
Font Subsetting and Downloading in the PostScript Printer Driver of Qt/X11

Sivan Toledo
School of Computer Science, Tel-Aviv University

Tel-Aviv 69978, Israel

Lars Knoll
Trolltech AS

Waldemar Thranes gate 98, N-0175 Oslo, Norway

Abstract

This paper describes the font discovery, subsetting, and
downloading mechanism in Qt/X11. The mechanism
addresses a major usability issue: prior to the implemen-
tation of this mechanism, users of Qt applications (and
hence users of KDE) could not print non-Latin text, and
could only print Latin text in fonts that are built into most
printers. The new mechanism allows users to print text
in any script that Qt/X11 supports, which includes west-
ern scripts (primarily Latin, Cyrillic, and Greek), Ara-
bic, Hebrew, and east-Asian scripts. The new mecha-
nism also allows users to print Latin text using almost
any PostScript Type 1 or TrueType font that X11 sup-
ports. The mechanism usually finds font files without
any configuration beyond that required to use the fonts
under X11.

1 Introduction

Qt/X11, the X toolkit that KDE uses, includes a printer
driver that allows applications to render text and graph-
ics on a PostScript device. Prior to Qt version 2.3.0,
this printer driver had very limited WYSIWYG text-
rendering capabilities. It could only render text if it
could guess correctly the PostScript font name from the
XLFD name, and if the font was resident at the printer.
Essentially, the driver only supported a limited range of
standard Latin fonts and one symbol font. This meant,
for example, that users could use Konqueror, KDE’s web
browser, to view Hebrew web pages, but could not print
them. Users could also not use nonstandard Latin fonts
in otherwise sophisticated applications, such as KWord
and KPresenter, KDE’s word processor and presentation
programs. This situation, which is still quite common

in X applications, is clearly below the current level of
users’ expectations.

Versions 2.3.0 and later of Qt/X11 include a font discov-
ery, subsetting, and downloading mechanism that recti-
fies this problem. The mechanism enables true WYSI-
WYG text rendering in print jobs for all Qt (and there-
fore KDE) applications running under X, as long as the
X fonts that they use are generated from TrueType or
Type1 fonts. Figure 1 demonstrates this capability.

The font downloading and subsetting mechanism in the
driver

1. Finds the font file corresponding to a given X
screen font, and

2. uses the font file to insert a scalable description of
the glyphs that are used in the document into the
PostScript output. This operation is referred to as
subsetting the font and downloading it into the print
file.

We had three main design goals in mind when we de-
signed and implemented this mechanism:

1. Support for the most common scalable font for-
mats: TrueType and PostScript Type 1.

2. Support for Unicode, which Qt uses internally for
almost all strings.

3. The ability to print with any TrueType or PostScript
Type 1 font that X11 uses without any configuration
files beyond those required to simply use the fonts
under X11.

As the paper shows, we have essentially achieved our
goals. While the first two goals are self explanatory, the



Figure 1: A simple Qt example program running under X11 (left) and its printed output (right). The printed output
on the left shows only part of the printed page.

third requires some explanation. A mechanism that re-
quires additional configuration files fails when they are
missing or defective. A mechanism that requires no con-
figuration is, therefore, much more robust. We wanted
to maximize the chances that a font that the user sees on
the screen is downloaded correctly to a print job, and the
lack of configuration files helps us achieve this goal.

The rest of the paper is organized as follows. Section 2
presents background on fonts and on text rendering in
PostScript. Section 3 describes the overall structure of
Qt/X11’s printer driver, to which we have added the new
mechanism. The mechanism itself is described in Sec-
tion 4. Section 5 suggest additional features that would
benefit users if added to the font-handling mechanism
that we describe. Section 6 explains why the existence
of multiple printer drivers in the X world, each with its
own font-handling mechanism, harms users. The section
suggests that these mechanisms be unified into a single
font-subsetting-and-downloading mechanism. Section 7
summarized the paper.

