
Applications of Parametric Searching in Geometric

Optimization ∗

Pankaj K. Agarwal† Micha Sharir‡ Sivan Toledo§

Abstract

We present several applications in computational geometry of
Megiddo’s parametric searching technique. These applications
include: (1) Finding the minimum Hausdorff distance under
translation between two polygonal regions in the plane under
the Euclidean metric; (2) Computing the biggest line segment
that can be placed inside a simple polygon; (3) Computing
the smallest width annulus that can contain a given set of
points in the plane; (4) Solving the 1-segment center problem
— given a set of points in the plane, find a placement for
a given line segment (under translation and rotation) which
minimizes the largest distance from the segment to the given
points; (5) Given a set of n points in 3-space, finding the largest
radius r such that if we place a ball of radius r around each
point, no segment connecting a pair of points is intersected by
a third ball. Besides obtaining efficient solutions to all these
problems (which, in every case, either improve considerably
previous solutions or are the first non-trivial solutions to these
problems), our goal is to demonstrate the versatility of the
parametric searching technique.

∗Pankaj Agarwal has been supported by National Science
Foundation Grant CCR-91-06514 Micha Sharir has been sup-
ported by Office of Naval Research Grant N00014-90-J-1284,
by National Science Foundation Grant CCR-89-01484, and by
grants from the U.S.–Israeli Binational Science Foundation, the
G.I.F. — the German Israeli Foundation for Scientific Research
and Development, and the Fund for Basic Research adminis-
tered by the Israeli Academy of Sciences. Sivan Toledo has
been supported by the Special Interdisciplinary Program at
Tel-Aviv University.
†Department of Computer Science, Duke University
‡Courant Institute of Mathematical Sciences, New York

University, and School of Mathematical Sciences, Tel Aviv
University
§School of Mathematical Sciences, Tel Aviv University

0

1 Introduction

In this paper we present several applications in com-
putational geometry of the parametric searching tech-
nique of Megiddo [32]. This technique, which we
briefly review below, is a powerful and ingenious tool
for solving efficiently a variety of optimization prob-
lems. Although it has been applied successfully to
several problems in computational geometry [1, 3, 6,
18], its potential for problems in geometric optimiza-
tion does not seem to be widely recognized as yet.
Many problems of this kind, which could be easily
attacked by the technique, are either solved by more
complicated and more ad-hoc techniques, or are sim-
ply left unsolved. The purpose of this paper is to
present efficient solutions, via the parametric search-
ing technique, to several problems of this kind, with
the by-product goal of publicizing the technique and
making it more accessible to the computational ge-
ometry community.

The parametric searching technique can be de-
scribed in the following general terms (which are not
as general as possible, but suffice for our purposes).
Suppose we have a decision problem P(d) that de-
pends on a real parameter d, and is monotone in d,
meaning that if P(d0) is true for some d0, then P(d)
is true for all d < d0. Our goal is to find the maxi-
mum d for which P(d) is true (or, if none exists, the
supremum of all d for which P(d) is true). Suppose
further that P(d) can be solved by a (sequential) al-
gorithm As(d) whose input is a set of data objects
(independent of d) and d, and whose control flow is
governed by comparisons, each of which amounts to
testing the sign of some low degree polynomial in d.
Megiddo’s technique then runs As “generically” at
the unknown maximum d?. Whenever As reaches a
branching point that depends on some comparison
with associated polynomial p(d), it computes all its
roots and runs As with the value of d equal to each of
these roots. This yields an interval between two ad-

Page 1

jacent roots, known to contain d?, and thus enables
As to determine the sign of p(d?), thus resolving the
comparison and allowing the generic execution to pro-
ceed. As the algorithm proceeds, the interval known
to contain d? keeps shrinking as a result of resolving
further comparisons, and at the end either the in-
terval becomes a singleton, which is thus the desired
d?, or else d? can be shown to be equal to its upper
endpoint.

The cost of the procedure just described is gen-
erally too high, because the number of times As in
invoked within the generic execution is proportional
to the number of comparisons in the generic As. To
speed up the execution, Megiddo proposes to replace
the generic algorithm by a parallel algorithm Ap. If
Ap uses P processors and runs in Tp parallel steps,
then each parallel step involves at most P indepen-
dent comparisons. We can then compute roots of all
polynomials associated with these comparisons, and
perform a binary search to locate d∗ among them
using As at each binary step. If As has running
time Ts, then the cost of simulating a parallel step
of Ap is P + Ts logP , for a total of PTp + TpTs logP .
In most cases the second term dominates the run-
ning time. (Since the parallel algorithm is simulated
sequentially, we can allow the comparison model of
Valiant [38], which measures parallelism only in terms
of comparisons being made, and ignores all other op-
erations. This observation simplifies the technique
considerably.)

This brief overview of parametric searching does
not cover all aspects of the technique. Among the is-
sues we left out are a trick due to Cole [17], which
in certain cases improves the running time of the
procedure by a logarithmic factor, a variant due to
Matoušek [31] and others which replaces in certain
applications the parallel generic algorithm by a ran-
domized (sequential) one, leading to simplified solu-
tions, and a variant due to Frederickson and Johnson
[20, 21], where the optimal solution d? is an element of
an implicitly given matrix, whose elements satisfy cer-
tain monotonicity properties. There are various other
extensions of the technique. In particular, Megiddo’s
subsequent linear-time algorithm for linear program-
ming [34] can be regarded as an optimized variant of
the parametric searching technique.

Since its design, about 8 years ago, the parametric
searching technique have been successfully applied to
a variety of optimization problems. In computational
geometry it has been applied to the slope selection
problem [18], computing the center of a set of points
in 2 and 3 dimensions [35], selecting distances in the
plane [1], certain 2-center problems for planar point

sets [3], range searching and ray shooting [2], and
extremal polygon containment problems [6]. This is
still a relatively small crop, given the large body of
literature on geometric optimization problems.

