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Figure 1: Interactive reconstruction of the riding monk (left). Our finite-element field formulation (center-left) incorporates user’s interactive
scribbles at automatically-detected unstable regions (center-right) to obtain the expected shape (right).

Abstract

The reconstruction of a complete watertight model from scan data
is still a difficult process. In particular, since scanned data is of-
ten incomplete, the reconstruction of the expected shape is an ill-
posed problem. Techniques that reconstruct poorly-sampled areas
without any user intervention fail in many cases to faithfully re-
construct the topology of the model. The method that we intro-
duce in this paper is topology-aware: it uses minimal user input
to make correct decisions at regions where the topology of the
model cannot be automatically induced with a reasonable degree of
confidence. We first construct a continuous function over a three-
dimensional domain. This function is constructed by minimizing a
penalty function combining the data points, user constraints, and a
regularization term. The optimization problem is formulated in a
mesh-independent manner, and mapped onto a specific mesh using
the finite-element method. The zero level-set of this function is a
first approximation of the reconstructed surface. At complex under-
sampled regions, the constraints might be insufficient. Hence, we
analyze the local topological stability of the zero level-set to detect
weak regions of the surface. These regions are suggested to the user
for adding local inside/outside constraints by merely scribbling over
a 2D tablet. Each new user constraint modifies the minimization
problem, which is solved incrementally. The process is repeated,
converging to a topology-stable reconstruction. Reconstructions of
models acquired by a structured-light scanner with a small number
of scribbles demonstrate the effectiveness of the method.

CR Categories: I.3.6 [Computer Graphics]: Computing
Methodologies—Interaction techniques

Keywords: Surface reconstruction, Interactive tools.

1 Introduction

As 3D scanners are becoming commonplace, surface reconstruc-
tion is becoming a common step in modeling workflows. Thus,
there is an emerging need to allow users to create high-quality sur-
faces from scans, including imperfect scans. This need brought
much attention to surface reconstruction techniques. Recent re-
search efforts have led to significant progress in all aspects of the
problem [Levoy et al. 2000]. However, the reconstruction of a com-
plete watertight model that is faithful to the original physical object
is still a difficult process.

One of the major difficulties is the coverage of the scanned model:
As a result of physical inaccessibility, poor visibility and material
properties, the coverage is often imperfect and significant portions
of the surface are either under-sampled or completely missing. The
problem is more acute for complex shapes with deep cavities and
bifurcations (e.g., Figure 1). While it is reasonable to assume that
scanning hardware will advance, future reconstruction systems will
still need to employ algorithms that reconstruct under-sampled ar-
eas. Systems that reconstruct poorly-sampled areas merely based
on priors, without any user intervention, fail in many cases to faith-
fully reconstruct the expected shape. At the other extreme, systems
that rely only on explicit manual surface editing are too tedious.

Without prior assumptions and user constraints, the reconstruction
problem is ill posed; an infinite number of surfaces pass through or
near the data points. Smoothness and watertight constraints usually
regularize the problem and remove the ill posedness. Nevertheless,
even if the problem is successfully transformed into a well condi-
tioned one, the reconstructed object is not necessarily the expected
one. Our method is based on the observation that it is often possible
to detect the ill conditioning and to ask the user for inside/outside
constraints to locally resolve them and achieve the expected shape.



Figure 2: Reconstruction pipeline for a scanned elephant model. An initial coarse function is automatically computed from loose, automatic
inside/outside (blue/red balls) constraints (left). The topological analysis of this function selects weak regions (center-left), where the user
can make local decisions by scribbling over 2D tablets at a coarse resolution (center-right). Further iterations at finer resolutions lead to a
complete reconstruction of the model (right).

In this paper we present a topology-aware reconstruction technique
that requires minimal user input to make correct decisions at critical
regions, where the topology of the shape cannot be induced auto-
matically with a reasonable degree of confidence. Our method uses
priors to reconstruct the surface, but it also allows the user to in-
fluence the prior distribution. Two aspects of the prior distribution
are fixed: we assume that the surface is smooth almost everywhere,
and that it should be watertight. Other aspects of the prior distribu-
tion are controlled by the user who specifies constraint points that
should be inside or outside the surface.