2 Background

2.1 Font Files

Digital fonts allow programs to render text on output de-
vices such as monitors and printers. A digital font con-
sists of three main components, which can reside in a
single or in multiple files. The first component consists
of glyph descriptions, which describe the shape of let-
ters, parts of letters, or groups of letters. The second
component of a font is an encoding or a set of encod-

ings. An encoding maps the characters of a character
set, such as ASCII or Unicode, to glyphs. The third com-
ponent consists of metrics and other layout information,
which assists the application in laying out text. Fonts
also contain auxiliary information, such as the name and
style of the font, copyright information, and so on.

Most fonts today contain scalable glyph descriptions us-
ing either cubic or quadratic splines. A software com-
ponent called a rasterizer uses these curves to decide
which pixels are covered by the glyph and should be
painted and which should be left unpainted. So-called
antialiased rasterizers paint pixels in several colors to
simulate the effect of partially-covered pixels. Glyph
descriptions usually usually contain data called hints
in addition to the splines. Hints help the rasterizer
draw better-looking glyphs at low resolutions. Bitmap
glyph descriptions that specify explicitly which pixels
to paint, and which were once common, are becoming
rarer. Some font formats allow composite glyphs, which
represent a single character using appropriately placed
base glyphs. For example, the glyph for the character
’a with a grave accent’ can be represented by translated
references to the glyph representing ’a’ and to the glyph
representing the accent.

An encoding maps the characters of a character set to
glyphs in the font. Glyphs are specified using indices or
using symbolic names. Some font formats avoid the use
of encodings by putting the glyphs in an array whose size
is the length of the encoding, so glyph indices directly
correspond to character codes. But most font formats
today include explicit encodings. The encoding is used
by the rasterizer, which uses it to draw the correct glyph
for each character. The application sometimes uses the
encoding as well in order to access metric and layout



information associated with specific glyphs.

All fonts contain at least one kind of glyph-specific
metrics—the width of each glyph. The width of the
glyph allows text-layout applications to measure text in
order to compute line breaks and to justify text, and it
allows the renderer to determine where to draw the next
glyph. Many fonts contain other metrics, such as met-
rics for vertical text layout, for pair kerning (bringing
specific pairs of glyphs closer together or further apart)
and so on. Some fonts also contain additional text-layout
data, such as ligature substitution information (replac-
ing consecutive glyphs by a single glyph that represents
multiple letters, such as a glyph representing an ’f’ fol-
lowed by an ’i’, as in file), glyph positioning informa-
tion (for attaching multiple diacritics to a single letter,
for example), and glyph substitution information (when
multiple glyphs are available for representing a single
letter).

We now explain the main features of the most widely-
used scalable font formats in use today.

TrueType Fonts. TrueType fonts [8] store all the font
information in a single data file (usually with suffix
ttf) containing tables (data structures) that con-
tain glyph descriptions, encodings, and so on. The
glyphs are described using quadratic splines and
composition of base glyphs. Glyphs are referred to
using indices, although many TrueType fonts also
specify names for the glyphs. TrueType fonts are
hinted using programs in a special programming
language. These programs can move the control
points of the splines to fit better a low resolution
pixel grid. The metrics of the font can also be mod-
ified using these programs, so a 10-point font may
have different glyph widths at 100 PPI (pixels per
inch) than at 1200 PPI. Most TrueType fonts con-
tain a Unicode encoding, and some contain addi-
tional encodings. TrueType collection fonts (exten-
sion

PostScript Type 1 Fonts. Type 1 fonts [1, 6], which
will be described in more details below, store font
data in two data files. One data file, with suffix
pfb or pfa, stores the encoding, glyph descrip-
tions (in either binary or ASCII, hence the two suf-
fixes), and the width of glyphs. Another file con-
tains additional metric and layout information. The
auxiliary file may be binary (a pfm file) or ASCII