In this paper we demonstrate the power of the
technique by applying it to solve a variety of ad-
ditional geometric optimization problems. Loosely
speaking, the recipe for such an application is first
to solve the fixed-size problem (i.e. the decision prob-
lem P(d)) by an efficient sequential algorithm and an
efficient parallel one. Then the application of para-
metric searching is almost routine and yields efficient
solution to the related optimization problem.

The problems that we solve in this paper are (see
also the subsequent sections for additional discussion
of the results and comparison with previous work):

• Computing the biggest line segment that can be
placed inside a simple n-gon. We present a ran-
domized algorithm with expected running time
O(n8/5+ε), for any ε > 0, considerably improv-
ing the previous algorithm of [15] whose running
time is O(n1.999878).1

• Computing the smallest-width annulus that con-
tains a given set of n points in the plane. We
give a randomized algorithm with expected run-
ning time O(n8/5+ε), for any ε > 0, consider-
ably improving the quadratic-time algorithm of
[19].

• Finding the minimum Hausdorff distance un-
der translation between two polygonal regions
in the plane under the Euclidean metric. This
is a hard instance of a general pattern match-
ing problem. It was left untreated in [26], and
solved by a brute-force inefficient method in [8].
We solve it in time O((mn)2 log3(mn)), where
m and n are the number of edges of the given
polygons. This is about 3 orders of magnitude
faster than the algorithm of [8].

• Solving the 1-segment center problem — given
a set of n points in the plane, find a place-
ment for a given line segment (under transla-
tion and rotation) which minimizes the largest
distance from the segment to the given points.
We present an algorithm for this problem whose
time complexity isO(n2α(n) log3 n). It improves
the previous algorithm of Imai et al. [29] by
roughly two orders of magnitude.

1Throughout this paper, ε denotes an arbitrarily small pos-
itive constant. The multiplicative constants in the asymptotic
bounds may depend on ε.

Page 2

• Solving the problem of complete mutual visi-
bility among spheres — given a set of n points
in 3-space, find the largest radius r so that if
we place a ball of radius r around each point,
no segment connecting a pair of points is in-
tersected by a third ball. This problem arises
in the context of optical interconnections be-
tween processors in 3-space. We present an
O(n2 log5 n) algorithm for this problem, which,
as far as we know, is the first nontrivial solution.

Although the common theme of our solutions is
the application of parametric searching, the bulk of
the technical contribution of this paper is in the solu-
tions of the corresponding fixed-size problems, which
are by no means easy. They require the application of
a variety of sophisticated geometric techniques, such
as range searching, point location among algebraic va-
rieties, computing Minkowski sums, Davenport-Schinzel
sequences and related polygon placement techniques,
and output-sensitive hidden surface removal in 3-space.
We also remark that the challenge is not only in solv-
ing these fixed-size problems efficiently by a sequen-
tial algorithm, but also to design efficient parallel al-
gorithms (in Valiant’s model) for these problems.

The paper is organized as follows. In Section 2 we
present a solution to the biggest stick problem and the
minimum-width annulus problem. Section 3 studies
the problem of computing the minimum Hausdorff
distance between two polygons. Section 4 considers
the 1-segment center problem, and Section 5 solves
the 3-D complete mutual visibility problem. For lack
of space, we omit in this conference version some of
the details, and refer the readers to the full version of
the paper [6].

2 The Biggest Stick Problem

In this section we obtain an improved solution to a
problem posed by M. McKenna in 1986: Given a sim-
ple polygon P with n edges, find the “biggest stick”
(i.e. largest line segment) that can be placed inside P
(i.e. be disjoint from the exterior of P). It is easy to
design an algorithm for solving this problem in time
O(n2), and the goal is to obtain subquadratic solu-
tions. Chazelle and Sharir [15] have given such a sub-
quadratic solution. It runs in time O(n1.999878) and
is based on Collins’ cylindrical algebraic decomposi-
tion technique. In this section we give a considerably
improved solution, whose running time is O(n8/5+ε),
for any ε > 0. (We note that if the endpoints of the
stick are constrained to lie at vertices of P then a
faster solution is known [7].)

Our solution is based on the following approach,
also used by the previous algorithms mentioned above.
We find a chord e that partitions P into two subpoly-
gons, P1, P2, such that each contains roughly half the
number of vertices. We recursively find the biggest
stick in P1 and in P2. Then we compute the biggest
stick within P which crosses e, and the final answer
is the largest of these three candidate sticks.

To compute the biggest stick that crosses e we
proceed as follows. Suppose without loss of general-
ity that e is vertical and lies on the y axis. By using
a standard duality transformation, we can map lines
crossing e to points, and thus obtain two planar maps,
M1, M2 in the dual plane, where each face of either
map Mi is the locus of points dual to lines emanating
from e and hitting first (the interior of) some fixed
edge of Pi. It is easy to show that each Mi is a con-
vex subdivision having O(n) faces, edges and vertices,
and that it can be computed in O(n log n) time; see
[14].

Now let us fix a length d > 0, and consider the
subproblem of determining whether a line segment of
length d can be placed inside P so that it also inter-
sects e. It is easy to show that if such a placement
exists then there also exists a placement in which the
segment either passes through two vertices of P or
has one endpoint on e. Searching for sticks of length
d that satisfy the latter condition can easily be done
by examining each of the maps Mi separately. In the
former case, if the two vertices through which the seg-
ment passes lie in the same subpolygon, say P1, then
the line containing the segment is dual to a vertex of
M1, and locating that vertex in M2 immediately tells
us whether such a placement exists. Thus we locate
each vertex of M1 in M2 and vice versa, at an over-
all cost of O(n log n), thereby handling all the critical
placements of this kind.

