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1 Introduction

Hessian computation in automatic differentiation can bplé@mented by applying elimination op-
erations on a symmetric computational graph. We can exileisymmetry by identifying pairs of

symmetric operations and performing only one operatiomfeach pair. Symmetry exploitation can
potentially halve the number of operations. In this preston, we describe an elimination algorithm
that exploits the symmetry of computational graphs.

2 Symmetric Elimination

An important substep in symmetry exploitation is the détecof the axis of symmetry in the compu-
tational graph. It may be claimed that since the graph isyddifrom the function and its gradient, it is
possible to detect the axis of symmetry during constructitowever, the function variables and their
corresponding gradient variables may not be explicitlywnpsuch as when only the computational
graph is available. In such cases it is more efficient to dater symmetric pairs based on the graph
structure.

We define a computational graphl,= (V, E), to be symmetric if there exists a bijective function
o of V.andE, such thatg(E) = E, o(V) = V and for each edge € E, if the head iy € V and
the tail isu € V, theno(u) is the head and(v) is the tail ofo(e). We define verticegv, o(v)), as a
symmetric vertex pair and edgese, o(e)) as asymmetric edge pair.

Testing symmetry of a general graph is a NP-complete prolpled]. However, computational
graphs provide more information about the structure, ssctha direction and weight of the edges.
Furthermore we are interested only in an axis of symmetrgeguadicular to the direction of the edges.
Taking this extra information into consideration, we haesaloped a polynomial time, complexity
O(V?), symmetry detection algorithm for computational graphee &lgorithm has two steps;

Sep 1: Group vertices such that two verticesandv are in the same group if either of the two
conditions are true

- indegreg(e\?:indegree(u) AND outdegrgggvgzoutdegrgu;

— outdegree(v)=indegree(u) AND indegree(v)=outdegree(u
It is easy to see that if verticesandb are symmetric pairs, then they must be in the same group.
Sep 2: Subdivide each group further, based on edge weights antibaig of the vertices until there
are only two vertices left in each group.

It can be proved that this algorithm converge#if2 steps, and the vertices in each group form a
symmetric pair. Once symmetry is determined, symmetrieedighination is implemented as follows;
for each edge to be eliminated, identify its symmetric pad aeliminate it. Set the weight of the edges
obtained by this elimination equal to the weight of their syetric counterparts.

3 Results

We have implemented the symmetry exploitation algorithrthimithe OpenAD [3] framework and
tested the algorithm for edge elimination using the Markotieuristic [2]. Table 1 lists the graphs
used in our test set.
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NamgVerticesEdgesindependent VariabléSependent Variables
exl| 10 13 2 1
agl| 12 16 2 1
ag2| 22 34 4 2
optl| 26 51 6 1
ex2 | 40 75 4 2

Table 1.List of graphs used in test set. Columns independent anchdepévariables list the number of indepen-
dent and dependent variables in the function whose Hesslaing calculated. Graphs ex1 and ex2 were created
by us, agl and ag2 are from [2] and optl is formed from an opéitiin code [5].

A comparison of the number of multiplications using the h&tie with and without symmetry is
given in Figure 1.The results show that exploiting symmegny indeed lower the number of multipli-
cations. The time taken to find an elimination sequence wusingmetry exploitation, which includes
time for symmetry detection as well as time for finding theusmtge, is comparable to the time taken
when only the heuristic is used.
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Fig. 1. Comparison of the number of multiplications required fdcatating the Hessian in computational graphs
of different sizes.

4 Conclusions

The results show that symmetric elimination is successfldwering the number of multiplications.
However, the values are much higher than the theoreiitl bound, which indicate that it might
be instructive to investigate more sophisticated symmetiimination techniques.We also plan on
investigating the existence of a tighter bound on the nurnbeeductions based on the number and
degree of edges that cross the axis of symmetry. Other fuésesarch plans include implementing
symmetric strategies for vertex and face eliminations.
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