To reconstruct a watertight surface given raw scans without nor-
mals, and possibly the user’s inside/outside constraints, we first
construct a continuous function over a three-dimensional domain.
The zero level-set of this function approximates the data points.
We construct this function by minimizing a penalty that measures
its non-smoothness, the deviation of its zero level-set from the data
points, and its deviations from prescribed positive/negative values
at the inside/outside constraints. Our function optimization prob-
lem is formulated in a mesh-independent manner, and mapped onto
a specific mesh using the finite-element method. Computationally,
the function is constructed by solving a large sparse linear sys-
tem. However, at complex under-sampled regions these constraints
might be insufficient. Therefore, we analyze the local topologi-
cal stability of the zero level-set to detect weak regions of the sur-
face. These regions are suggested to the user for adding local in-
side/outside constraints by merely scribbling over a 2D tablet corre-
sponding to a cross section of the field (see Figure 2). The new user
input augments the linear system with additional constrains, im-
proving the reconstruction. The stability analysis is then repeated.
If the surface is still topologically unstable, the user is prompted for
additional constraints. This incremental process refines the surface
until it is topologically stable.

2 Related Works

The problem of reconstructing a surface from scans has been re-
searched extensively for almost two decades [Hoppe et al. 1992;
Levoy et al. 2000]. Many different techniques have been developed,
based on signed distance functions [Hoppe et al. 1992; Curless and
Levoy 1996], Voronoı̈ diagrams [Amenta et al. 1998; Boissonnat
and Cazals 2002; Dey and Goswami 2004], radial basis functions
and local implicit functions [Carr et al. 2001; Ohtake et al. 2003;
Ohtake et al. 2004], moving least square approximation [Alexa
et al. 2001; Amenta and Kil 2004], or wrapping techniques [Bernar-
dini et al. 1999], to mention a few. Nevertheless, these techniques
are concerned with a faithful reconstruction of the local structure of
the surface, whereas we also focus on its global structure.

Some related works are concerned with the reconstruction of a sur-
face from inhomogeneous sample density or missing data [Davis
et al. 2002; Dey and Goswami 2004; Kolluri et al. 2004; Sharf et al.
2006; Hornung and Kobbelt 2006]. These techniques use some

heuristics to define the locus of the surface in under-sampled or
noisy data. Our technique is similar to the works of [Kolluri et al.
2004; Hornung and Kobbelt 2006] in that we use a global optimiza-
tion technique and that we guarantee a continuous watertight sur-
face reconstruction. However, the method of Kolluri et al. [2004],
requires filtering of the Voronoı̈ diagram to obtain a correct pole
graph. To compute a watertight surface the authors use global
normalized cuts that smoothly complete large missing parts. The
method of Hornung and Kobbelt [2006], requires the definition of
a watertight voxel crust in which the unknown surface is supposed
to lie. To define the crust, the authors use flood-fill and dilation op-
erators. However, at problematic regions where the topology of the
data is unclear, both algorithms cannot guarantee the generation of
a topologically-correct crust or pole graph. Instead, we automati-
cally identify these weak regions and allow the user to interactively
correct them.

Our finite-element formulation of the reconstruction shares similar-
ity with the work of [Carr et al. 2001; Ohtake et al. 2004; Kazhdan
et al. 2006] in the definition of the surface as a solution of a global
linear system. Carr et al. [2001] use radial basis functions (RBF)
constrained with surface and off-surface values. To make the sys-
tem sparser, Ohtake et al. [2004] use local RBF. Recently, Kazhdan
et al. [2006] use a Poisson system to define a surface which agrees
with the data points’ normals. These works make intensive use of
points’ orientation (surface normals), which is often unreliable. In
our work, we interactively reconstruct the surface using only the
positions of raw scanned data, where the user defines the general
in/out orientation.

Recently, the use of scribbles as an interactive tool has gained a
lot of popularity in various computer graphics applications, such
as image segmentation [Li et al. 2004], matting [Wang and Cohen
2005], colorization [Levin et al. 2004], or mesh editing [Nealen
et al. 2005]. Scribbles are easy-to-use, loose, and do not require
meticulous work. At the same time, they provide the algorithm
minimal but necessary hints needed to solve a problem, which is
otherwise extremely hard or even impossible to solve. Our work
extends the effective power of scribbles to assist ill-posed problems
in surface reconstruction. Nevertheless, it should be emphasized
that, in this work, a careful analysis of the data leads the user to
where assistance is needed. Such an automatic guidance is vital
since, unlike previous work, the problem domain is volumetric, and
the scribbles are not drawn in image space, but on a 2D tablet cor-
responding to an arbitrary planar cross section in 3D.

