement to

yet another physical distribution. this demonstrate the use of dynamic memory

in a typical program in which the memory is allocated and freed such that in

the C runtime layer and the OS memory management layer, the memory is

actually recycled and reused.

89

6.4 WHICH PROCESSOR IS EXECUTING A THREAD

The program "get_executing_cpu.c" demonstrates how to find the

processor ID which is executing the specified thread. This information doesn’t

seem to be available anywhere on the web and it is document in hope that it

will help others who need to use this information.

6.5 BINDING PTHREDS TO PROCESSORS

The program "thread_cpu_binding.c" demonstrates how to create

pthreads, bind them to specific processors and while they are running, query

the OS about the processor executing every pthread, making sure that it is the

one we've asked to bind to.

The program shows the use of a non standard pthreads attribute

"PTHREAD_SCOPE_BOUND_NP" which is available in the pthreads

implementation from SGI in order to allow binding of threads to processors.

90

C h a p t e r 7

CONCLUSION

In this work I have attempted to improve the scalability and performance of

Cilk programs on NUMA machines using a simple observation that the work

stealing policy should take the NUMA architecture into consideration when it

selects the victim from which the work stealing is attempted. The assumption

is that every processor allocates memory and the memory will be placed on the

local node. This means that we should prefer to steal work from nearby

processors because its memory will be closer and the latency to access it is

shorter. The implementation required preliminary phases in order to be able to

use the vendor libraries later on with which the NUMA aware features can be

implemented. These phases include making Cilk compliant with ANSI C and

enabling compilation and link with non gcc compilers. These phases are

worth on their own because the freedom to select out of multiple compilers

can be used to generate higher performance code and indeed tests that were

made showed substantial performance gained by using advanced compilers

(e.g.: SGI MIPS Pro, Intel C Compiler). However, the scalability tests of the

NUMA aware scheduler which is the main theme of this thesis did not yield

the expected improvements. I conjecture that the main reason for that is a

limitation of the Irix OS when allocating memory – it does not allocate the

memory on the local node. This undermines the basics of memory locality and

an attempt was made to overcome this problem using memory migration

techniques. However, this feature had yet another limitation on its bandwidth –

it was so slow that it was very hard to justify the time it takes to migrate/place

91

the memory. These two problems have major effect on the NUMA aware

scheduler and brought this work into a dead end.

These limitations can be solved either by improvements in the Irix OS or by

integrating a memory manager that is capable of maintaining separate memory

pools per system node. The first is out of the hands of such research and the

second introduced work that was out of scope for this thesis. It was decided to

leave it for future work.

92

C h a p t e r 8

APPENDIXES

APPENDIX A – INLET TRANSFORMATIONS

cilk int test_abort_aux(int d, int b, int seek_item, int arg)
{
 int i;
 int done;
 int *expected_value;
 int *expected_child;

 inlet void catch(int res, int index) {
 int k;

 if (done)
 Cilk_die("bug --- done != 0\n");
 if (!expected_child[index])
 Cilk_die("unexpected child\n");
 expected_child[index] = 0;

 if (res == -2) {
 done = 1;
 for (k = 0; k < branch; k++)
 expected_child[k] = 0;
 abort;
 } else {
 if (res != expected_value[index])
 Cilk_die("wrong return value\n");
 }
 } /* end of inlet*/

 expected_value = Cilk_alloca(branch * sizeof(int));
 expected_child = Cilk_alloca(branch * sizeof(int));

 for (i = 0; i < branch; i++)
 expected_child[i] = 0;

 done = 0;

 if (d == depth) {
 if (b == seek_item)
 return -2;
 return arg - 200;

