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Abstract. We analyze the convergence of randomized trace estimators. Starting at 1989, several
algorithms have been proposed for estimating the trace of a matrix by 1

M

∑M

i=1 z
T
i Azi, where the zi

are random vectors, have been proposed; different estimators use different distributions for the zis,
all of which lead to E( 1

M

∑M

i=1 z
T
i Azi) = trace(A). These algorithms are useful in applications in

which there is no explicit representation of A but rather an efficient method compute zTAz given
z. Existing results only analyze the variance of the different estimators. In contrast, we analyze the
number of samples M required to guarantee that with probability at least 1− δ, the relative error
in the estimate is at most ε. We argue that such bounds are much more useful in applications than
the variance. We found that these bounds rank the estimators differently than the variance; this
suggests that minimum-variance estimators may not be the best.

We also make two additional contributions to this area. The first is a specialized bound for
projection matrices, whose trace (rank) needs to be computed in electronic structure calculations.
The second is a new estimator that uses less randomness than all the existing estimators.

1. Introduction

Finding the trace of an explicit matrix is a simple operation. But there are application areas where
one needs to compute the trace of an implicit matrix, that is, a matrix represented as a function. For
example, in lattice Quantum Chromodynamics, one often needs to compute the trace of a function
of a large matrix, trace(f(A)). Explicitly computing f(A) for large matrices is not practical, but
computing the bilinear form xT f(A)x for an arbitrary x is feasible [5, 4]. Other examples include
the regularized solution of least-squares problems using the Generalized Cross-Validation approach
(see [9]) and computing the number of triangles in a graph [14].

The standard approach for computing the trace of an implicit function is Monte-Carlo simulation,
where the trace is estimated by 1

M

∑M
i=1 z

T
i Azi, where the zi are random vectors. The original

method is due to Hutchinson [9]. Although this method has been improved over the years ([6, 10,
16]), no paper to date has presented a theoretical bound on the number of samples required to
achieve an ε-approximation of the trace; only the variance of estimators has been analyzed.

This paper makes four significant contributions to this area:

(1) We provide rigorous bounds on the number of Monte-Carlo samples required to achieve a
maximum error ε with probability at least 1− δ in several trace estimators. The bounds are
surprising: the method with the best bound is not the method with the smallest variance.

(2) We provide specialized bounds for the case of projection matrices, which are important in
certain applications.

(3) We propose a new trace estimator in which the zis are random columns of a unitary matrix
with entries that are small in magnitude. This estimator converges slower than known ones,
but it also uses fewer random bits.
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(4) We experimentally evaluate the convergence of the three methods on a few interesting ma-
trices.

2. Hutchinson’s Method and Related Work

The standard Monte-Carlo method for estimating the trace of an implicit method is due to
Hutchinson [9], who proves the following Lemma.

Lemma 1. Let A be an n × n symmetric matrix with trace(A) 6= 0. Let z be a random vector
whose entries are i.i.d Rademacher random variables (Pr(zi = ±1) = 1/2). zTAz is an unbiased
estimator of trace(A) i.e.,

E(zTAz) = trace(A)

and

Var(zTAz) = 2

(

‖A‖2F −
n
∑

i=1

A2
ii

)

.

If we examine the variance term we see that intuitively it measures how much of the matrix’s
“energy” (i.e., the Frobenius norm) is on the diagonal. It is easy to see that for a general matrix
Hutchinson’s method can be ineffective because the variance can be arbitrarily large. Even for a
symmetric positive definite the variance can be large: the variance for the matrix of all 1’s, which is
symmetric semi-definite, is 2(n2 −n), whereas the trace is only n. This matrix can be perturbed to
definiteness without a significant impact on the trace or variance. Such a large variance precludes
the use of Chebyshev’s inequality to bound the number of iterations required to obtain a given
relative error in the trace. For such a bound to hold, the variance must be o(trace(A)2).

Lemma 1 does not give a rigorous bound on the number of samples/matrix multiplications. This
difficulty carries over to applications of this method, such as [5, 4]. Hutchinson’s method has been
improved over the years, but the improvements do not appear to have addressed this issue. Wong
et al. [16] suggest using test vectors z that are derived from columns of an Hadamard matrix. Iitaka
and Ebisuzaki [10] generalized Hutchinson’s estimator by using complex i.i.d’s with unit magnitude;
they showed that the resulting estimator has lower variance than Hutchison’s (but the computation
cost is also higher). Silver and Röder [13] use Gaussian i.i.d variables, but without any analysis.
Bekas et al. [6] focus on approximating the actual diagonal values, also using vectors derived from
an Hadamard matrix.