3 Our Approach

Our surface reconstruction method initially computes a smooth
three-dimensional implicit function whose zero level-set is a coarse
approximation of the data points. The method then explicitly ex-
tracts the reconstructed surface from this function as its zero level-
set. We formulate this implicit function as the solution of a physi-



cal minimization problem, which we solve using the finite-element
method (FEM). As Kazhdan et al. [2006] showed, defining implicit
functions as a solution of a linear system guarantees a global coher-
ent solution that is watertight. Moreover, it leads to a well condi-
tioned sparse system whose size is proportional to the reconstructed
surface. Nevertheless, our system is designed to be interactive and
to incorporate the user’s constraints.

The main challenge, shared by any method which fits implicit func-
tions [Carr et al. 2001], is to retrieve zero values only at the surface.
Necessarily, these methods require additional information, like the
points’ orientations (i.e., the normal) which is typically less precise
than the points’ location. Furthermore in under-sampled regions,
the orientation of the data points is not reliable. This may cause
significant misinterpretation of the data, leading to an erroneous
surface reconstruction.

Therefore, we argue that user assistance is necessary to correctly
interpret the data, especially in under-sampled regions. The key
point in our work is to analyze the implicit function and to identify
topologically weak regions, in the sense that small perturbations of
the field lead to different topological interpretations of the data. Our
system indicates such weak regions, allowing the user to merely
draw few scribbles over a corresponding 2D tablet to specify the
correct local sign of the implicit function. As the user draws such
scribbles, the solution in that region is correctly constrained and the
local topological stability increases.

A common source of errors is the use of a fixed hierarchical data
structure, since coarse resolution close to the surface would gen-
erate erroneous reconstructions. The volumetric nature and the re-
quired accuracy of the solution necessitate the use of an adaptive
domain, which ideally is coarse away from the surface and fine
close to it. However, since the locus of the surface is unknown
a priori, the definition of a correct adaptive domain turns into a
chicken/egg problem. Therefore, we use a dynamically adapted hi-
erarchical structure, generated by triangulating the dual of an oc-
tree (see Figure 3 (right)). Our reconstruction process performs in a
coarse-to-fine, incremental manner. At each iteration, the hierarchy
is locally refined close to the zero level-set of the current implicit
function. Next, the function is updated and analyzed, suggesting
finer user interactions at weak regions.

We illustrate the process in Figure 2. Initially, a set of automatic
constraints is computed from the data points (Figure 2 (left)), defin-
ing approximate inside/outside constraints. Next, the FEM system
is solved and the topology of the resulting implicit function is ana-
lyzed. At weak regions (Figure 2 (center-left)), the user is guided
to add scribbles on 2D tablets for regularizing the local topology
(Figure 2 (center-right)). Starting at this coarse resolution, the pro-
cess is iteratively refined by locally increasing the resolution until
achieving the expected shape (Figure 2 (right)).

Section 4 introduces our formulation of the reconstruction prob-
lem. In Section 5 we present the topological analysis of the im-
plicit function, and the definition of weak regions. These techniques
are integrated into an interactive framework described in Section 6.
We conclude after showing reconstruction results of structured light
scans in Section 7.

4 Constrained FEM Reconstruction

In this section, we describe the formulation of our implicit function
optimization. Let Ps be the data points’ set, and Pin/Pout be sets of
inside/outside constraint points. Our goal is to construct a smooth
watertight surface Z that is close to Ps, and separates Pin and Pout .

The problem defines three criteria, one of which is binary (discon-
nectedness of Pin and Pout ) and two of which are continuous and
high dimensional (smoothness of Z, closeness of Ps to Z). We
look for a solution that disconnects Pin and Pout while balancing
the smoothness of Z and its closeness to Ps.

Figure 3: A 2D illustration of a hummingbird reconstruction. The
reconstructed shape is extracted from the zero level-set (in yellow)
of an implicit function, computed using a finite-element formulation
(left). Our underlying hierarchy adapts to the data points and to the
automatic constraints (right).