93

 }
 for (i = 0; i < branch; i++) {
 expected_child[i] = 1;
 expected_value[i] = (Cilk_rand() & 0xFFFFF) + 42;
 catch(spawn test_abort_aux(d + 1, b * branch + i, seek_item,
 expected_value[i] + 200), i);
 if (done)
 break;
 }

 sync;

 for (i = 0; i < branch; i++)
 if (expected_child[i] != 0)
 Cilk_die("child did not return\n");

 if (done)
 return -2;
 else
 return arg - 200;
} /* end of Cilk procedure */

Figure A.1: A Cilk procedure using inlet from the testall.cilk example (this example
comes with the installation and running it verifies that various features of the language are
working as expected

int
test_abort_aux (CilkWorkerState * const _cilk_ws,
 int d,
 int b,
 int seek_item,
 int arg)
{
 struct _cilk_test_abort_aux_frame *_cilk_frame;
 CILK2C_INIT_FRAME (_cilk_frame,
 sizeof (struct _cilk_test_abort_aux_frame),
 _cilk_test_abort_aux_sig);
 CILK2C_START_THREAD_FAST ();
 {
 int i;
 int done;
 int *expected_value;
 int *expected_child;
#undef CILK_WHERE_AM_I
#define CILK_WHERE_AM_I IN_FAST_INLET
33
 void catch (int res, int index)
 {
 int k;

 if (done)
 Cilk_die_external (_cilk_ws->context, "bug --- done != 0\n");;

94

 if (!expected_child[index])
 Cilk_die_external (_cilk_ws->context, "unexpected child\n");;
 expected_child[index] = 0;

 if (res == -2)
 {
 done = 1;

 for (k = 0; k < branch; k++)
 expected_child[k] = 0;
 /* abort */ ;
 } else {
 if (res != expected_value[index])
 Cilk_die_external (_cilk_ws->context,
 "wrong return value\n");
 }
 } /* end of inlet */

 expected_value = Cilk_alloca (branch * sizeof (int));
 expected_child = Cilk_alloca (branch * sizeof (int));

 for (i = 0; i < branch; i++)
 expected_child[i] = 0;

 done = 0;

 if (d == depth)
 {
 if (b == seek_item)
 {
 int _cilk_temp0 = -2;
 CILK2C_BEFORE_RETURN_FAST ();
 return _cilk_temp0;
 }
 {
 int _cilk_temp1 = arg - 200;
 CILK2C_BEFORE_RETURN_FAST ();
 return _cilk_temp1;
 }
 }
 for (i = 0; i < branch; i++)
 {
 expected_child[i] = 1;
 expected_value[i] = (Cilk_rand () & 0xFFFFF) + 42;
 {
 int _cilk_temp2;
 _cilk_frame->scope2.index = i;
 _cilk_frame->header.entry = 1;
 _cilk_frame->scope0.d = d;
 _cilk_frame->scope0.b = b;
 _cilk_frame->scope0.seek_item = seek_item;
 _cilk_frame->scope0.arg = arg;
 _cilk_frame->scope1.i = i;
 _cilk_frame->scope1.done = done;
 _cilk_frame->scope1.expected_value = expected_value;
 _cilk_frame->scope1.expected_child = expected_child;

95

 CILK2C_BEFORE_SPAWN_FAST ();
 CILK2C_PUSH_FRAME (_cilk_frame);
 _cilk_temp2 =
 test_abort_aux (_cilk_ws, d + 1, b * branch + i, seek_item,
 expected_value[i] + 200);
 {
 int __tmp;
 CILK2C_XPOP_FRAME_RESULT (_cilk_frame, 0, _cilk_temp2);
 }
 CILK2C_AFTER_SPAWN_FAST ();
 catch (_cilk_temp2, i);
 }

 if (done)
 break;
 }

 CILK2C_AT_SYNC_FAST ();

 for (i = 0; i < branch; i++)
 if (expected_child[i] != 0)
 Cilk_die_external (_cilk_ws->context,
 "child did not return\n");

 if (done)
 {
 int _cilk_temp3 = -2;
 CILK2C_BEFORE_RETURN_FAST ();
 return _cilk_temp3;
 }
 else
 {
 int _cilk_temp4 = arg - 200;
 CILK2C_BEFORE_RETURN_FAST ();
 return _cilk_temp4;
 }
 }
} /* end of procedure */

Figure A.2: The original code that was generated by cilk2c to implement inlets using
inner functions.