In Section 7 below we show that it is possible to bound the number of samples required for
Hutchinson’s method. However, by the bound that we obtain is not as tight as the bound we obtain
when the entries of z are i.i.d normal variables.

3. Three and an Half Estimators

In this section we describe the trace estimators that we analyze. We describe three estimators
and a variant of one of them. All estimators follow the same basic pattern: a random vector z
is drawn from some fixed distribution, and zTAz is used to estimate the trace. This procedure is
repeated M times using i.i.d samples and the estimates are averaged.

The first estimator uses vectors whose entries are standard Gaussian (normal) variables.

Definition 2. A Gaussian trace estimator for a symmetric positive-definite matrix A ∈ R
n×n is

GM =
1

M

M
∑

i=1

zTi Azi ,
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where the zi’s are M independent random vectors whose entries are i.i.d standard normal variables.

The Gaussian estimator does not constrain the 2-norm of the zi’s; it can be arbitrarily small or
large. All the other estimators that we analyze normalize the quadratic forms by constraining zT z
to be equal to n. This property alone allows us to prove below a general convergence bound.

Definition 3. A normalized Rayleigh-quotient trace estimator for a symmetric positive semi-definite
matrix A ∈ R

n×n is

RM =
1

M

M
∑

i=1

zTi Azi ,

where the zi’s are M independent random vectors such that zTi zi = n and E(zTi Azi) = trace(A).

The second estimator we analyze is Hutchinson’s.

Definition 4. An Hutchinson trace estimator for a symmetric positive-definite matrix A ∈ R
n×n

is

HM =
1

M

M
∑

i=1

zTi Azi ,

where the zi’s are M independent random vectors whose entries are i.i.d Rademacher random
variables.

The first two estimators use a very large sample spaces. The Gaussian estimator uses continuous
random variables, and the Hutchinson estimator draws z from a set of 2n vectors. Thus, the amount
of random bits required to form a sample is Ω(n). Our third estimator samples from a set of n
vectors, so it only needs O(log n) random bits per sample. We discuss the issue of randomness and
it implications further in the next section. The third estimator samples from a smaller family by
estimating the trace in a more direct way: it samples the diagonal itself. The average value of a
diagonal element of A is trace(A)/n. So we can estimate the trace by sampling a diagonal element
and multiplying the result by n. This corresponds to sampling a unit vector from the standard
basis and computing the Rayleigh quotient.

Definition 5. A unit vector estimator for a symmetric positive-definite matrix A ∈ R
n×n is

UM =
n

M

M
∑

i=1

zTi Azi ,

where the zi’s are M independent uniform random samples from {e1, . . . , en}.
In contrast to previous methods, the quadratic forms in the unit-vector estimator do not depend in

any way on the off-diagonal elements of A, only on the diagonal elements. Therefore, the convergence
of UM is independent of the off-diagonal elements. The distribution of diagonal elements does
influence, of course, the convergence to trace(A)/n. For some matrices, this method must sample
all the diagonal elements for UM to be close to trace(A). For example, if A has one huge diagonal
element, the average is useless until we sample this particular element. On the other hand, if all
the diagonal elements are the same, the average converges to the exact solution after one sample.

Our last estimator is a variant of the unit vector estimator that uses randomization to address
this difficulty. Instead of computing the trace of A, it computes the trace of FAFT where F is a
unitary matrix. Since the mixing matrix F is a unitary, trace(A) = trace(FAFT ). We construct F
using a randomized algorithm that guarantees with high probability a relatively flat distribution of
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the diagonal elements of FAFT . More precisely, we construct F in a way that attempts to flatten
the distribution of all the elements of FAFT , not just its diagonal elements. We use this strategy
because we do not know how to flatten the diagonal elements alone. Our constructions are based
on the random mixing matrices suggested in [2].

Definition 6. A random mixing matrix is a unitary matrix F = FD, where F and D are n-by-n
unitary matrices. The matrix F is a fixed unitary matrix called the seed matrix. The matrixD is a
unitary random diagonal matrix with diagonal entries that are i.i.d Rademacher random variables:
Pr(Dii = ±1) = 1/2.

Definition 7. A mixed unit vector estimator for a symmetric positive semi-definite matrix A ∈
R
n×n is

TM =
n

M

M
∑

i=1

zTi FAFT zi ,

where the zi’s are M independent uniform random samples from {e1, . . . , en}, and F is a random
mixing matrix.

The mixing effectiveness of F depends on the quantity η = max |Fij |2 [2, 3]. A small η guarantees
effective mixing. We discuss this further in section 8.