(a afm file). Glyphs are referred to using symbolic
names, and they are described using cubic splines
or using translated composition. Hints in Type 1
fonts are declarative, which means that the font de-

signer declares explicitly certain important features
of the glyph, but it is up to the rasterizer to decide
how to use this information. For example, a hint
may declare that the two counters (empty spaces)
in the letter ’m’ should be exactly equal in width.
Type 1 fonts are 8-bit fonts, which means that they
use an encoding that maps characters in the range
0–255 to named glyphs. Most Type 1 fonts contain
unencoded glyphs, which means that no character
maps to them. Programs can reencode the font, or
replace its encoding, which allows them to access
all the glyphs in the font.

OpenType Fonts. There are two types of OpenType
fonts [9]. The first type is a TrueType font with ad-
ditional tables, mostly tables that contain advanced
layout information. Such fonts are also valid True-
Type fonts so the can be processed using any pro-
gram that processes TrueType fonts. Therefore,
from here on we refer to OpenType fonts with True-
Type outlines as TrueType fonts.The second type is
similar to TrueType fonts except that the glyph de-
scriptions and the hints use a representation sim-
ilar to that of Type 1 fonts. These fonts, which
have an otf format, allow for lossless conversion
of Type 1 fonts to ’almost’ TrueType format. Open-
Type fonts are relatively new, but quite a few fonts
are available in this format from Adobe. Many
of these OpenType fonts contain advanced typo-
graphic features, such as old-style figures, small
capitals, glyph variants, and so on.

2.2 PostScript Text Rendering

PostScript documents are programs in the PostScript
language that contain rendering commands. A Font is
described in PostScript using a dictionary, the main data
structure in the PostScript language.

Four main PostScript commands (with some variants)
render text. The findfont command retrieves an al-
ready defined font. The scalefont command scales a
font to a given point size. The setfont assigns a pre-
viously found and scaled font to be the fonts in which
subsequent text will be rendered. The show command
draws a string of text in the current font.

QT/X11’s printer driver actually uses a variant of the
show command called ashow. This command has
three arguments, dx, dy , and a string. The command ren-
ders the string but adds dx to the width of each character
and dy to its “vertical width”. This allows the driver to
fit a string into a given length. The driver uses this ability



to ensure that text on paper takes exactly the same hori-
zontal space as the same text on the screen, even though
the length on the screen is constrained to whole pixels.

2.3 PostScript Fonts

Thirteen fonts (Times, Helvetica and Courier in 4 styles
and Symbol) are built into all PostScript devices. Most
PostScript devices have additional built-in fonts. But to
render text in a font that is not built into the device, the
PostScript document must include a representation of
the font. The process of including a representation of
the font in the PostScript file is called font downloading.

PostScript interpreters support several types of down-
loadable fonts.

Type 1 Fonts. PostScript document may include Type 1
fonts in ASCII representation. The PostScript doc-
ument includes only the glyph descriptions and the
encoding, not the additional metric and layout in-
formation. All PostScript devices support Type 1
fonts.

Type 3 Fonts. These fonts [6] are the most general
glyph representation of any PostScript fonts. To
rasterize a glyph in a Type 3 font, the PostScript in-
terpreter invokes a procedure that the font provides.
The procedure is invoked with two arguments, the
font dictionary and the character to be drawn (or
the name of the glyph in Level-2 and -3 PostScript).
The procedure can use all the tools of the PostScript
language to draw the glyph. It can invoke other pro-
cedures, draw bitmap images, and draw shapes de-
fined by cubic splines. It can also determine the
pixel grid that is being painted and adapt the glyph
to the pixel grid. Because Type 3 fonts can uti-
lize all the power of the PostScript language, font
rasterizers that do not include a PostScript inter-
preter cannot process them. In particular, unlike
Type 1 fonts, which can be used on Windows, Mac,
and X11 systems, Type 3 fonts cannot be used in
these windowing environments. They are primarily
used to download non-Type-1 fonts into PostScript
documents. For example, Dvips generates Type 3
fonts to download bitmapped fonts into PostScript
documents, and some Windows printer drivers gen-
erate Type 3 fonts to download TrueType fonts into
PostScript documents. Like Type 1 fonts, Type 3
fonts also use an 8-bit encoding vector.