Continuous optimization on implicit representation. We first
project the problem into a higher dimension; instead of searching
for Z directly, we construct a continuous implicit function u(p), p ∈
Ω defined over some domain Ω⊂ R3, and define Z = u−1({0}) to
be its zero level-set (see Figure 3 (left)). We translate the objectives
defined with respect to Z onto the function u, by requiring it to be
smooth (generically leading to a smooth Z) and to satisfy :

u(p)≈ 0 for p ∈ Ps (1a)

u(p)> 0 for p ∈ Pin (1b)

u(p)< 0 for p ∈ Pout (1c)

Unless the gradient of u near its zero level-set is small, the points
of Ps are close to Z. In our interactive system, the user can easily
add points to Pin and Pout to stabilize Z (see Figure 4). In the next
section, we explain how to detect areas where more constraints are
needed.

The method replaces the constraints (1b) and (1c) by specifying
target values at Pin and Pout to remove the linear inequality con-
straints, and hence amenable to optimization methods. Thus, the
three criteria on u can be combined into a single continuous score
function Ψ, which assigns a penalty to each candidate. The score
Ψ(u) is a sum of two scores, one that penalizes u for not being
smooth and one that penalizes it for being far from zero, positive
and negative target values at Ps, Pin and Pout .

Penalty functions. We define the non-smoothness penalty for
any function u that is differentiable almost everywhere in Ω by:

Ψsmoothness(u) =
1
2

∫∫∫

Ω

[
( ∂u

∂ x )2 +( ∂u
∂ y )2 +( ∂u

∂ z )2
]

dx dy dz . (2)

This penalty has a physical interpretation [Strang 1986, Sec. 3.3]:
it is the amount of work that is used to maintain state u in a uniform
isotropic diffusive problem (heat conduction, electrostatics) with no
forcing terms. If we add proper forcing terms on the boundary of
Ω, the steady-state solution of this physical problem minimizes this
penalty function and satisfies the Laplace equation.

Figure 4: Adding scribbles to constrain weak regions achieves the
expected topology in the Hummingbird head: from the data points
and initial automatic constraints (left), a scribble is drawn over the
initial FEM field (center) to correct the local topology (right).



Figure 5: A 2D example of the FEM solution on two different un-
derlying grids: the smoothness penalty is independent of the mesh,
adapting automatically to different element sizes and aspect ratio.

The penalty function Ψpoint constraints, penalizes u for being far from
the point constraints. The target values t(p) are defined by t(p) =
0 for p ∈ Ps and heuristically setting t(p) = −d(p) (resp. t(p) =
+d(p)) for p ∈ Pin (resp. p ∈ Pout ), where d(p) is the distance to
the nearest data point :

Ψpoint constraints(u) = ∑
p∈P

(u(p)− t(p))2 ,

where P = Ps∪Pin∪Pout .

Finite-Element Method. The set of admissible functions u is de-
fined by interpolation using a finite element mesh M that partitions
Ω [Hughes 1987, Chap. III]. We denote the values of u at the ver-
tices of M by the vector uM .

We use the finite-element method to construct a matrix K such that:

Ψsmoothness(u) = uT
MKuM . (3)

Thus, in our method, the mesh defines only the family of admissible
functions u. The non-smoothness penalty Ψsmoothness(u) of a partic-
ular function is completely independent of the mesh (see Figure 5),
since it is intrinsically defined using the mesh-free expression (2).

In this context, the finite-element method is essentially a recipe for
constructing a matrix K given an integral expression such as (2)
and a finite-dimensional set of admissible functions, such that K
satisfies (3). The recipe is based on computing the integral (2) on
a set of basis functions that span the space of admissible functions.
Here, we use a tetrahedral mesh and define the admissible func-
tions as piecewise tri-linear, interpolated from vertices’ values on
each tetrahedron of the mesh. The matrix K is sparse and easy to
compute tetrahedron by tetrahedron (see Appendix).

The literature contains many methods, often referred to as Lapla-
cian approximations, for constructing similar matrices from 2D
meshes. The main advantage of our FEM-based approach is that the
smoothness penalty formulation is independent of the mesh, since
the left-hand side of Equation (3) is mesh free. Therefore it extends
naturally to 3D meshes. Our method automatically adapts to func-
tions interpolated on meshes with tetrahedrons of widely different
size and aspect ratio, common in our data structure (see Figure 5).

