
The PT-Scotch project: purpose, algorithms, first results

Cédric Chevalier and François Pellegrini
LaBRI and INRIA Futurs

Université Bordeaux I
351, cours de la Libération, 33405 TALENCE, FRANCE

{cchevali|pelegrin}@labri.fr

I. Introduction

Graph partitioning is an ubiquitous technique which
has applications in many fields of computer science and
engineering. It is mostly used to help solving domain-
dependent optimization problems modeled in terms of
weighted or unweighted graphs, where finding good so-
lutions amounts to computing, eventually recursively in
a divide-and-conquer framework, small vertex or edge
cuts that balance evenly the weights of the graph parts.

Because there always exists large problem graphs which
cannot fit in the memory of sequential computers and
cost too much to partition, parallel graph partitioning
tools have been developed. PT-Scotch is another at-
tempt to provide a simple and efficient library for paral-
lel graph partitioning and ordering. We present in this
paper the main research topics that we want to cover
in this project in order to achieve our goals, as well as
some early results.

II. Some paths for efficient parallel graph
partitioning

The purpose of the PT-Scotch software (“Paral-
lel Threaded Scotch”, an extension of the sequen-
tial Scotch software), developed at LaBRI within the
ScAlApplix project of INRIA Futurs, is to provide ef-
ficient parallel tools to partition graphs with sizes up to
a billion vertices, distributed over a thousand proces-
sors. This deliberately ambitious goal aims at tackling
frontally scalability and efficiency issues.

In order to achieve good efficiency on a large number
of processors, our project focuses on several key issues:

• Multi-threading: although the MPI API has been
designed so as to enable thread-safe implemen-
tations (by passing relevant data structure han-
dles whenever necessary, which allow implementors
not to use global context variables), it is only re-
cently that robust multi-platform MPI implemen-
tations have been provided (such as MPIch2 or
OpenMPI), specifically designed to support multi-
threading. All of the routines of Scotch and PT-
Scotch are also designed so as to be reentrant,
and we want to explore in PT-Scotch the use

of multi-threading to cover communications with
useful computations, both within individual meth-
ods and on independent computations performed
on the same graph data.

• Parallel multi-level: all state-of-the-art graph par-
titioning tools are based on a multi-level approach,
several parallel implementations of which have
been proposed by the creators of parallel graph
partitioning tools. The matching algorithm used to
recursively coarsen graphs is critical, as it requires
much communication to take place, to match pairs
of vertices located on distant processors. This com-
munication cannot be avoided, because the sim-
ple reduction of communication by privileging local
matchings tends to lower matching quality, as it bi-
ases the mating process. Based on the use of multi-
threading, we are currently investigating an asyn-
chronous multi-buffered approach, to determine in
what respect delaying matching requests can bias
mating and reduce coarsening quality.

• Local optimization algorithms: in a multi-level
context, local optimization algorithms are criti-
cal, as they must, at every uncoarsening step, re-
fine the frontier project back from the previous
level. The most efficient sequential algorithms
known to date are like of the Fiduccia-Mattheyses
algorithm. Since this algorithm is intrinsically se-
quential, most techniques that have been proposed
to optimize it rely on finding independent moves
that can be done in parallel without requiring syn-
chronization. The approach that we investigate is
based on two axes: the first one aims at keeping us-
ing the traditional sequential algorithm as much as
possible, because it does not incur communication
overheads. We have explored a pre-constrained
banding approach that has proven very efficient in
this respect. The second axis is based on radically
different algorithms, that are intrinsically parallel,
such as evolutionary algorithms, which we hope
will scale better when the number of processors in-
crease.

III. Early results on graph ordering

Parallel graph ordering has been chosen is the first tar-
get application of the PT-Scotch project. Graph or-
dering is a critical problem for the efficient factorization



of symmetric sparse matrices, not only to reduce fill-
in and factorization cost, but also to increase concur-
rency in the elimination tree, which is essential in order
to achieve high performance when solving these linear
systems on parallel architectures. We outline in this
abstract the algorithms which we have implemented in
PT-Scotch to parallelize the Nested Dissection order-
ing method.