The hard case is when the two vertices through
which the segment passes lie in different subpolygons.
The corresponding line is then dual to a point of in-
tersection between an edge of M1 and an edge of M2.
The number of such intersections can be Θ(n2) in
the worst case, so we cannot afford to compute all of
them explicitly. Instead, we preprocess the edges of
one of the maps, say M1, for efficient range searching
queries of a particular kind (detailed below), and then
query the resulting structure with range queries de-
rived from the edges of M2. These queries collectively
determine whether there exists a critical placement
of the segment with the required properties, thereby
solving the fixed-size subproblem.

In more detail, every edge g of Mi corresponds to
a pair (v, a), where v is a vertex and a is an edge of

Page 3

Pi; the points of g are dual to lines ` which cross e,
pass through v and hit a behind (or at) v, so that
the portion of ` between its intersections with e and
a, excluding the point v, lies in the interior of Pi; see
Figure 1.

We regard each edge g ∈M1 as the xy-projection
of an arc γ in 3-space, so that for each x ∈ g the
height of γ above x is equal to d minus the length
of the portion of `, the line dual to x, between its
intersections with e and with a. In this manner, the
edges of M1 are mapped into a collection G of arcs in
3-space.

Next, we map each edge h ∈M2, associated with
the pair (w, b), to an arc η in 3-space, so that the
xy-projection of η is h and the height of η above any
x ∈ h is the length of the portion of the line dual to
x between its intersections with e and with b. Let x
be the intersection of h with an edge g of M1. Then
it is easily verified that the line ` dual to x contains a
placement of a line segment with length d crossing e
and lying inside P if and only if the arc η passes (at
x) above the arc γ corresponding to g.

The problem has therefore been reduced to the
following. Given a collection G of n arcs in 3-space,
corresponding to the edges of M1 in the manner de-
scribed above, and a second collection H of n arcs,
corresponding to the edges of M2, determine whether
there exists a pair of arcs, γ ∈ G, η ∈ H, such that η
passes above γ.

We solve this problem in two stages. First, follow-
ing the technique of [13], we construct a ‘hereditary
segment tree’ on the x-projections of the edges of M1

and M2. In particular, we construct a segment tree T
on the interval decomposition of the x-axis induced by
the x-coordinates of the vertices M1,M2. The ith leaf
of T stores the ith interval from the left. Each node
v ∈ T is associated with an interval δv, the union of
the intervals associated with the leaves of the subtree
rooted at v. Let Iv = δv × [−∞,+∞]. An edge of
M1,M2 is associated with a node v if it completely
crosses Iv, but does not cross Ip(v), where p(v) is the
parent of v. Let M1(v) denote the set of edges in
M1 associated with v, and let M∗1 (v) =

⋃
wM1(w),

where w is a descendeant of v (including v itself).
For the sake of simplicity, we assume that the edges
of M1(v),M∗1 (v) are clipped within Iv. Similarly, de-
fine M2(v) and M∗2 (v). By construction∑
v∈T

(|M1(v)|+ |M2(v)|) ≤
∑
v∈T

(|M∗1 (v)|+ |M∗2 (v)|)

= O(n log n) .

One can construct a family of O(nv) canonical

subsets M1,1(v),M1,2(v), . . . of M1(v) such that the
set of segments in M1(v) intersecting a segment of
M∗2 (v) can be represented as a union of O(log nv)
pairwise disjoint canonical subsets. Let M∗2,i(v) ⊆
M∗2 (v) be the set of segments h for which M1,i(v) is
used to represent the set of segments in M1(v) inter-
sected by h. Similarly define M2,i(v),M∗1,i(v). It has
been shown in [12, 3] that the intersection points of
segments in M1,i(v),M∗2,i(v), and in M2,i(v),M∗1,i(v)
contain all intersection points of M1,M2.

Consider one of the subsets, say M1,i(v),M∗2,i(v).
Since every pair of segments in M1,i(v),M∗2,i(v) inter-
sects, we can extend the segments to full lines. Let
G0 and H0 denote the sets of arcs (actually curves)
corresponding to the lines in M1,i(v) and M∗2,i(v), re-
spectively; let |G0| = n0, |H0| = m0. We want to
determine whether any arc of G0 lies above any arc
of H0. Recall that each segment is associated with a
vertex v and an edge e. So, each arc γ ∈ G0 can be
defined by four real parameters — the coordinates v1,
v2 of the corresponding vertex v and the coefficients
a1, a2 of the line containing the corresponding edge
a (the preceding filtering segment tree technique al-
lows us to ignore the endpoints of a and to regard it
as a full line). For each η ∈ H0 we can express the
difference in height between η and γ, at the point of
intersection between their xy-projections, as a func-
tion Fη(γ) = Fη(v1, v2, a1, a2) of the four parameters
defining γ, Our goal is thus to determine whether
there exists γ ∈ G0 such that

max
η∈H0

Fη(γ) ≥ 0 . (1)

Let Γ denote the set of surfaces {Fη(v1, v2, a1, a2) =
0 | η ∈ H0} in IR4. Since there is a unique point
ξ(v1, v2, a1) on the surface ξ ∈ Γ for every (v1, v2, a1),
(1) satisfies for an arc γ ∈ G0 if the corresponding
point does not lie in the lower envelope of Γ.-1- Chazelle [1]:

Micha,
Am
I
right??

et al. [12] have presented an O(m5+ε) size data struc-
ture for answering O(logm) point location queries
among a collection of m algebraic surfaces (of fixed
degree) in IR4. Their structure relies on a scheme
that triangulates the arrangement of m surfaces into
roughly O(m5) constant size cells. Since we want to
determine whether a point lies in the lower envelope
of Γ, it suffices to preprocess only the lower envelope
for point location queries, which in turn implies that
it suffices to triangulate only the lower envelope of Γ.
We show that the lower envelope of Γ can be trian-
gulated in roughly O(m4) cells. Due to lack of space
we briefly sketch the main idea; see the full version
for details [6].