Type 42 Fonts. Type 42 fonts [5, 6] are PostScript
wrappers for TrueType fonts. A Type 42 font

dictionary contains PostScript string (or several
strings) that encode the original TrueType font, a
data structure that maps glyph indices to symbolic
names, and an 8-bit encoding vector that maps
characters to named glyphs. Some level-1 and -2
PostScript devices cannot rasterize Type 42 fonts;
All level-3 devices and many level-2 ones can;
GhostScript can. There are two variants of Type 42
fonts: with or without a GlyphDirectory. Using a
GlyphDirectory is more flexible but not all devices
that support Type 42 fonts supports GlyphDirecto-
ries.

Type 0 Fonts. Type 0 fonts [6] are composite fonts
that are designed for supporting character sets with
more than 256 characters. Type 0 fonts contain
no glyph descriptions or metrics. They only con-
tain a mapping from characters to glyphs in one or
more 8-bit base fonts. For example, a Type 0 font
may map Unicode characters to glyphs from several
Type 1 fonts. Composite fonts support several map-
ping mechanisms. The mapping mechanism that
we use is called an 8/8 mapping. Each character to
be rendered is represented using two bytes, where
the first byte selects the base font and the second se-
lects the glyph using the base font’s 8-bit encoding
vector. Other mapping mechanisms allow for other
splittings of 8-bit and 16-bit characters, as well as
for statefull character encodings and for CID map-
pings, described below.

CID Fonts. CID fonts [3, 2, 6] are special Type 0 fonts
that are designed to allow a single encoding to map
characters to the glyphs of many fonts. A CID font
contains glyph descriptions for all the glyphs of a
specified character collection. A character map
(CMap) maps the characters of a character set to the
glyphs of a character collection. To use a CID font,
the PostScript program composes a CID font with a
character map to form a CID-Keyed font. The CID
font and the character map must, obviously, use the
same character collection. This arrangement allows
a single encoding mechanism (the character map)
to be used with many different fonts, as long as all
the fonts contain the same glyph set in the same
order. For example, composing the font Munhwa-
Regular with the character map UniKS-UCS2-
H creates the font Munhwa-Regular--UniKS-
UCS2-H ,which has a 16-bit Unicode encoding.
CID fonts can have Type 1 glyph descriptions,
Type 3 glyph descriptions, bitmap glyph descrip-
tions, or TrueType glyph descriptions. CID fonts
are used today solely for CJK (Chinese, Japanese,
Korean) fonts (see [7]).



2.4 Subsetting and Incremental Definition of
Fonts in PostScript

The representation of a font in a PostScript document
needs not include all the glyphs in the original digi-
tal font files. The printer driver can include in the file
only the description of glyphs that are actually used in
a document. Subsetting a font requires that the driver
that downloads the font be able to manipulate the data
structures of the font file. In particular, whenever a font
includes composite glyphs, including a composite in a
subset requires that all the base glyphs of the subset be
included as well.

Some fonts are so large that subsetting them is virtually
a necessity. TrueType fonts such as Times New Roman
and Courier New, which include Latin, Greek, Cyrillic,
Hebrew, and Arabic glyphs, have over 1300 glyphs and
their files are over 300KBytes in size. Fonts such as
Bitstream Cyberbit, Arial Unicode MS, and IBM Times
New Roman WorldType, which include CJK glyphs,
have tens of thousands of glyphs and their file are 13–
24MBytes in size. The representation of these fonts as
Type 42 PostScript fonts would be even larger. Such
fonts must be subsetted.