Our implementation takes advantage of three levels of
concurrency. The first level is the implementation of
the nested dissection method itself, which is straight-
forward thanks to the intrinsically concurrent nature of
the algorithm. Starting from the initial graph, arbitrar-
ily distributed across p processors, the algorithm pro-
ceeds as follows: once a separator has been computed in
parallel, by means of a method described below, each of
the p processors participates in the building of the dis-
tributed induced subgraph corresponding to the first
separated part. This subgraph is then folded on the
first dp

2e processors, such that the average number of
vertices per processor, which guarantees efficiency as
it allows the shadowing of communications by a subse-
quent amount of computation, remains constant. The
same procedure is used to build, on the bp

2c remaining
processors, the folded induced subgraph corresponding
to the second part. These two constructions being com-
pletely independent, each of the computations of an in-
duced subgraph and of its folding can be done in paral-
lel, thanks to the temporary creation of an extra thread
per processor. At the end of the folding process, the
nested dissection process can recursively proceed inde-
pendently on each subgroup of p

2 processors, until each
of the subgroups is reduced to a single processor. From
then on, the nested dissection process will go on se-
quentially, using the nested dissection routines of the
Scotch library.

The second level of concurrency regards the compu-
tation of separators in a multi-level framework. The
matching of vertices is performed in parallel by means
of an asynchronous probabilistic multi-threaded algo-
rithm. At the end of each coarsening step, the coarser
graph is folded onto half of the processors that held
the finer graph, in order to keep a constant number of
vertices per processors, but it is also duplicated on the
other half of the processors too. Therefore, the coars-
ening process can recursively proceed independently on
each of the two halves, which results in an improvement
of the quality of the separators, as only the best sepa-
rator produced by the two halves is kept at the upper
level.

The third level of concurrency regards the refinement
heuristic which is used to improve the separators. We
have successfully tested a multi-sequential approach,
where at every distributed uncoarsening step, a dis-
tributed band graph is created and then centralized
on all of the processors. These copies can be used

Graph Size (×103) Average
V E degree

audikw1 944 38354 81.28
conesphere1m 1055 8023 15.21
coupole8000 1768 41657 47.12
thread 29 2220 149.32

TABLE I
Some of our test graphs.

Test Number of processes
case 2 16 128

audikw1 S 5.59e+12 5.32e+12 5.31e+12
P 5.98e+12 7.42e+12 1.52e+13

conesphere1mS 1.86e+12 1.86e+12 1.94e+12
P 2.14e+12 3.05e+12 3.48e+12

coupole8000 S 7.44e+10 7.41e+10 7.41e+10
P 8.14e+10 8.21e+10 9.19e+10

thread S 3.70e+10 4.32e+10 4.65e+10
P 4.38e+10 1.12e+11 –

TABLE II
Cholesky operation count (OPC) for

PT-Scotch (S, top lines) and ParMeTiS (P,
bottom lines).

collectively to run a scalable parallel multi-deme ge-
netic optimization algorithm, or fully independent runs
of a full-featured sequential FM algorithm. The best
refined band separator is projected back to the dis-
tributed graph, and the uncoarsening process goes on.
This scheme allows us to even gain in quality when the
number of processors increases, as the problem space
can be explored by more independent agents in the
same amount of time.

Table II presents the operation count of Cholesky fac-
torization (OPC) yielded by the orderings computed
with PT-Scotch and ParMeTiS. The improvement
in quality yielded by PT-Scotch is clearly evidenced,
and increases along with the number of processes, as
our local optimization scheme is not sensitive to the
number of processes.

More results will be given in the presentation, regard-
ing time and memory occupation issues. We will also
discuss how these results, which are interesting in the
context of parallel graph ordering, can or cannot be
extended in the field of parallel graph ordering, where
some communication is still needed between all of the
branch of the recursive bipartitioning process, and how
the problem of k-way partitioning can be addressed.