Let ξ be a surface of Γ. We project the intersection
of ξ with other surfaces to hyperplane a2 = 0, and tri-

Page 4

angulate the resulting set of m surfaces into roughly
O(m3) cells using the algorithm of [12]. Next, for each
cell τ of the triangulation, if τ ′ = {(x, ξ(x)) | x ∈ c}
appears on the lower envelope of Γ, we add the cell
ψc = {(x, z) | x ∈ c, z ≤ ξ(c)} to the triangulation of
the lower envelope of Γ. Repeating the above step for
all surfaces, we obtain a triangulation of the lower en-
velope of Γ os size roughly O(m4). Using this triangu-
lation scheme and folllowing the same technique as in
[12], we can preprocess Γ in time O(m4+ε) into a data
structure, so that one can determine in time O(logm)
whether maxζ∈H0 Fζ(γ) ≥ 0 for an arc γ ∈ G0. Thus
the total time spent is O(m4+ε + n logm). By flip-
ping the roles of G0 and H0, we can obtain another
solution whose running time is O(n4+ε

0 +m0 log n0).

To obtain a further improved solution, we use the
technique of random sampling [16]: we choose a ran-
dom sample of r surfaces Fη, for some constant pa-
rameter r, and triangulate their lower envelope into
roughly O(r4+ε) cells, as described above. With high
probability each cell intersects O(m0

r log r) surfaces.-2-
[2]:
Use
ran-
dom
sam-
pling
or
de-
ter-
min-
is-
tic
al-
go-
rithm!!

This leads to a collection of subproblems, where the
problem associated with cell ci involves the surfaces
that cross the cell and the points of G0 that fall in the
cell. By solving each subproblem recursively, using
the preceding technique to bootstrap the recursion,
one can show that the expected running time of this
step is

O(m4/5+ε
0 n

4/5+ε
0 + (m0 + n0)1+ε)

for any ε > 0. We omit the details of the analysis;
similar analyses can be found in [4].

We next sum this bound over all subproblems.
Since we have

∑
m0 =

∑
n0 = O(n log2 n), we read-

ily conclude that the overall running time of the algo-
rithm is O(n8/5+ε′) for another, still arbitrarily small,
ε′ > 0. That is, we have:

Theorem 2.1 Given a simple polygon P with n edges
and a length d > 0, one can determine whether a line
segment of length d can be placed inside P , in time
O(n8/5+ε).

Next we apply parametric searching to turn the
preceding algorithm into one that computes the biggest
stick within P . For this we need an efficient parallel
version of the above procedure. This is easy to do
in Valiant’s model — the divide-and-conquer process
on P is parallelizable. Note that the actual decom-
position of P can be done sequentially since it does
not depend on d. Similarly, the maps M1 and M2, at
each recursive step, can also be prepared outside the
generic algorithm, as well as the hereditary segment

tree decomposition. The step involving point loca-
tion in 4-space amidst our surfaces Fη, which does
depend on d, is easy to parallelize because the ran-
dom sampling decomposition breaks down the prob-
lem into many independent subproblems, which can
all be processed in parallel. Omitting some of the
details, we can obtain a parallel algorithm that has
overall parallel depth O(log2 n), and uses O(n8/5+ε)
processors. Plugging all of this into the parametric
searching paradigm, we easily conclude:

Theorem 2.2 Given a simple polygon P with n edges,
one can compute the maximum length of a line seg-
ment that can be placed inside P , in time O(n8/5+ε).

3 The Minimum Width Annu-
lus

Next we consider the problem of approximating a pla-
nar point set by a circle. That is, suppose we are
given a set S of n points in the plane and we want
to approximate S by a circle. One way of obtaining
such an approximation is to compute two concentric
circles C1 and C2 of radii r1 < r2 such that all points
of S lie in the exterior of C1 and in the interior of C2,
and such that r2 − r1 is minimized. In other words,
compute an annulus of minimum width that contains
all points of S. An O(n2) algorithm was proposed by
Ebara et al. [19]. We present an algorithm whose
running time is O(n8/5+ε). As it turns out, this ap-
plication is a variant of the technique used above for
the biggest stick problem.

Specifically, let Vorc(S),Vorf (S) be the closest
and the farthest point Voronoi diagrams of S, respec-
tively. For a point ξ ∈ IR2 lying in the Voronoi cell
Vorc(pi) (pi ∈ S) of Vorc(S), let Fc(ξ) denote the
distance between ξ and pi. Analogously, define Ff (ξ)
for Vorf (S). Given a point ξ in the plane, the width
of the thinnest annulus centered at ξ, which covers S,
is Ff (ξ)− Fc(ξ). Thus, our goal is to compute

min
ξ∈IR2

Ff (ξ)− Fc(ξ) .

As in the case of the biggest stick problem, it suffices
to describe an algorithm that, for a given parameter
W , can determine whether

min
ξ∈IR2

Ff (ξ)− Fc(ξ) ≤W . (2)

It has been shown in [19] that the desired min-
imum is attained either at a vertex of one Voronoi
diagram or at an intersection of two diagram edges.

Page 5

By preprocessing Vorc(S),Vorf (S) for efficient planar
point location queries, we can test in O(n log n) time
whether any vertex of the two diagrams satisfies (2).
So, the hard part is testing the intersection points of
edges of the two diagrams.