We sum Ψsmoothness and Ψpoint constraints to form a single least
squares optimization problem. For each constraint point p ∈ P,
we define cp such that cp uM = u(p). The row cp represents a lin-
ear interpolation operator on M. It has at most four non-zero val-
ues for a tetrahedral mesh. The constraint for point p now writes
cp uM = t(p), and we weight this constraint with weight ωp. The
smoothness constraint can be incorporated to the least squares for-
mulation using any matrix E such that ET E = K as follows:

min
uM

∥∥∥∥∥∥∥∥∥∥




E
ω1 c1
ω2 c2

...
ω|P| c|P|




uM−




0
ω1 t(p1)
ω2 t(p2)

...
ω|P| t(p|P|)




∥∥∥∥∥∥∥∥∥∥

2

2

,

The matrix E is never computed explicitly. Instead, we solve the
least-squares problem using its normal equation:

(
K + ∑

p∈P
ω2

p cT
p cp

)
uM = ∑

p∈P
t(p) ω2

p cT
p . (4)

We construct the coefficient matrix of this linear system of equa-
tions by constructing K using the finite-element method, and then
adding to it the sparse matrices cT

i ci. We solve using a fast sparse
Cholesky factorization (CHOLMOD [Davis and Hager 2005]).

Adding and removing constraints. One aspect of this numeri-
cal approach allows real-time interaction in our surface reconstruc-
tion application. The structure of Equation (4) allows the method to
incrementally update the linear system factorization when the user
adds or removes inside/outside constraints. We compute the ad-
ditional rows cp and target values t(p) for each new point p, and
add the new cT

p cp matrices and cT
p t(p) vectors to left and right hand

side of Equation (4). To update the sparse Cholesky factorization
we use [Davis and Hager 2005]. Thus, the system factorizes the
initial matrix only once. In most cases, updating this factorization
is faster than factoring again.

5 Detection of Topological Stability

The computation of the implicit function described above is de-
signed to incorporate user information through inside/outside con-
straints. To avoid the laborious task of defining constraints every-
where, the system automatically detects weak regions of unstable
topology. The definition of a weak region is quite intuitive. Its
theoretical foundation and its computation are described next.

Weak regions. We define a weak region as part of the implicit
function’s domain Ω where the local topology of the object is un-
stable. That is, little perturbations of the data lead to change in
the local surface topology. This instability implies ambiguities that
need to be solved by the user. These weak regions are generally

Figure 6: Weak region for a 2D field: the red (resp. blue) line is the
+ε (resp. −ε) level-set for u: this small level perturbation changes
the level set connectivity, characterizing a critical point.



Figure 7: Weak regions computation, demonstrated on part of the hummingbird example from Figures 3 and 4. The link (in green) of vertex v
in our adaptive mesh (left) is composed of two sets of vertices: negative {w−1 ,w−2 ,w−4 ,w−5 }, and positive {w+

3 ,w
+
6 ,w

+
7 } (center), distributed

in four connected groups Γ−1 ,Γ
−
3 and Γ+

2 ,Γ
+
4 (blue and red ellipses). Counting a total of four (≥ 3) Γ±i ’s, the vertex v is critical. Adding a

constraint loosely along the critical line connecting Γ−1 to Γ−3 changes the values around v (right), making it a regular point (two Γ±i ’s).

due to the low resolution of the underlying structure [Stander and
Hart 1997] (like the hummingbird head on Figures 3, 4 and 7), to
missing parts or to the intrinsic complexity of the shape (like in the
head of the elephant on Figure 2).

To build a computable definition, we say that a point p is criti-
cal if, for an arbitrarily small ε , the u(p)− ε and u(p) + ε level-
set surfaces have different topologies in a neighborhood of p (see
Figure 6). The weak regions are the regions of these topological
changes. For small values of |u(p)| they mark topological insta-
bilities in the reconstructed surface (zero level-set of u) induced by
small level shifts. Moreover, this definition addresses the small gra-
dient issue discussed in the Section 4.

A direct computation of weak regions by applying more complex
random perturbations may generate critical regions everywhere,
which would require stochastic simulations to select between them.
Our approach uses a deterministic detection of the local stability
by analyzing the topology under level shifts. This directly relates
to strong mathematical notions derived from Morse theory [Milnor
1963]. Morse proved that for smooth, regular implicit functions
u(p), these critical regions are points p where the gradient vanishes:
~∇u(p) =~0. This equivalence makes computable the abstract defini-
tion of weak regions, as described next.