#undef CILK_WHERE_AM_I
#define CILK_WHERE_AM_I IN_FAST_INLET
993
void
_cilk_test_abort_aux_catch_inlet_fast (int res,
 int index,
struct _cilk_test_abort_aux_frame *_cilk_frame,
CilkWorkerState * const _cilk_ws)
{
 int k;

96

 if (_cilk_frame->scope1.done)
 Cilk_die_external (_cilk_ws->context, "bug --- done != 0\n");

 if (!_cilk_frame->scope1.expected_child[index])
 Cilk_die_external (_cilk_ws->context, "unexpected child\n");
 _cilk_frame->scope1.expected_child[index] = 0;

 if (res == -2)
 {
 _cilk_frame->scope1.done = 1;

 for (k = 0; k < branch; k++)
 _cilk_frame->scope1.expected_child[k] = 0;
 /* abort */ ;
 }
 else
 {
 if (res != _cilk_frame->scope1.expected_value[index])
 Cilk_die_external (_cilk_ws->context, "wrong return value\n");
 }
} /* end of inlet */

#undef CILK_WHERE_AM_I
#define CILK_WHERE_AM_I IN_FAST_PROCEDURE
986
int
test_abort_aux (CilkWorkerState * const _cilk_ws,
 int d,
 int b,
 int seek_item,
 int arg)
{
 struct _cilk_test_abort_aux_frame *_cilk_frame;
 CILK2C_INIT_FRAME (_cilk_frame,
 sizeof (struct _cilk_test_abort_aux_frame),

 CILK2C_START_THREAD_FAST ();
 {
 int i;
 int done;
 int *expected_value;
 int *expected_child;
/*------- Fast inlet as inner function was removed ------*/
1015
 expected_value = Cilk_alloca (branch * sizeof (int));
 expected_child = Cilk_alloca (branch * sizeof (int));

 for (i = 0; i < branch; i++)
 expected_child[i] = 0;

 done = 0;

 if (d == depth)
 {
 if (b == seek_item)
 {
 int _cilk_temp110 = -2;

97

 CILK2C_BEFORE_RETURN_FAST ();
 return _cilk_temp110;
 }
 {
 int _cilk_temp111 = arg - 200;
 CILK2C_BEFORE_RETURN_FAST ();
 return _cilk_temp111;
 }
 }
 for (i = 0; i < branch; i++)
 {
 expected_child[i] = 1;
 expected_value[i] = (Cilk_rand () & 0xFFFFF) + 42;
 {
 int _cilk_temp112;
 _cilk_frame->scope2.index = i;
 _cilk_frame->header.entry = 1;
 _cilk_frame->scope0.d = d;
 _cilk_frame->scope0.b = b;
 _cilk_frame->scope0.seek_item = seek_item;
 _cilk_frame->scope0.arg = arg;
 _cilk_frame->scope1.i = i;
 _cilk_frame->scope1.done = done;
 _cilk_frame->scope1.expected_value = expected_value;
 _cilk_frame->scope1.expected_child = expected_child;
 CILK2C_BEFORE_SPAWN_FAST ();
 CILK2C_PUSH_FRAME (_cilk_frame);
 _cilk_temp112 =
 test_abort_aux (_cilk_ws, d + 1, b * branch + i,
 seek_item, expected_value[i] + 200);
 {
 int __tmp;
 CILK2C_XPOP_FRAME_RESULT (_cilk_frame, 0, _cilk_temp112);
 }
 CILK2C_AFTER_SPAWN_FAST ();
 _cilk_test_abort_aux_catch_inlet_fast (_cilk_temp112, i,
 _cilk_frame, _cilk_ws);
1031
 /* Restore variables from frame */
1031
 {
 d = _cilk_frame->scope0.d;
 b = _cilk_frame->scope0.b;
 seek_item = _cilk_frame->scope0.seek_item;
 arg = _cilk_frame->scope0.arg;
 i = _cilk_frame->scope1.i;
 done = _cilk_frame->scope1.done;
 expected_value = _cilk_frame->scope1.expected_value;
 expected_child = _cilk_frame->scope1.expected_child;
 }
 }

 if (done)
 break;
 }

 CILK2C_AT_SYNC_FAST ();

98

 for (i = 0; i < branch; i++)
 if (expected_child[i] != 0)
 Cilk_die_external (_cilk_ws->context,
 "child did not return\n");

 if (done)
 {
 int _cilk_temp113 = -2;
 CILK2C_BEFORE_RETURN_FAST ();
 return _cilk_temp113;
 }
 else
 {
 int _cilk_temp114 = arg - 200;
 CILK2C_BEFORE_RETURN_FAST ();
 return _cilk_temp114;
 }
 }
} /* end of Cilk procedure */

Figure A3: The new code that is generated by cilk2c to implement inlets using
standard (global scope) functions.