We map each edge g ∈ Vorc(S) to an arc γ in
IR3, whose xy-projection is g and whose height at
a point x ∈ g is Fc(x). Let G denote the resulting
set of edges. Similarly, we can regard each edge h ∈
Vorf (S) as the xy-projection of an arc η in IR3 whose
height at x ∈ h is Ff (x) − W . Let H denote the
resulting set of arcs in IR3. The problem now reduces
to determining whether there exist two arcs γ ∈ G,
η ∈ H such that γ passes above η. Each edge of the
two diagrams is a portion of a perpendicular bisector
of two points in S, so each arc in G,H can be defined
by four parameters. Following the same approach
as in the previous section, we can answer the last
question in time O(n8/5+ε). We thus obtain

Theorem 3.1 Given a set S of n points in the plane,
one can determine, in time O(n8/5+ε), a minimum
width annulus that contains all points of S.

Remark 3.2: An annulus of minimum area can be
computed in linear time using Megiddo’s linear pro-
gramming algorithm.

4 Minimum Hausdorff Distance
Under Translation Between Polyg-
onal Shapes

In this section, we consider the following problem:
“Let P be a collection of m objects in the plane and
Q another collection of n objects in the plane. We
wish to compute a translation t of Q which mini-
mizes the Hausdorff distance between P and Q ⊕ t,
the translated copy of Q.” The Hausdorff distance
between two sets A and B of objects is defined as

H(A,B) = max{h(A,B), h(B,A)} ,

where
h(A,B) = max

p∈∪A
min
q∈∪B

d(p, q)

(we assume that the objects of A and B are all com-
pact sets, so the minima and maxima appearing in
this formula are all well defined). Here d(·, ·) denotes
the Euclidean distance between two points. For a set
π ⊆ IR2 and a vector t let π ⊕ t = {p + t | p ∈ π}
be the Minkowski sum of π and t, and for a set A

of objects let A ⊕ t = {π ⊕ t | π ∈ A}. We want to
compute

D(P,Q) = min
t∈IR2

H(P,Q⊕ t) = min
t∈IR2

H(P ⊕ t,Q) .

See Figure 2 for an illustration of the problem for the
case where P and Q are simple polygons..

The value of D(P,Q) gives a measure of the re-
semblance between P and Q, so its (efficient) compu-
tation has applications in pattern recognition, com-
puter vision, etc. Huttenlocher and Kedem [25] showed
that if P and Q are sets of points, then D(P,Q)
can be computed in O((mn)2α(mn)) time, where α(·)
is the inverse Ackermann function. This bound has
been recently improved toO(mn(m+n)α(mn) logmn)
by Huttenlocher et al. [26]. They also showed that if
the distance between two points is measured in the L1

or L∞ metrics, the distance D(P,Q), for sets P, Q
each consisting of non-intersecting segments, can be
computed in time O((mn)2 logmn). However, their
algorithm does not extend to the more useful case of
the Euclidean metric. For this case, Alt et al. [8] pre-
sented an algorithm with the rather high time com-
plexity O((mn)3(m+ n) log(m+ n)).

In this section we show that if P and Q are sets
each consisting of non-intersecting segments, thenD(P,Q)
can be computed in time O((mn)2 log3(mn)). We
first solve the fixed-size problem, which, given a pa-
rameter δ > 0, determines whether D(P,Q) ≤ δ.
We then convert this procedure, using the parametric
search technique, into another algorithm that com-
putes the value of D(P,Q).

We are thus given two sets P, Q, each consisting
of non-intersecting segments, and a parameter δ > 0,
and we wish to determine whether D(P,Q) ≤ δ.
Without loss of generality, we can assume that P is
fixed and we seek a translation of Q which brings it
within distance δ of P. A placement of Q can be de-
fined by the position of some fixed reference point OQ
rigidly attached to Q. We assume that the original
set Q is placed so that OQ lies at the origin.

Let Bδ denote a disk of radius δ around the origin.
For a segment e, let eδ = e ⊕ Bδ be the Minkowski
sum of e and Bδ. eδ has the shape of a racetrack —
a rectangle of width 2δ with two semicircles of radius
δ attached to its sides. Let Pδ =

⋃
e∈P eδ (see Fig-

ure 3). Since the relative interiors of the segments in
P do not intersect each other, the boundaries of eδ, e′δ,
for e, e′ ∈ P, intersect in at most two points (assum-
ing general position of e, e′ [28]; in any case, it is easy
to show that the intersection of the boundaries of eδ,
e′δ consists of at most two connected components).
Therefore, by the result of [28], Pδ has only O(m)

Page 6

edges (and, symmetrically, Qδ has O(n) edges); here
each edge of Pδ or of Qδ is either a straight segment
or a circular arc.

For a set A ⊆ IR2, let Ac denote the complement
IR2 − A. Let KQP = Pcδ 	 Q be the Minkowski dif-
ference of Pcδ and Q.

Lemma 4.1 Kc
QP is the set of translations t of Q

for which h(Q⊕ t,P) ≤ δ.

Proof: Let OQ = t be a placement of Q for which
h(Q ⊕ t,P) ≤ δ. Then for every point ζ ∈ Q, there
is a point ξ ∈ P, such that d(ζ + t, ξ) ≤ δ. In other
words, h(Q⊕ t,P) ≤ δ if and only if (Q⊕ t)∩Pcδ = ∅.
That is, there is no point q ∈ Q and a point p in the
interior of Pcδ with q + t = p or t = q − p. Hence,
t ∈ Kc

Γ. 2

Each edge of Kc
QP is contained in an arc of the

form z − q, where z is an edge of Pδ and q is an
endpoint of a segment of Q, or z is a vertex of Pδ and
q is a segment of Q, or z is a point on a circular arc
of Pδ whose tangent is parallel to the segment q of Q.
Since Kc

QP is defined by O(pq) segments and circular
arcs, its combinatorial complexity is O((pq)2).

In order to define the set of translations t for which
h(P,Q⊕ t) ≤ δ, we flip the roles P and Q, i.e., we fix
Q and define the set of placements t of P for which
h(P ⊕ t,Q) ≤ δ. By the preceding lemma, this set is
Kc
PQ, where KPQ = Qcδ 	 P. It now follows that

Lemma 4.2 D(P,Q) ≤ δ if and only if Kc
QP∩(−Kc

PQ)
is not empty.