Discrete critical points. The topological changes of smooth,
regular implicit surfaces occur at critical points. Based on further
structural properties of Morse’s critical points, Banchoff [1967] in-
troduced an equivalent definition for these critical points on poly-
hedral mesh, where the implicit function u is discrete, given only at
the mesh vertices and linearly interpolated on the faces of the mesh.
This definition is summarized as follows:

To determine whether a vertex v of a tetrahedral mesh is critical,
we consider its link graph, whose vertices wi are connected to v
and whose edges connect adjacent wi’s (see Figure 7 (left) for a
2D example). We partition the wi’s into two sets, one of positive
vertices, for which u(wi) > u(v) and one of negative vertices, for
which u(wi) ≤ u(v). Each set, connected by the edges of the link
graph, is composed of several connected groups Γ±i (see Figure 7
(center)). If the total number of positive and negative connected
groups is 1 or above 3, the vertex is critical. On 2D meshes, a
critical point has typically one or four connected groups. On 3D
meshes, they have typically one or three connected groups.

The level-set at u(v)−ε (resp. u(v)+ε) is contained in the negative
(resp. positive) sets of the link of v. If these sets are made of several
connected groups, the level-shift necessarily causes the level-set to
“jump” between the connected groups Γ±i , inducing a topological
change (see zero level-set (yellow) in Figure 7 (right)). Since we
assume that the original object is connected, we ignore topological

changes that would create isolated components, i.e., critical vertices
where the total number of Γ±i equals 1. We further discard the crit-
ical points v of high value |u(v)|, defining weak regions only close
to the zero level-set of u, which will be the reconstructed surface.

User interface. After having related the weak regions to the for-
mal definition of critical points, the remaining challenge is to pro-
vide, for each weak region, a 2D tablet over which the user can draw
scribbles to correct or reinforce the topology of the zero level set.
A correction either connects or disconnects two parts of the object
(see Figure 7 (right)). In the critical points definition, connecting
two parts of the implicit surface corresponds to merging two con-
nected groups Γ±i of the same sign set. Similarly, disconnecting
corresponds to connecting the complementary object. This requires
drawing a constraint loosely across the critical line, i.e. the line
joining the barycenter of each group.

Consequently in the interface, tablets are located at critical points,
oriented perpendicularly to the critical lines (see Figure 8). Note
that with volumetric meshes, the common critical points have three
Γ±i , defining a single critical line, and thus one tablet.

6 Technical Details

The dual hierarchical graph. The scanned data is given by a
set of range images, where each data point is associated with the
scanner position. The range images are registered [Levoy et al.
2000] to form a point cloud, which is structured by a hierarchical
domain that tessellates the 3D space.

We use a tetrahedral mesh, which is generated from the dual of a
dynamically adapted octree. This dual allows a better representa-
tion of continuous functions, as required by the FEM and the topo-
logical analysis. Each cell of the dual is triangulated with a static
pattern of 6-tetrahedrons cube decomposition. To save memory, we
keep only the edge graph of the tetrahedrons. A 2D illustration of
this data structure is shown in Figure 3 (right). The initial octree
is adapted just to separate the data points, restricting its maximum
depth to five. Next, following user validation of weak regions, the
octree is iteratively refined close to the zero level-set of the implicit
function until reaching a visually-validated local feature size.

Automatic initial reconstruction. To initiate the reconstruction
process, we use few, automatically generated, loose inside/outside
constraints. The location and the sign of these initial automatic
constraints can be computed heuristically. In this work we simply
compute an unsigned distance transform from the data points by
fast marching over the hierarchy. We use local maxima, detected by
examining field gradients in the neighborhood of an octree cell, as



Figure 8: In complex shapes automatic detection of weak regions is necessary to guide the user: original scan with the weak regions (left),
reconstruction without scribbles generates some spurious connections (center), which are removed after the user adds scribbles (right).

automatic constrains (in Figure 3(left) automatic constraints were
extracted from the 2D medial-axis for illustration purposes). We au-
tomatically classify constraints as inside/outside applying a simpli-
fied space carving method [Curless and Levoy 1996]. Although this
process is prone to errors, it serves only as an initial coarse guess
for the function u as described in Section 4. This technique actually
performs an initial reconstruction similar to automatic reconstruc-
tion based on global optimizations such as [Carr et al. 2001; Ohtake
et al. 2003; Kazhdan et al. 2006] (see Figure 9), without using the
normals of the input scan. In our experiments, this process could
be easily skipped using only manual scribbles.