PostScript fonts can be defined incrementally. That is,
the first definition of a font main describe only a proper
subset of the glyphs that the document uses. When ad-
ditional glyphs are needed later in the document, they
are added to the font dictionary. The addition of glyphs
obeys the PostScript scoping rules of save/restore
blocks. Therefore, when the block in which the glyphs
are added ends, their descriptions are removed from the
font.

Incremental font definition serves two purposes.
First, the fact that glyphs are removed when the
save/restore block ends allows the driver to pro-
duce a PostScript document that can be processed with
less memory. Since pages are typically enclosed be-
tween a save and a restore, the driver can build a
document in which each page adds the glyph descrip-
tions required for that page. In such cases the PostScript
interpreter never needs to store a large set of glyphs from
a font. This technique benefits mainly CJK fonts, in
which the set of glyphs used in a long document may
be considerably larger than the set used on any partic-
ular page. The negative implications of this techniques
are a larger PostScript file size and longer processing,
since the same glyph may need to be processes on sev-
eral pages.

The second use for incremental definition of fonts is
when the driver must begin producing the PostScript
output before it finishes processing the document. In
such cases, it must define the fonts that are used before
it can determine the exact subset of their glyphs that are
used in the document. The driver can then either down-
load the entire glyph set of the fonts, or it can define
fonts with the glyph set that has been used up to that
point, and add additional glyphs as it encounters them in
the document.

Glyphs can be added to Type 1 and 3 fonts, and to
Type 42 fonts with a GlyphDirectory.

3 The Qt/X11 Printer Driver

The Qt/X11 printer driver is the software module in Qt
that enables applications to generate PostScript output
for printing, storage, or further processing (e.g., conver-
sion to PDF).

To generate PostScript output, the application creates a
QPrinter object, which is a QPaintDevice by inheritance.
The QPrinter object specifies the name of the printer (or
the file to write the output into), the paper dimensions,
and so on. Typically, the application creates the QPrinter
object by creating a QPrintDialog, which lets the user
choose the printer and the printer setup and. The ap-
plication then asks the QPrintDialog to create a QPrinter
object. Once the QPrinter object is ready, the application
uses it to create a QPainter. QPainter is an object that
provides a drawing API to the application. The appli-
cation sends drawing commands to the QPainter, which
sends them to the QPrinter. This part of the mechanism
works in the same way on all the platforms that Qt sup-
ports, including both X11 and Windows.

Under X11, the QPrinter object contains a reference to a
QPSPrinter object. The QPSPrinter object, in turn, con-
tains a reference to a QPSPrinterPrivate object, which
performs the actual PostScript generation. The reasons
for the existence of the intermediate QPSPrinter object
are irrelevant to this paper.

When the application draws on the QPainter associated
with the QPrinter, the QPainter sends the drawing re-
quests to its associated QPrinter (which the applica-
tion constructed, usually using a QPrintDialog). The
QPrinter sends the drawing commands to its QPSPrinter,
which sends them to its QPSPrinterPrivate object, which
generates the appropriate PostScript. The QPSPrinter-



Private object represents the state of the PostScript print
driver for a single print job. The methods of the QP-
SPrinterPrivate class comprise the printer driver itself.

Two commands that the application passes to the printer
driver are related to text rendering: setfont, which sets
the font and size in which text is rendered from that
point on, and drawtext, which actually renders text. The
setfont command specifies the font by passing to the
driver a QFont object, which is essentially a Qt object
representing an X11 screen font. On systems running
XFree86 4 and later, the X11 screen font can be either a
core X font or an Xft font [10].

The printer driver (QPSPrinterPrivate) attempts to buffer
the PostScript document that it generates. A PostScript
document usually consists of a header, which includes
fonts and other resources that the document needs, and
of page descriptions. Buffering the document allows the
driver to construct a header that includes all the needed
resources. To keep the buffer size reasonable, the driver
emits the contents of the buffer into the output stream
when the PostScript output grows beyond certain limits.
Before it emits the contents of the buffer, the driver gen-
erates and emits a header that includes the resources that
the document needs up to that point. Since the driver has
not yet accepted drawing commands for the rest of the
document, it does not know which additional fonts and
resources the following pages need. From that point on,
the driver emits one page at a time. It needs to include
with a page description any resources that the page needs
and that were not included in the document’s header.