In view of the above discussion, an algorithm for
determining whether D(P,Q) ≤ δ can be summa-
rized as follows:

1. Compute Pδ and Qδ.

2. Compute KQP = Pcδ 	Q and KPQ = Qcδ 	 P.

3. Determine whetherKc
QP and−(Kc

PQ) have nonempty
intersection.

As for the time complexity of the algorithm, Step 1
can be accomplished in time O((m+ n) log2(m+ n))
using the algorithm of [28]. The set KQP (and simi-
larlyKPQ) can be computed in timeO((mn)2 logmn)
by constructing the entire arrangement of the arcs
defining the edges of these sets. Finally, an inter-
section between Kc

QP and −Kc
PQ can be detected in

O((mn)2 logmn) time by a sweep-line algorithm [10].
Hence, we can conclude

Theorem 4.3 Given a collection P of m non-intersecting
segments and another collection Q of n non-intersecting
segments in the plane, one can determine whether
D(P,Q) ≤ δ in time O((mn)2 log(mn)).

Next, in order to apply parametric searching, we
need an efficient parallel version of the algorithm. It
is well known that the arrangement of a collection of
t arcs in the plane can be computed in O(log t) time
using O(t2) processors. Therefore the arrangement
of {e ⊕ Bδ | e ∈ P} can be computed in O(logm)
time with O(m2) processors. After having computed
the arrangement, we determine for each face f the ar-
rangement, the number of racetracks eδ that contain
f . Let cf denote this quantity, then for two adja-
cent faces f, f ′ |cf − cf ′ | = 1. We compute the dual
graph of the arrangement, and then a spanning tree
of the dual graph, which we convert to an Eulerian
path. Once we have an Eulerian path, we can com-
pute cf using any parallel prefix algorithm. See [1, 37]
for details. The total time spent in computing cf is
O(logm) using O(m2) processors. It is easily seen
that an edge γ of the arrangement is in Pδ if cf = 0
for one of the faces adjacent to γ. Pδ thus can be
computed in O(logm) time using O(m2) processors.
Similarly, one can compute Qcδ in O(log n) time us-
ing O(n2) processors, and KQP ,KPQ in O(logmn)
time using O((mn)2) processors. Finally, an inter-
section between Kc

QP and −Kc
PQ can be detected in

O(logmn) time with O((mn)2) processors using the
algorithm of Atallah et al. [9]. Applying the para-
metric search technique to the resulting algorithm,
we can thus conclude

Theorem 4.4 Given a collection P of m non-intersecting
segments and another collection Q of n non-intersecting
segments in the plane, one can determine the mini-
mum Hausdorff distance between P and Q, allowing
translation, in time O((mn)2 log3(mn)).

5 Computing a Segment Center

The problem considered in this section is: “Given a
set S of n points in the plane, and a segment e of
length 1, find a placement of e (allowing translations
and rotations) which minimizes the maximum (Eu-
clidean) distance from e to the points of S.”

The problem was posed by D.T. Lee a few years
ago. It generalizes the well known notions of a point
center (which is the center of the smallest enclos-
ing disk of S [33]) and of a line-center. Finding the
point center and the line center of a set S is easy;

Page 7

the segment-center problem appears to be more dif-
ficult. Using parametric searching, we present in this
section an algorithm for solving this problem which
runs in close to quadratic time. This is a significant
improvement over the previous algorithm by Imai et
al. [29], whose time complexity is O(n4 log n).

For lack of space we omit most of the details, and
sketch the main ideas of the algorithm. First we solve
the fixed-size problem: Given S and e as above and a
real parameter d > 0, determine whether there exists
a placement of e so that all points of S lie within
distance d from e. To solve this problem, we define
ed = e ⊕ Bd to be an expansion of e by distance d
(see also the previous section); ed has the shape of a
racetrack. Instead of moving e about, we fix e and
move s rigidly. It is easily seen that the problem
reduces to that of determining whether P ≡ conv(S)
can be placed (by translations and rotations) inside
ed; see Figure 4.

The problem has thus been reduced to a poly-
gon containment problem, such as those studied in
[6, 11, 30], with the twist that the environment ed in
which P has to be placed is not polygonal. Never-
theless, techniques similar to those used in [30, 36],
which compute all critical free placements of P , can
be developed.

Without loss of generality we assume that ed is
placed such that e lies on the x-axis and its enpoints
are at (0, 0) and (1, 0).

If P can be placed inside ed, we can translate it
in the positive x-direction until one of its vertices
touches the right semicircle CR on the boundary of
ed. It therefore suffices to seek placements of P inside
ed at which one of the vertices of P touches CR.

We fix a vertex pi of P and constrain it to touch
CR, thereby leaving P with only two degrees of free-
dom — translation of pi along CR and rotation. LetO
be some fixed point in P such that pi is the rightmost
vertex of P when the segment piO is horizontal. Each
constrained placement of P can be parametrized by
the two parameters (y, θ), where y is the y-coordinate
of pi and θ is the angle between the x-axis and the
segment piO; θ is called the orientation of P . The
subproblem we wish to solve is to determine whether
there exists a constrained placement of P fully inside
ed.

Now fix a contact point v = (x, y) of pi with CR,
and rotate P around v. The other vertices of P trace
concentric circles about v. It is easy to verify that, for
each vertex pj , there is a (possibly empty) unique an-
gular interval Ij = Ij(y), within which pj is inside ed.
Hence there exists a placement of P inside ed with

pi touching CR at v if and only if the intersection
I = I(y) of all the angular intervals Ij is nonempty;
since each of these intervals is less than π, as is eas-
ily checked, the intersection I is a single (possibly
empty) angular interval. For each vertex pj of P ,
the endpoints of the interval Ij(y) are functions of y,
and we denote the clockwise (resp. counter-clockwise)
endpoint by CWpi,pj (y) (resp. CCWpi,pj (y).) Note
that these functions may only be partially defined.