We choose the fixed seed matrix F so as to minimize η = max |Fij |2. The minimal value of η
for a unitary F is 1/n. A normalized DFT matrix achieves the minimum, but applying it requires
complex arithmetic. A normalized Hadamard matrix also achieves the minimum and its entries are
real. However, Hadamard matrices do not exist for all dimensions, so they are more difficult to use
(they require padding). The Discrete Cosine Transform (DCT) and the Discrete Hartley Transform
(DHT), which are real, exist for any dimension, and can be applied quickly, but their η value is 2/n,
twice as large as that of the DFT and the Hadamard. All are valid choices. The decision should be
based on the implementation cost of computing columns of F and applying DADT to them versus
the value of η.

4. Comparing the Quality of Estimators

The easiest way to analyze the quality of trace estimators is to analyze their variance. For any
Monte-Carlo estimator RM we have Var(RM ) = Var(R1)/M so we only need to analyze the variance
of a single sample. This type of analysis usually does not reveal much about the estimator, because
the variance is usually too large to apply Chebyshev’s inequality effectively.

A better way to analyze an estimator is to bound the number of samples required to guarantee
that the probability of the relative error exceeding ε is at most δ.

Definition 8. Let A be a symmetric positive semi-definite matrix. A randomized trace estimator
T is an (ε, δ)-approximator of trace(A) if

Pr (|T − trace(A)| ≤ ε trace(A)) ≥ 1− δ .

The third metric that we analyze is the number of random bits used by the algorithm, i.e. the
randomness of the algorithm. The trace estimators are highly parallel; each Rayleigh quotient
can be computed by a separate processor. If the number of random bits is small, they can be
precomputed by a sequential random number generator. If the number is large (e.g., O(n) per
Rayleigh quotient), the implementation will need to use a parallel random-number generator. This
concern is common to all Monte-Carlo methods.



ESTIMATING THE TRACE OF AN IMPLICIT MATRIX 5

Estimator Variance of

one sample

Bound on # samples

for an (ε, δ)-approx

Random bits per

sample

Gaussian 2‖A‖F 20ε−2 ln(2/δ) infinite;

Θ(n) in floating

point

Normalized Rayleigh-quotient - 1
2
ε−2n−2 rank2(A) ln(2/δ)κ2

f (A) -

Hutchinson’s 2
(

‖A‖2
F
−

∑n

i=1 A
2
ii

)

6ε−2 ln(2 rank(A)/δ) Θ(n)

Unit Vector n
∑n

i=1 A
2
ii − trace2(A) 1

2
ε−2 ln(2/δ)r2D(A)

rD(A) = n·maxi Aii

trace(A)

Θ(log n)

Mixed Unit Vector - 8ε−2 ln
(

4n2/δ
)

ln(4/δ) Θ(log n)

Table 1. Summary of results: quality of the estimators under different metrics.
The proofs appear in sections 5-8.

Table 1 summarizes the results of our analyses. The proofs are in sections 5-8. The smallest
variance is achieved by Hutchinson’s estimator, but the Gaussian estimator has a better (ε, δ)
bound. Unit vector estimators use the fewest random bits, but have an (ε, δ) bound that is worse
than that of Gaussian and Hutchinson’s estimators.

The (ε, δ) bounds are not necessarily tight. Our numerical experiments did not show a consid-
erable difference in practice between the Gaussian, Hutchinson and mixed unit vector estimators.
See section 9.

From a theoretical point of view, the (ε, δ) bound for the Gaussian estimator seems good; for
fixed ε and δ, only O(1) samples are needed. However, the ε−2 factor in the bound implies that
the number of samples may need to scale exponentially with the number of bits of accuracy (the
number of samples in the bound scales exponentially with log10 ε

−1). Therefore, in applications
that require only a modest ε, say ε = 0.1, the Gaussian estimator is good. But in applications that
require a small ε, even ε = 10−3, the number of samples required may be too high.

Are these bounds tight? If they are not, the algorithms themselves may be useful even for small
ε.

Although we do not have a formal lower-bound, we conjecture that our bound on GM is almost
asymptotically tight. Consider the order n all-ones matrix A. This matrix has a single non-zero
eigenvalue n and n− 1 zero eigenvalues. We see that 1

nz
TAz ∼ χ2(1). Therefor MGM/n ∼ χ2(M).

This means that GM has mean n and variance 2n2/M . The χ2 distribution is the sum of independent
random variables, so by the central limit theorem it converges to a normal distribution for large M .
This convergence to normality is rather fast, and M ≥ 50 degrees of freedom is usually considered
sufficient for the χ2 distribution to be “approximately normal” [7]. We find that

Pr(GM − n ≥ εn) ≈ erfc(ε
√

M/2)

≥ 2√
π
· exp(−ε2M/2)

ε
√

M/2 +
√

ε2M/2 + 2
,

Let Cδ be the solution to

Cδ

(

√

ln(Cδ/
√
πδ) +

√

ln(Cδ/
√
πδ) + 2

)

= 2 .
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If M < 2ε−2 ln(Cδ/πδ) where we find that

Pr(GM − n ≥ εn) ≥ 2√
π
· exp(ln(

√
πδ/Cδ))

√

ln(Cδ/
√
πδ) +

√

ln(Cδ/
√
πδ) + 2

,

=
2

Cδ

(

√

ln(Cδ/
√
πδ) +

√

ln(Cδ/
√
πδ) + 2

) · δ

= δ .