User interaction. The user can visualize arbitrary 2D cross sec-
tions of the implicit function using a pseudo-color map (see Fig-
ure 1 (center-left)). The user picks one of the cross sections which
are displayed at the weak regions (see Section 5). This cross sec-
tion of the field is reproduced in a separate window, which we call
a tablet, over which the user draws the scribbles. The user is not
required to precisely position the scribbles, but rather loosely de-
fine inside and outside relations locally at the weak regions. These
in/out scribbles are inserted as constraints to the FEM system, with
negative/positive sign and value according the distance field.

With each additional constraint, the field and the weak regions are
updated within less than a second. This interactivity relies on Equa-
tion (4), which allows a pre-factorization of the FEM matrix. As the
user adds more scribbles, the topological stability of the implicit
function locally increases. After the user’s validation, the octree is
locally refined close to the zero level-set of the implicit function,
and the FEM matrix is pre-factorized again. Our non-smoothness
penalty constraint avoids spurious topological instabilities (as also
observed in [Ni et al. 2004]), while incorporating the scribbles con-
straints. The whole process takes between a few seconds and a few
minutes, depending on the octree depth and the shape complexity.

Note that except for the scribbles drawing, the user is not required
for any parameter tuning. The critical points filtering is determined
by the octree depth (|u(v)| < 8 · 2−depth), and the relative weights
ωp in Equation (4) are fixed to a low value (0.01) for the initial
constraints, medium (1) for the data points and high (1000) for the
user scribbles.

Final surface reconstruction. Once the implicit function achie-
ves the expected topology, a final mesh is extracted from its zero
level-set. Since the field is smooth everywhere (see Figure 10), we
can use any isosurfacing method. We choose the dual marching
cubes method [Schaefer and Warren 2004] since it guarantees the
resulting topology, and since it works on the same data structure
as our octree dual. We further improve mesh quality using stan-
dard mesh optimization techniques (edge flips/collapse and normal
smoothing) that do not alter the shape topology.

7 Results

To demonstrate the effectiveness of the proposed method, we fo-
cused on complex objects, such as the riding monk (Figure 1),
which we acquired with few structured light scans. This relatively
inexpensive technology has the advantage of being fast: each model
was scanned from 6 to 12 shots in less than five minutes. Our exper-
iments exhibit the difficulties that are common to various scanning
techniques: uncoverable areas as the elephant’s trunk in Figure 2
and the camel legs in Figure 13; highlights in the sitting woman
in Figure 14; object’s material as the riding monk’s black areas in
Figure 1; and shadows in the tiger’s head in Figure 12. For illustra-
tion purposes, we rendered the unoriented raw scans using normals
computed from our reconstruction. For a demonstration of the in-
teractivity of our system, we refer to the accompanying video.

To further analyze the specific characteristics of our technique, we
consider feature-specific models, generated by an openGL-based
virtual scanner. As we can see in the triple Möbius band (Fig-
ure 10), our FEM formulation yields a smooth field everywhere,
even for thin shapes. Furthermore, our topological analysis detects
all the weak regions to allow a complete reconstruction, even on
models as complex as the knot (Figure 8). We also demonstrate the
effectiveness of the interaction on virtual scans of real models such
as the hand (Figure 9) and the hip (Figure 11).

Our method can handle input data with very large missing parts
and outliers. The smoothness constraint of the FEM distinguishes
gracefully between frontiers of under-sampled regions and outliers
as in the tiger’s head (Figure 12). In such cases, the smoothness

# # Auto- Inter- #
points shots matic action scribbles

Riding Monk 469 k 10 130 s. 3 min 9
Elephant 217 k 6 88 s. 2 min 7
Knot 497 k 15 206 s. 4 min 10
Hand 259 k 8 92 s. 30 s. 2
Saddle 284 k 11 118 s. 0 min 0
Hip 222 k 9 109 s. 30 s. 4
Tiger 340 k 10 157 s. 6 min 12
Woman 333 k 9 116 s. 5 min 12
Camel 282 k 12 128 s. 3 min 6

Table 1: Reconstruction timings for our scanned models. From left
to right: the number of data points, the number of structured light
shots, the time of the automatic FEM reconstruction, the interaction
time of the reconstruction session and the number of scribbles used.