Define the following upper and lower envelopes:

Upi(y) = max
j
{CWpi,pj (y)} , (3)

Lpi(y) = min
j
{CCWpi,pj (y)} , (4)

where we adopt the convention that whenever CWpi,pj (y)
and CCWpi,pj (y) are undefined their values are set to
3π
2 and π

2 , respectively. Our conventions ensure that
Upi(y) > Lpi(y) whenever some CWpi,pj or CCWpi,pj (y)
is not defined.

Lemma 5.1 The graph of Upi , Lpi have O(λ4(n)) break-
points.

See the full version for a proof of the above lemma.
In view of the above lemma, Upi , Lpi can be computed
by a sequential algorithm in in O(nλ3(n) logn) time
[24], or by a parallel algorithm in time O(log n) using
O(λ4(n)) processors. It has been shown in [23, 5] that
λ3(n) = Θ(nα(n)) and λ4(n) = Θ(n2α(n)). After
having computed Upi , Lpi , a ‘good’ point can also be
determined within the same time bound. Hence, the
fixed size problem can be solved in timeO(n2α(n) logn)
time, or in O(log n) parallel time using O(n22α(n))
processors. Plugging all this into the parametric search-
ing paradigm, we obtain:

Theorem 5.2 Given a set S on n points in the plane,
and a line segment e, we can compute a center loca-
tion for e, which minimizes the maximum distance
from e to the points of S, in time O(n2α(n) log3 n).

6 Complete Mutual Visibility Among
Spheres

Let S = {S1, . . . , Sn} be a given set of n spheres in
IR3, all with the same radius. Let ci denote the center
of Si, for i = 1, . . . , n. We say that two spheres Si and
Sj are mutually visible if the line segment connecting
ci with cj does not intersect any other sphere. We
say that S is completely mutually visible if every pair
of spheres in S is mutually visible.

Page 8

The problem studied in this section is: “Given a
set P of n points in IR3, we wish to determine the
largest possible common radius r such that the set of
n spheres of radius r, centered at the given points, is
completely mutually visible.”

This problem arises in the context of parallel com-
putations using optical interconnections. The spheres
model the individual processors, and mutual visibil-
ity between a pair of spheres models the ability of the
two processors to communicate by an optical link. In
our problem the locations of the (centers of the) pro-
cessors is predetermined, and we want to determine
how large can the processors be if every pair is to be
able to communicate optically.

In order to employ the parametric searching tech-
nique, we solve the following fixed-size decision prob-
lem: “Given a set of n spheres with the same radius
r, determine if it is completely mutually visible”.

We use the following simple scheme. For each
of the spheres Si, we compute the visibility map of
all the other spheres, as viewed from its center ci.
We then check that all the centers are visible from
ci. This is true for each of the n visibility maps, if
and only if the set of spheres is completely mutually
visible.

The visibility maps can in general have rather
high (up to quadratic) combinatorial complexity, but
we establish the following interesting property (whose
proof is omitted):

Lemma 6.1 Let S be a collection of n congruent
(nonintersecting) spheres in 3-space, and let p be a
point outside the spheres. If the centers of all spheres
are visible from p then the complexity of the visibility
map of the spheres, as seen from p, is O(n).

The idea is now to compute the visibility map of
the spheres from each center ci, using the output-
sensitive hidden surface removal algorithm of [27].
The algorithm runs in time O((n+k) log2 n), where k
is the combinatorial complexity of the visibility map.
If the algorithm runs for too long, we stop it and con-
clude, in view of the preceding lemma, that not all
centers are visible from ci. Otherwise the algorithm
terminates and then we check whether all centers are
indeed visible. This takes, over all visible maps, a
total time of O(n2 log2 n).

In order to apply the parametric search technique,
we need a parallel implementation of the hidden sur-
face removal algorith. Based on the sequential al-
gorithm of [27], we can develop a parallel algorithm
whose running time is O(log2 n) using O(n log n+ k)

processors; see [6] for details. We compute visibility
maps from all centers in parallel. We allocate O(n)
processors to each center. If any of the procedures re-
quire more than the allocated processors, we stop it
and conclude that all centers are not mutually visible.
If all the visibility maps have linear size, we prepro-
cess each of them for point location queries, and then
locate the centers in each of them. This can be done
in O(log2 n) using O(n2 log n) processors. Omitting
all the details, which can be found in the full version,
we state the final result:

Theorem 6.2 Given a set of n points in IR3, we can
find the largest possible common radius r, so that the
system of spheres with radius r about the given points
are completely mutually visible, in time O(n2 log5 n).

References

[1] P.K. Agarwal, B. Aronov, M. Sharir and S. Suri, Se-
lecting distances in the plane, Proc. 6th ACM Symp.
on Computational Geometry, 1990, 321–331. (Also
to appear in Algorithmica.)

[2] P.K. Agarwal and J. Matoušek, Ray shooting and
parametric search, Tech. Rept. CS-1991-21, Dept.
Computer Science, Duke University, 1991.

[3] P.K. Agarwal and M. Sharir, Planar geometric loca-
tion problems, Tech. Rept. 90-58, DIMACS, Rutgers
University, August 1990. (Also to appear in Algorith-
mica.)

[4] P.K. Agarwal and M. Sharir, Counting circular arc
intersections, Proc. 7th ACM Symp. on Computa-
tional Geometry, 10–20.

[5] P.K. Agarwal, M. Sharir and P. Shor, Sharp up-
per and lower bounds for the length of general
Davenport-Schinzel sequences, J. Combin. Theory,
Ser. A 52 (1989), 228–274.