99

BIBLIOGRAPHY

[1] Cilk 5.3 Reference Manual

[2] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.

Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded

runtime system. In Proceedings of the Fifth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP), pages 207-216,

Santa Barbara, California, July 1995.

[3] Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K. Patnala, Mithuna

Thottethodi Recursive Array Layouts and Fast Matrix Multiplication

[4] Robert D. Blumofe. Executing Multithreaded Programs Efficiently. PhD

thesis, Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, September 1995.

[5] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded

computations by work stealing. In Proceedings of the 35th Annual Symposium

on Foundations of Computer Science (FOCS), pages 356-368, Santa Fe, New

Mexico, November 1994.

[6] Keith H. Randall, "Cilk: Efficient Multithreaded Computing", 1998.

[7] Christopher F. Joerg. The Cilk System for Parallel Multithreaded

Computing. PhD thesis, Department of Electrical Engineering and Computer

Science, Massachusetts Institute of Technology, January 1996.

[8] Silicon Graphics man page for MIPS Pro compiler.

100

[9] http://www.boost.org/

[10] Field-testing IMPACT EPIC - research results in Itanium 2, John W. Sias,

Sain-zee Ueng, Geoff A. Kent, Ian M. Steiner, Erik M. Nystrom, Wen-mei W.

Hwu, 31st Annual International Symposium on Computer Architecture, 2004.

[11] http://www.hoard.org/ - hoard is a highly scalable memory manager for

multithreaded/multiprocessor systems.

[12] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J.

Hennessy. The DASH prototype: Logic overhead and performance. IEEE

Transactions of Parallel and Distributed Systems, pages 41-61, vol. 4, no. 1,

January 1993.

[13] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K.

Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M.

Rosenblum, and J. Hennessy. The Stanford FLASH multiprocessor. In

Proceedings of the 21st International Symposium on Computer Architecture,

pages 302-313, April 1994.

[14] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J.

Kubiatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung. The MIT Alewife

machine: Architecture and performance. In Proceedings of the 22nd

International Symposium on Computer Architecture, pages 2-13, June 1995.

[15] Topics in Irix Programming, Document Number 007-2478-008, 1996 -

2000, Silicon Graphics, Inc.

101

http://www.boost.org/
http://www.hoard.org/

[16] M.Sc Thesis, by Nathan Robertson, 2002.

[17] Dimitrios S. Nikolopoulos, Theodore S. Papatheodorou Constantine D.

Polychronopoulos, Jes´us Labarta and Eduard Ayguad. Is Data Distribution

Necessary in OpenMP?

[18] M. Marchetti, L. Kontothanassis, R. Bianchini and M. Scott. Using

Simple Page Placement Policies to Reduce the Cost of Cache Fills in Coherent

Shared-Memory Systems. Proceedings of the 9th International Parallel

Processing Symposium, pp. 480–485. Santa Barbara, CA, April 1995.

[19] Dimitrios S. Nikolopoulos, Theodore S. Papatheodorou, Constantine D.

Polychronopoulos, Jes´us Labarta and Eduard Ayguad. Case for User-Level

Dynamic Page Migration.

[20] L. Noordergraaf and R. Van der Pas. Performance Experiences on Sun’s

Wildfire Prototype. In Proc. Of Supercomputing 99, November 1999.

[21] Dror Irony, Gil Shklarski, Sivan Toledo. Parallel and fully recursive

multifrontal sparse Cholesky. In Future Generation Computer Systems (20)

2004, pg. 425-440.

[22] http://homepages.cwi.nl/~robertl/mash/numaflex the Origin 2000/3000

architecture and a survey of SMP/DSM acronyms and slang.