Figure 9: Comparing our automatic initial reconstruction with other implicit techniques: (from left to right) the original scan with our weak
regions detection; reconstruction using MPU; using Poisson surface reconstruction; our FEM technique without any user interaction; our
interactive reconstruction with two scribbles only.

criteria of the FEM, smoothly completes the missing parts and dis-
cards outliers, resulting in a watertight manifold surface. In similar
noisy situations, the topological analysis accurately detects weak
regions such as the arm-leg contacts of the woman in Figure 14.
Furthermore, user’s scribble constraints can generate coherent ge-
ometries in under-sampled regions such as the camel’s legs (Fig-
ure 13), while guaranteeing watertightness and avoiding spurious
connected components.

We compare the automatic part of our reconstruction technique
with the implicit reconstruction techniques of [Ohtake et al. 2003]
and [Kazhdan et al. 2006]. As shown in Figure 9 for a clean data
set, the results are of comparable quality. The timings of the three
methods are about the same, e.g., for this hand model, [Ohtake et al.
2003] performed in 141 seconds at octree depth 10, [Kazhdan et al.
2006] in 273 seconds for octree depth 10, and our initial reconstruc-
tion in 92 seconds at depth 8 (see Table 1). Note that our method
does not require the data points’ normals. For the sake of this com-
parison, we provided the normals of our reconstructed surface to
the other implicit techniques. Furthermore, the addition of only
two scribbles recovers the correct model.

As a limitation, this work focuses only on the topological aspects
of the reconstruction and not specifically on its geometry. The con-
straints we associate to the scribbles correct the local topology of
the shape. Our scribbles merely indicate whether a region is inside
or outside the shape. Therefore, this mechanism does not precisely
define the geometry of the resulting shape. In particular, it com-
pletes smoothly large missing parts (such as the woman’s shoulder
in Figure 14). Thus, the method does not deal with important issues
such as the reconstruction of sharp features.

Figure 10: The smoothness penalty of the FEM formulation yields
a field that is smooth everywhere, even for thin shapes.

8 Conclusions

To conclude, we presented an interactive tool for surface recon-
struction, where the user assists the interpretation of data at au-
tomatically detected topologically unstable regions. The use of in-
side/outside scribbles at these regions allows achieving the expected
topology of the object. The reconstructed surface is faithful to the
data points and guaranteed to be watertight even with noisy under-
sampled data . Our experiments show that from only a dozen of
structured light shots, we are able to reconstruct coherent models.
In the future, we want to be able to guide the geometry of the recon-
structed surface in the missing areas. This can be done in the same
framework, by adding other semantics to scribbles, such as specify-
ing additional data points, associating sharp features or smoothness.
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Appendix: Construction of the matrix K

The construction of K is a standard finite-elements one, based
on [Hughes 1987] but simplified to our particular case and made
completely explicit.

Let {(xi,yi,zi)}n
i=1 be the coordinates of the vertices of the mesh

and let {(n(1)
j ,n(2)

j ,n(3)
j ,n(4)

j )}m
j=1 be the vertices’ indices of the

tetrahedrons in the mesh. For each tetrahedron (linear tetrahedral
element) we compute the 4-by-4 matrix:

K j =
|det(J j)|

6
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and E j is the 3-by-4 matrix solution of the following linear system:

J∗j E j =

[
1 0 0 −1
0 1 0 −1
0 0 1 −1

]
.

We define K̂ j to be an n-by-n symmetric matrix which is zero except

for rows and columns n(1)
j ,n(2)

j ,n(3)
j ,n(4)

j , where K̂ j(n(a)
j ,n(b)

j ) =
K j(a,b). Finally, we sum the K̂ j to generate K = ∑m

j=1 K̂ j .



Figure 12: The smoothness penalty discards outliers and completes smoothly missing parts, as can be seen in the tiger’s head. From left to
right: the original statue, the raw data points (the missing parts are in black), the FEM field with two close-ups on outliers and large missing
parts in the head, and our interactive reconstruction of the model with 12 scribbles.

Figure 13: Due to the statue’s base (left), the camel’s legs cannot be covered (center-left). Scribble constraints drawn on automatically
generated 2D tablets (center-right) can be used to generate a coherent geometry (right).

Figure 14: The topological analysis detects weak regions (center-right) in the presence of noise. Weak regions are typically located where
two parts of the shape are close and the topology is ambiguous, such as the arm-leg contacts in the sitting woman. Missing parts with
unambiguous topology, such as her right shoulder, are automatically smoothly completed.