[6] P.K. Agarwal, M. Sharir and S. Toledo, Applications
of parametric searching in geometric optimization,
manuscript, 1991.

[7] A. Aggarwal and S. Suri, The biggest diagonal in a
simple polygon, Information Processing Letters 13–
18.

[8] H. Alt, B. Behrends and J. Blomer, Approximate
matching of polygonal shapes, Proc. 7th ACM Symp.
on Computational Geometry, 1991, 186–193.

[9] M. Atallah, R. Cole and M. Goodrich, Cascading
divide-and-conquer: A technique for designing par-
allel algorithms, SIAM J. Computing 18 (1989), 499–
532.

Page 9

[10] J.L. Bentley and T. Ottmann, Algorithms for re-
porting and counting geometric intersections, IEEE
Trans. on Computers C–28 (1979), 643–647.

[11] B. Chazelle, The polygon containment problem, in
Advances in Computing Research, Vol. I: Computa-
tional Geometry, (F.P. Preparata, Ed.), JAI Press,
Greenwich, Connecticut (1983), pp. 1–33.

[12] B. Chazelle, H. Edelsbrunner, L. Guibas and M.
Sharir, A singly exponential stratification scheme for
real semi–algebraic varieties and its applications, to
appear in Theoretical Computer Science.

[13] B. Chazelle, H. Edelsbrunner, L. Guibas and M.
Sharir, Algorithms for bichromatic line segment
problems and polyhedral terrains, submitted to Al-
gorithmica.

[14] B. Chazelle and L. Guibas, Visibility and intersec-
tion problems in plane geometry, Discrete Comput.
Geom. 4 (1989), 551–589.

[15] B. Chazelle and M. Sharir, An algorithm for general-
ized point location and its applications, J. Symbolic
Computation 10 (1990), pp. 281–309.

[16] K. Clarkson and P. Shor, Applications of random
sampling in computational geometry, II, Discrete
Comput. Geom. 4 (1989), 387–422.

[17] R. Cole, Slowing down sorting networks to obtain
faster sorting algorithms, J. ACM 31 (1984), 200–
208.

[18] R. Cole, J. Salowe, W. Steiger and E. Szemerédi, Op-
timal slope selection, SIAM J. Computing 18 (1989),
792–810.

[19] H. Ebara, N. Fukuyama, H. Nakano and Y. Nakan-
ishi, Roundness algorithms using the Voronoi dia-
grams, First Canadian Conf. Computational Geom-
etry , 1989.

[20] G. Frederickson, Optimal algorithms for tree parti-
tioning, Proc. 2nd ACM-SIAM Symp. on Discrete
Algorithms, 1991, 168–177.

[21] G. Frederickson and D. Johnson, Finding the kth
shortest paths and p-centers by generating and
searching good data structures, J. Algorithms 4
(1983), 61–80.

[22] M. Goodrich, Approximation algorithms to design
parallel algorithms that may ignore processor allo-
cation, Proc. 32nd Annual IEEE Symp. Foundations
Computer Science, 1991, pp. 711–722.

[23] S. Hart and M. Sharir, Nonlinearity of Davenport-
Schinzel sequences and of generalized path compres-
sion schemes, Combinatorica 6 (1986), 151–177.

[24] J. Hershberger, Finding the upper envelope of n
line segments in O(n logn) time, Inf. Proc. Lett. 33
(1989), 169–174.

[25] D. Huttenlocher and K. Kedem, Efficiently comput-
ing the Hausdorff distance for point sets under trans-
lation, Proc. 6th ACM Symp. on Computational Ge-
ometry, 1990, 340–349.

[26] D. Huttenlocher, K. Kedem and M. Sharir, The up-
per envelope of Voronoi surfaces and its applications,
Proc. 7th ACM Symp. on Computational Geometry,
1991, 194–203.

[27] M.J. Katz, M.H. Overmars and M. Sharir, Efficient
hidden surface removal for objects with small union
size, Proc. 7th ACM Symp. on Computational Ge-
ometry , 1991, 31–40.

[28] K. Kedem, R. Livne, J. Pach and M. Sharir, On
the union of Jordan regions and collision-free trans-
lational motion amidst polygonal obstacles, Discrete
Comput. Geom. 1 (1986), 59–71.

[29] H. Imai, D.T. Lee, and C. Yang, 1-Segment covering
problem, 1st Canadian Conf. Computational Geom-
etry , 1989.

[30] D. Leven and M. Sharir, On the number of critical
free contacts of a convex polygonal object moving in
two-dimensional polygonal space, Discrete Comput.
Geom. 2 (1987), 255–270.

[31] J. Matoušek, Randomized optimal algorithm for
slope selection, manuscript, 1991.

[32] N. Megiddo, Applying parallel computation algo-
rithms in the design of serial algorithms, J. ACM
30 (1983), 852–865.

[33] N. Megiddo, Linear-time algorithms for linear pro-
gramming in IR3 and related problems, SIAM J.
Computing12 (1985), 720–732.

[34] N. Megiddo, Linear programming in linear time
when the dimension is fixed, J. ACM 31 (1984), 114–
127.

[35] N. Naor and M. Sharir, Computing the center of a
point set in three dimensions, Proc. 2nd Canadian
Conf. on Computational Geometry (1990), pp. 10–
13.

[36] M. Sharir and S. Toledo, Extremal polygon con-
tainment problems, manuscript, 1991. (See also S.
Toledo, Extremal polygon containment problems,
Proc. 7th ACM Symp. on Computational Geometry,
176–185.)

[37] R. Tarjan and U. Vishkin, An efficient parallel bi-
connectivity algorithm, SIAM J. Comp. 14 (1985),
862-874.

[38] L. Valiant, Parallelism in comparison problems,
SIAM J. Computing 4 (1975), 348–355.

Page 10