The bound is Ω(ε−2) for a fixed δ, but it is not Ω(ε−2 ln(1/δ)) as Cδ → 0 if δ → 0. Nevertheless,
this decay is slow and it appears that our bound is almost asymptotically tight.

The main difficulty in turning this argument into a formal proof is the approximation phase
Pr(GM −n ≥ εn) ≈ erfc(ε

√

M/2). While it is true that the χ2 distribution converges to the normal
distribution, convergence can be very slow. Indeed, the Berry-Esseen Theorem [8, § 16.5] guarantees
a convergence rate that is proportional only to M−1/2. So for a fixed δ there exists an ε that is small
enough such that the sample size will be so large that the tail bound on normal approximation kicks
in. Indeed every Monte-Carlo i.i.d estimator with non-zero finite variance converges to a normal
distribution, but the general wisdom on the χ2 distribution is that it converges very quickly to the
normal distribution.

A more direct way to prove a lower bound will be to use some lower bound on the tail of the chi-
squared cumulative distribution function. Unfortunately, current bounds ([15, 11]) are too complex
to provide a useful lower bound, and deriving a simple lower bound is outside the scope of this
paper.

In the next section we present experiments that show that convergence rate (in terms of digits of
accuracy) on the all-ones matrix is indeed slow, supporting our conjecture that our bound is almost
tight.

5. Analysis of the Gaussian Estimator

In this section we analyze the Gaussian estimator. We begin with the variance.

Lemma 9. Let A be an n × n symmetric matrix. The single sample Gaussian estimator G1 of A
is an unbiased estimator of trace(A) i.e., E(G1) = trace(A) and Var(G1) = 2 ‖A‖2F .
Proof. A is symmetric so it can be diagonalized. Let Λ = UAUT be the unitary diagonalization of
A (its eigendecomposition), and define y = Uz, where G1 = zTAz. We can write G1 =

∑n
i=1 λiy

2
i

where yi is the ith entry of yi. Since U is unitary, the entries of y are i.i.d Gaussian variables, like
the entries of z, so E(y2i ) = 1 and Var(y2i ) = 2. We find that

E(G1) =

n
∑

i=1

λi E(y
2
i ) =

n
∑

i=1

λi = trace(A) ,

Var(G1) =
n
∑

i=1

λ2
i Var(y

2
i ) = 2

n
∑

i=1

λ2
i = 2 ‖A‖2F .

�

Next, we prove an (ε, δ) bound for the Gaussian estimator.

Theorem 10. Let A be an n × n symmetric semidefinite matrix. The Gaussian estimator GM is
an (ε, δ)-approximator of trace(A) for M ≥ 20ε−2 ln(2/δ).
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Proof. A is symmetric so it can be diagonalized. Let Λ = UAUT be the unitary diagonalization
of A (its eigendecomposition), and define yi = Uzi. Since U is unitary, the entries of yi are i.i.d

Gaussian variables. Notice that GM = 1
M

∑M
i=1

∑n
j=1 λjy

2
ij =

1
M

∑n
j=1 λj

∑M
i=1 y

2
ij where yij is the

jth entry of yi.
We prove the bound using a Chernoff-style argument. yij is a standard normal random variable so

∑M
i=1 y

2
ij is χ

2 with M degrees of freedom. Therefore, the moment generating function of Z = MGM

is

mZ(t) = E(exp(tZ))

=

n
∏

i=1

(1− 2λit)
−M/2

= (1− 2τt+ h(t))−M/2(5.1)

where

τ = trace(A)

and

h(t) =

n
∑

s=2

(−2)sts
∑

S ⊆ Λ
|S| = s

∏

x∈S

x

as long as |λit| ≤ 1
2 for all i (Λ is the set of A’s eigenvalues).

It is easy to see if {x1, . . . , xn} is a set of non-negative real numbers, then for all i = 1, . . . , n we
have

∑

S ⊆ [n]
|S| = i

∏

j∈S

xj ≤
(

n
∑

i=1

xi

)i

,

where [n] = {1, . . . , n}. Therefore, we can bound

|h(t)| ≤
n
∑

j=2

(2τt)j .