 [23] Silicon Graphics Inc. Origin 2000 and Onyx2 Performance Tuning and

Optimization Guide. http://techpubs.sgi.com, 1999

102

http://homepages.cwi.nl/%7Erobertl/mash/numaflex%20the%20Origin%202000/3000
http://techpubs.sgi.com/

[24] V. Soundararajan, Flexible Use of Memory for Replication/Migration in

Cache-Coherent DSM Multiprocessors. In Proc. Of the 25th International

Symposium on Computer Architecture, pages 342-355, June 1998.

[25] B. Verghese, S. Devine, A. Gupta and M. Rosenblum. Operating System

Support for Improving Data Locality on CC-NUMA Compute Servers. In

Proc. Of the 7th International Conference on Architectural Support for

Programming Languages and Operating systems, pages 279-289, October

1996.

[26] J. Laudon and D. Lenoski, The SGI Origin: A ccNUMA Highly Scalable

Server. In Proc. Pf the 24th International Symposium on Computer

Architecturem pages 171-181, June 1997.

[27] E. Hagersten and M. Koster. Wildfire: A Scalable Path for SMPs. In Proc.

Of the 5th International Symposium on High Performance Computer

Architecture, pages 172-181, January 1999.

[28] D. Jiang and J. P. Singh. Scaling Applications Performance on a Cache-

Coherent Multiprocessor. In Proc. Of the 26th International Symposium on

computer Architecture, pages 305-316, May 1999.

[29] http://techpubs.sgi.com/library/tpl/cgi-

bin/getdoc.cgi/0650/bks/SGI_Developer/books/OrOn2_PfTune/sgi_html/apc.h

tml

103

	TABLE OF CONTENTS
	Chapter 1
	INTRODUCTION
	1.1 CONTRIBUTION OF THE THESIS
	1.2 OUTLINE OF THIS THESIS

	Chapter 2
	BACKGROUND AND RELATED WORK
	2.1 CILK OVERVIEW AND BACKGROUND
	2.2 PROGRAMMING WITH CILK
	2.3 COMPILING AND RUNNING CILK PROGRAMS
	2.4 SHARED MEMORY MODEL
	2.5 INLETS
	2.6 THE CILK MODEL OF MULTITHREADED COMPUTATION
	2.7 CILK PERFORMANCE ON NUMA MACHINES
	2.8 EXPLICIT MEMORY PLACEMENT

	Chapter 3
	PORTING CILK TO A NON-GCC COMPILER
	3.1 PORTABILITY CODE CHANGES OF THE RUNTIME LIBRARY
	3.2 PORTABILITY CODE CHANGES OF THE COMPILE DRIVER
	3.3 PORTABILITY CODE CHANGES OF THE COMPILE DRIVER
	3.3.1 Supporting inlets
	3.3.2 Supporting initialized automatic variables

	3.4 PERFORMANCE COMPARISONS
	3.5 PORTABILITY TO OTHER COMPILERS

	Chapter 4
	NUMA AWARE WORK-STEALING SCHEDULER

	Chapter 5
	EXPLICIT MEMORY PLACEMENT
	5.1 CHECKING IRIX MEMORY AFFINITY
	5.2 MEMORY PLACEMENT EFFECT ON THE NUMA-AWARE SCHEDULER
	5.3 THE DPLACE LIBRARY
	5.4 EXPLICIT MEMORY PLACEMENT IN CILK

	Chapter 6
	TEST PROGRAMS USED TO UNDERSTAND/VERIFY SYSTEM BEHAVIOR
	6.1 VIRTUAL ADDRESS -> PHYSICAL ADDRESS
	6.2 THE UT_MALLOC_PLACE.C PROGRAM
	6.3 THE DPLACE TOOL
	6.4 WHICH PROCESSOR IS EXECUTING A THREAD
	6.5 BINDING PTHREDS TO PROCESSORS

	Chapter 7
	CONCLUSION

	Chapter 8
	APPENDIXES
	APPENDIX A – INLET TRANSFORMATIONS

	BIBLIOGRAPHY