4 The New Mechanism

The new font subsetting and downloading mechanism is
built around a new class, QPSPrinterFontPrivate. This
class is used solely by the printer driver and its in-
terface is not in Qt’s public API. QPSPrinterFontPri-
vate is a base class that represents a PostScript font
corresponding to a Qt screen font. The subclasses
of the base class correspond to specific font formats:
QPSPrinterFontTTF for TrueType fonts, QPSPrinter-
FontPFA and QPSPrinterFontPFB for Type 1 fonts, QP-
SPrinterFontAsian for built-in CJK fonts, and QPSPrint-
erFontNotFound for screen fonts for which no match-
ing font file was found. There are four subclasses of
QPSPrinterFontAsian, corresponding for Japanese, Ko-
rean, traditional-Chinese and simplified-Chinese fonts.
Some of the new subsetting and downloading function-
ality is implemented in the QPSPrinterFontPrivate base

class and the rest is implemented in its subclasses.

4.1 Finding Font Files

The setfont command passes a Qt screen-font object to
the driver. The driver keeps a reference to the screen font
and returns.

The drawtext command asks the driver to render a string
in the current font. The driver checks whether the last
PostScript font that was used matches the current screen
font (the argument of the last setfont command). If not,
it calls its own setFont method to change the current
PostScript font. Either way, the driver now has a refer-
ence to the QPSPrinterPrivate object that corresponds to
the current screen font. It then calls this object’s draw-
Text method to render the string.

The driver’s setFont method creates a temporary ob-
ject of type QPSPrinterFont. It passes to QPSPrinter-
Font’s constructor references to the screen font, to the
driver object itself, and to the script (language) that the
screen font implements. The script is only used to se-
lect a built-in CJK font if no font file is found. The
QPSPrinterFont constructor performs three tasks. First,
it extracts a canonical name for the screen font. For
core X fonts, the name consists of the first 5 fields in
the font’s XLFD name, which include the foundry (ven-
dor), the family name, the weight (e.g., bold), the slant
(e.g., italic), and the width; it ignores the size fields and
the encoding fields in the font’s name, since PostScript
fonts can be resized and reencoded. If the screen font is
an Xft font [10], the canonical name is simply the font’s
file name, which Xft provides. The next task is to deter-
mine whether a font with the same canonical name has
already been used in the document. This is determined
by searching a dictionary data structure that maps the
canonical names of the document’s fonts to QPSPrinter-
FontPrivate references. If the font has been used, pro-
cessing ends here. If the font has not been used, the
third task of the QPSPrinterFont’s constructor is to find
and read the font file. For Xft fonts, this task is trivial.
For core X fonts, the task is more complex. The driver
searches the fonts.dir and fonts.scale files on
the X font path and on the font server’s font path for
matching XLFD names. The X font path can be deter-
mined exactly by calling XGetFontPath. The X font
server’s font path cannot be determined using the API
of either X or the font server itself. The code therefore
guesses locations for the font server’s configuration file
and tries to parse this file in order to determine the font
server’s font path. This heuristic succeeds on standard



configurations but is likely to fail with nonstandard font
servers, such as Bitstream’s Fontastic, which is part of
Corel’s Linux applications. The user or system adminis-
trator can also add directories to be searched by setting
the /qt/fontPath application setting.