Set t0 = ε/(4τ(1 + ε/2)). For all i we have λit0 ≤ 1
2 , so (5.1) is the correct formula for mZ(t0). We

now have

|h(t0)| ≤
n
∑

j=2

(

ε

2(1 + ε/2)

)j

≤ ε2

4(1 + ε/2)2
· 1

1− ε
2(1+ε/2)

.

=
ε2

4(1 + ε/2)
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Markov’s inequality asserts that

Pr (GM ≥ τ(1 + ε)) = Pr (Z ≥ τM(1 + ε)) .

≤ mZ(t0) exp(−τM(1 + ε)t0)

≤
(

1− ε/2 (1 + ε/2)− ε2/4(1 + ε/2)
)−M/2 · exp(−M

2
· ε
2
· 1 + ε

1 + ε/2
)

= exp(−M

2
(ln(1− ε/2(1 + ε/2) − ε2/4(1 + ε/2)) +

ε

2
· 1 + ε

1 + ε/2
))

= exp(−M

2
(ln(1− ε/2) +

ε

2
· 1 + ε

1 + ε/2
))

= exp

(

−M

2

(

ε

2
· 1 + ε

1 + ε/2
−

∞
∑

i=1

(ε/2)i

i
)

))

= exp

(

−M

2

(

ε

2

(

1 + ε

1 + ε/2
− 1

)

− ε2

8
− ε2

4

∞
∑

i=1

(ε/2)i

(i+ 2)
)

))

≤ exp

(

−M

2

(

ε2

4
· 1

1 + ε/2
− ε2

8
+

ε2

4
ln(1− ε/2)

))

= exp

(

−Mε2

8

(

1

1 + ε/2
− 1

2
+ ln(1− ε/2)

))

≤ exp(−Mε2/20)

for ε ≤ 0.1. We find that if M ≥ 20ε−2 ln(2/δ) then Pr (GM ≤ τ(1 + ε)) ≤ δ/2. Using the
same technique a lower bound can be shown, and combined with a union-bound we find that
Pr (|GM − τ | ≤ τ(1 + ε)) ≤ δ. �

In some cases it is possible to prove better bounds, or even the exact trace. For example, we show
that using a Gaussian trace estimator we can compute the rank of a projection matrix (i.e., a matrix
with only 0 and 1 eigenvalues) using only O(rank(A) log(2/δ)) samples (where δ is a probability of
failure; there is no dependence on ε). Finding the rank of a projection matrix is useful for computing
charge densities (in electronic structures calculations) without diagonalization [6].

Lemma 11. Let A ∈ R
n×n be a projection matrix, and let δ > 0 be a failure probability. For

M ≥ 24 rank(A) ln(2/δ), the Gaussian trace estimator GM of A satisfies

Pr(round(GM ) 6= rank(A)) ≤ δ .

Proof. A projection matrix has only 0 and 1 eigenvalue, so the eigenvalue decomposition of A is of
the form

A = UT



















1
. . .

1
0

. . .

0



















U .
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If we write y = Uz then zTAz =
∑rank(A)

i=1 y2i . Since U is unitary the entries of yi are i.i.d Gaussian
variables, so zTAz is χ2 with rank(A) degrees of freedom. The χ2 distribution is additive, so MGM

is also χ2 but with M rank(A) degrees of freedom. We now use a known tail-bounds on the χ2

distribution [12]: if X ∼ χ2(k) then

Pr(|X − k| ≤ εk) ≤ 2 exp(−kε2/6) .

By applying this result to MGM we find that

Pr(|GM − rank(A)| ≥ rank(A)ε) = Pr(|MGM −M rank(A)| ≥ M rank(A)ε)

≤ 2 exp(−M rank(A)ε2/6) .

If we set

(5.2) M ≥ 6 rank(A)−1ε−2 ln(2/δ)

we find that

Pr(|GM − rank(A)| ≥ rank(A)ε) ≤ δ .

If A is a projection matrix, then trace(A) = rank(A) is an integer, so if the error is below 1
2 , then

round(GM ) = rank(A). We set ε = 1/(2 rank(A)) and obtain

Pr(round(GM ) 6= rank(A)) = Pr(|GM − rank(A)| ≥ rank(A)ε) ≤ δ .

If we plug ε into (5.2) we find that we require M ≥ 24 rank(A) ln(2/δ). �

6. General Bound for Normalized Rayleigh quotient Estimators

The sample vectors z in the Gaussian estimator are not normalized, and this can lead to a large
zTAz (but only with a small probability). Normalized estimators are somewhat easier to analyze
because each sample is bounded. When A is well conditioned, we get a useful and very general
bound.

Theorem 12. A normalized Rayleigh estimator RM is an (ε, δ)-approximator of trace(A) for M ≥
1
2ε

−2n−2 rank2(A) ln(2/δ)κ2f (A), where κf (A) is the ratio between the largest and smallest nonzero
eigenvalue of A.

Proof. Let 0 = λ1 = · · · = λk ≤ · · · ≤ λn be the eigenvalues of A where k = n − rank(A) + 1, so
κf (A) = λn/λk. It is easy to see that

trace(A) · κf (A) =

n
∑

i=1

λi · κf (A)

=

n
∑

i=k

λi

λk
λn

≥ (n− k + 1)λn

= rank(A)λn

therefore for all i

0 ≤ zTi Azi ≤ λnz
T
i zi = nλn ≤ n

rank(A)
trace(A) · κf (A) .
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According to Hoeffding’s inequality for any t > 0,

Pr(|RM − trace(A)| ≥ t) ≤ 2 exp

(

− 2M2 rank2(A)t2

M · n2 trace2(A)κ2f (A)

)

.

If we set t = ε trace(A) we find that

Pr(|RM − trace(A)| ≥ ε trace(A)) ≤ 2 exp

(

−2M rank2(A)ε2

n2κ2f (A)

)

.

We now set M so that the bound is smaller than δ:

2M rank2(A)ε2

n2κ2f (A)
≥ ln

(

2

δ

)

or

M ≥
ln(2/δ) · n2κ2f (A)

2 rank2(A)ε2
.

�

7. Analysis of Hutchinson’s Estimator

When A is ill conditioned, the (ε, δ) bound in Section 6 is weak. We can sharpen it for a specific
normalized estimator, that of Hutchinson. However, the bound is still weaker than that of the
Gaussian estimator. The bound here is of interest because (1) Hutchinson’s estimator is widely
used, (2) it uses fewer random bits than the Gaussian estimator, and (3) it requires only additions
and subtractions, not multiplications. It is also possible that there is an even stronger bound for
Hutchinson’s method.

Theorem 13. The Hutchinson estimator HM is an (ε, δ)-approximator of trace(A) for M ≥
6ε−2 ln(2 rank(A)/δ).

To prove this theorem we use the following Lemma from [1, Lemma 5]:

Lemma 14. Let α ∈ R
n be an arbitrary unit vector. Define Q = (αT z)2 where z is a random vector

whose entries are i.i.d Rademacher random variables (Pr(zi = ±1) = 1/2). Let Q1, . . . , QM be M

i.i.d copies of Q (different zs but the same α), and define S = 1
M

∑M
i=1Qi. Then, for any ε > 0,

Pr(|S − 1| ≥ ε) ≤ 2 exp

(

−M

2

(

ε2

2
− ε3

3

))

.

Proof. (of Theorem 13). A is symmetric and semidefinite so it can be diagonalized. Let λ1, . . . , λn

be the eigenvalues of A and assume without loss of generality that the non-zero eigenvalues are
λ1, . . . , λrank(A). Let Λ = UAUT be the unitary diagonalization of A (its eigendecomposition), and

define yi = UT zi. Notice that HM = 1
M

∑M
i=1

∑n
j=1 λjy

2
ij =

∑n
j=1 λj

1
M

∑M
i=1 y

2
ij where yij is the jth

entry of yi. The rows U
T
i of UT are unit vectors so S = 1

M

∑M
i=1

(

UT
j zi

)2
satisfies the conditions of

Lemma 14. But we also have S = 1
M

∑M
i=1 y

2
ij, so

Pr

(∣

∣

∣

∣

∣

1

M

M
∑

i=1

y2ij − 1

∣

∣

∣

∣

∣

≥ ε

)

≤ 2 exp

(

−M

2

(

ε2

2
− ε3

3

))

.



ESTIMATING THE TRACE OF AN IMPLICIT MATRIX 11

If M ≥ 6ε−2 ln(2 rank(A)/δ) this implies that

Pr

(∣

∣

∣

∣

∣

1

M

M
∑

i=1

y2ij − 1

∣

∣

∣

∣

∣

≥ ε

)

≤ δ

rank(A)
.

This bound holds for each specific j. Using the union-bound, we conclude that the probability that
the error is larger than ε for some j = 1, . . . , rank(A) is at most δ. Hence, the probability that the
error is smaller than ε for all j = 1, . . . , rank(A) is at least 1− δ. So with probability 1− δ we also
have

|HM − trace(A)| =

∣

∣

∣

∣

∣

∣

n
∑

j=1

λj
1

M

M
∑

i=1

y2ij −
n
∑

i=1

λi

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

rank(A)
∑

j=1

λj

(

1

M

M
∑

i=1

y2ij − 1

)

∣

∣

∣

∣

∣

∣

≤
rank(A)
∑

j=1

λj

∣

∣

∣

∣

∣

1

M

M
∑

i=1

y2ij − 1

∣

∣

∣

∣

∣

≤ ε

rank(A)
∑

j=1

λj

= ε trace(A) .

�

The bound is larger than the bound for the Gaussian estimator by a ln(rank(A)) factor. The
main difficulty here is that, unlike the Gaussian estimator, the Hutchinson’s estimator cannot be
written as a weighted sum of i.i.d random variables. This forces us to use a union bound instead
of using a global analysis. Nevertheless, given the better variance term of Hutchinson’s estimator
we conjecture that this ln(rank(A)) factor is redundant. In fact, there are some matrix classes
for which Hutchinson’s estimator is clearly better than the Gaussian estimator. For example, on
diagonal or nearly diagonal matrices the Hutchinson’s estimator will converge very fast, which is
not true for the Gaussian estimator. Another interesting example is the all-ones matrix for which
the bound for the Hutchinson estimator is the same as the bound for the Gaussian estimator (it is
possible to show that for the all-ones matrix the Gaussian estimator is an (ε, δ)-approximator for
M ≥ 6ε−2 ln(2/δ)).

8. Reducing Randomness: Analyzing Unit Vector Estimators

This section analyzes two unit vector estimators: the unit vector estimator and the mixed unit
vector estimator. These estimators’ main advantage is in restricting the sample space to n vectors.
Thus, only dlog2 ne random bits are required per sample. This allows the samples to be generated
in advance. We begin by analyzing the variance.

Lemma 15. Let A be an n×n symmetric matrix. The single sample unit vector estimator U1 of A
is an unbiased estimator of trace(A) i.e., E(U1) = trace(A) and Var(U1) = n

∑n
i=1A

2
ii− trace2(A) ..
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Proof. Let U1 = nzTAz. Because z is an identity vector zTAz just samples values from the diagonal.
Every diagonal value is sampled with equal probability, so E(zTAz) = trace(A)/n, from which

E(nzTAz) = trace(A) follows immediately.
As for variance the following equality holds

Var(nzTAz) = E((nzTAz)2)− (E(nzTAz))2

= n2 E((zTAz)2)− trace2(A)

The random variable (zTAz)2 samples the square of the diagonal values of A so E((zTAz)2) =
∑n

i=1A
2
ii/n and the equality follows. �

We now turn to the more interesting analysis of the number of samples that guarantee an (ε, δ)-
approximator. This quantity depends on the ratio between the largest possible estimate (when
estimating the maximal diagonal value) and the trace.

Theorem 16. The unit vector estimator UM is an (ε, δ)-approximator of trace(A) for M ≥
1
2ε

−2 ln(2/δ)r2D(A) where rD(A) =
n·maxi Aii

trace(A) .

Proof. The unit vector estimator samples values from the diagonal and multiplies them by n, so a
single samples takes values in the range [0, n ·maxi Aii]. According to Hoeffding’s inequality

Pr(|UM − trace(A)| ≥ t) ≤ 2 exp

(

− 2M2t2

Mn2 · (maxiAii)2

)

.

If we set t = ε trace(A) we find that

Pr(|UM − trace(A)| ≥ ε trace(A)) ≤ 2 exp

(

− 2Mε2

r2D(A)

)

.

We now set M so that the bound is smaller than δ:

2Mε2

r2D(A)
≥ ln

(

2

δ

)

or

M ≥ ln(2/δ) · r2D(A)
2ε2

.

�

We now analyze the mixed unit vector estimator. The unit vector estimator relies on the the
mixing matrix F . The analysis is based on a lemma from [2, 3].

Lemma 17. Let U be an n×m matrix with orthonormal columns, and let F = FD be a random
mixing matrix. With probability of at least 1− δ (δ > 0) we have for all i and j

∣

∣

∣(FU)ij

∣

∣

∣ ≤
√

2η ln

(

2mn

δ

)

,

where η = max |Fij |2.
The mixing matrix prevents entries from an orthonormal matrix to be too large. When applied

from both sides to a symmetric positive semidefinite matrix it prevents the diagonal elements from
being too big, i.e. rD(FAFT ) is not too big.
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Theorem 18. The mixed unit vector estimator TM is an (ε, δ)-approximator of trace(A) for M ≥
2n2η2ε−2 ln(4/δ) ln2(4n2/δ).

Proof. A is symmetric so it can be diagonalized. Let Λ = UTAU be the unitary diagonalization of
A (its eigendecomposition), and let V = FU . It is easy to see that

(

FAFT
)

jj
=

n
∑

k=1

λkV
2
jk .

According to Lemma 17, with probability 1− δ/2 we have

(8.1) V 2
jk =

∣

∣

∣(FU)jk

∣

∣

∣

2
≤ 2η ln

(

2n2

δ/2

)

= 2η ln

(

4n2

δ

)

.

The eigenvalues λi are non-negative, so we conclude that with probability 1− δ/2 for all j,

0 ≤
(

FAFT
)

jj
≤ 2η ln

(

4n2

δ

) n
∑

j=1

λj

= 2η ln

(

4n2

δ

)

trace(A) .

We find that

rD(FAFT ) ≤ 2nη ln

(

4n2

δ

)

.

Therefore, according to Theorem 16, for M ≥ 2n2η2ε−2 ln(4/δ) ln2(4n2/δ) we have

Pr (|TM − trace(A)| > ε trace(A)) ≤ 1− δ/2 .

There can be failures of two kinds: with probability at most δ/2 the bound on the diagonal
elements of the mixed matrix may fail to hold, and even if it holds, with probability δ/2 the ε
bound on the estimation error may fail to hold. We conclude that with probability 1− δ the error
bound does hold. �

Remark 19. For Fourier-type matrices, such as DFT and DCT, η = Θ(1/n), so the lower bound on
M becomes simpler,

M ≥ C
ln2
(

4n2/δ
)

ln(4/δ)

ε2
,

for some small C (8 for the case of DCT, 2 for DFT).

9. Experiments

We present the results of several computational experiments that compare the different estima-
tors, and clarify the actual convergence rate.

Figure 9.1 shows the convergence of the various estimators on a matrix of order n = 100, 000
whose elements are all 1. We have used this matrix as an example of the matrix with the largest
variance possible for Hutchinson’s and Gaussian estimator. The graphs show that all methods
converge quite slowly. There is no significant difference in the convergence behavior of all three
methods, although we presented different bounds. The graph also supports our conjecture that our
bounds are almost tight, and that the cost is exponential in the number of required accuracy digits.
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Figure 9.1. Convergence of the estimators on a matrix of order 100, 000 whose
elements are all 1. The graph on the left shows the maximum error during 100 runs
of the algorithm, and the graph on the right the median of the 100 runs.

Figure 9.2 clarifies the convergence behavior of the estimators. The graph on the left shows
the convergence all the way up to n iterations, with two variants of the mixed estimator: with
and without repetitions. Convergence stagnates and the error nears machine ε only very close to
iteration n and only when sampling without repetitions. If we sample without repetitions, after
we sample all the sample space we are guaranteed to have the exact trace (this is not possible for
the Gaussian estimator and Hutchinson’s estimator, but also not practical in our method). The
histogram on the right show that in spite of the mixing that F performs, the diagonal elements of
the mixed matrix FAFT are still highly skewed. In other words, there are some diagonal values
that are important to sample; until they are sampled, the error remains large.

Figure 9.3 shows that on other classes of matrices, the methods reach a smaller error before
they stagnate. On a random dense matrix, the methods converge quickly to an error smaller than
10−2, but then stagnate. On a sparse matrix from the University of Florida matrix collection, the
methods reach an error of about 10−3 and then stagnate. There is again little difference between
the convergence rates of the three methods, although it seems that Gaussian estimator is a little
less accurate then the other two estimators.

10. Conclusions

In terms of the (ε, δ) bounds, the Gaussian estimator, requires the smallest number of samples.
The convergence bound for Hutchinson’s estimator is the runner up: it requires more iterations
than the Gaussian, but fewer than the mixed unit vector estimator.

In terms of the number of random bits that these estimators require, the ranking is the exact
opposite: the Gaussian estimator requires the most bits, followed by Hutchison’s estimator, and the
mixed unit vector estimator requires the least.

Convergence to a small error is slow, both in practice and in terms of the bounds. The ε−2 factor
in all the bounds imply that the number of samples required to get close to, say, machine epsilon,
is huge. The estimators quickly give a crude estimate of the trace (correct to within 0.1 or 0.01,
say), but they require a huge number of samples to obtain a very accurate estimate.
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Figure 9.2. Details to clarify the behavior of the methods. The experiment is
similar to the one in Figure 9.1. The graph on the left shows convergence all the way
to n iterations, and the histogram on the right shows the distribution of diagonal
values (relevant for the estimator presented in section 8).
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Figure 9.3. Convergence on two more matrices: a random matrix of order 2000
(left) and a sparse matrix of order 70, 656.

The ε−2 factor in the bound is common to many Monte-Carlo algorithms in numerical linear
algebra. When the Monte-Carlo method is used as an inexact solver within the context of an
iterative solver, the overall algorithm can be both fast and accurate [3]. We are not aware of a
suitable iterative algorithm for trace computations.
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