Once QPSPrinterFont finds the font file, it reads it into a
buffer (if it was not read before) and determines the font
format. The first few bytes of the font file can determine
unambiguously the font format: binary Type 1 fonts
have 0x80 in their first byte and the string %!PS starting
in byte 6, ASCII Type 1 fonts start with %!PS , and True-
Type fonts start with the 4-byte string 0x00010000,
and so on. Now that QPSPrinterFont knows which for-
mat the font is in, it constructs an appropriate instance
of a subclass of QPSPrinterFontPrivate. The constructor
is given a reference to the buffer containing the font file.
The last action of QPSPrinterFont is to insert the newly
created QPSPrinterFontPrivate into the document’s font
dictionary. The QPSPrinterFont is not used any more
and is destroyed.

The only other important action of the driver’s set-
Font method is the generation of PostScript code to set
the current font. This is done by calling the QPSPrint-
erFontPrivate, which emits the required PostScript code
into the PostScript buffer.

4.2 Drawing Text

When the driver is requested to draw a string, it calls the
drawText method of the current QPSPrinterFontPri-
vate. This method performs two actions. First, it mea-
sures the width of the string emits into the PostScript
buffer an ashow command that renders the string. The
width measurement is done using the screen-font’s met-
rics, to ensure that printed output matches the appear-
ance of text on the screen.

Second, the method adds the Unicode characters in the
string (all Qt’s strings are encoded in Unicode) to the
subset of characters that the downloaded font must sup-
port.

The string to be rendered must be encoded in the
PostScript document using the PostScript font’s encod-
ing. That is, the driver must map Unicode characters
to the font encoding. Font encodings in the driver have
evolved considerably; the mechanism that we now de-
scribe applies to Qt 3.0, but not to Qt 2.x.

Qt 3.0 always uses a 16-bit encoding (except for built-in

Japanese fonts, where it uses the jisx0208.1983-0 encod-
ing). The encoding of a font is constructed incremen-
tally. The first character in the encoding is always the
default .notdef character. The first character that is
rendered using the font in the document is assigned slot 1
in the encoding, the second slot 3, and so on. Therefore,
each font typically has a different encoding depending
on the characters that are rendered in it and on their or-
der of appearance.

An earlier version of the driver used the Unicode en-
coding for all the fonts, but this usually led to larger
PostScript output without any significant benefit.

4.3 Subsetting and Downloading Fonts

The current driver downloads Type 1 and TrueType
fonts, but it only subsets TrueType fonts.

Type 1 fonts are downloaded entirely; the current im-
plementation does not subset them. This is not usually
a significant problem, since of the Latin Type 1 fonts
are relatively small, 50-100KBytes in the ASCII encod-
ing that the driver downloads into the PostScript out-
put. Binary Type 1 fonts are converted to ASCII and
downloaded, ASCII Type 1 fonts are downloaded with-
out any changes. Subsetting Type 1 fonts would make
the PostScript output smaller but it requires parsing the
glyph descriptions, which the current driver does not do.

TrueType fonts are converted into PostScript fonts and
sometimes subsetted. Most of the code that performs
the conversion was originally written by David Chappell
for a project called PPR. The code converts the TrueType
font either to a Type 42 font, which is simply a TrueType
font in a PostScript wrapper, or to a Type 3 font that uses
PostScript-language procedure to describe the outline of
each glyph.

By default, TrueType fonts are converted into Type 3
fonts. The default distribution of Qt/X11 does not even
compile the Type 42 conversion. The required code can
be included in the library by defining a certain prepro-
cessor variable. Even if the code is included, the driver
generates Type 42 fonts only if the QT_TTFTOPS envi-
ronment variable is set to 42.

The driver prefers conversion to Type 3 for two main
reasons. First, the driver only subsets Type 3 fonts, not
Type 42 fonts. Subsetting Type 3 fonts is relatively easy:
the driver simply skips the glyph descriptions of glyphs
that are not used. The driven ensures, however, that if



a character in the subset is represented by a composite
glyph, then all the required base glyphs are included in
the subset font. Subsetting a Type 42 font is more com-
plex and we have not implemented the required code.
Since the driver does not subset Type 42 fonts, conver-
sion to Type 42 produces larger output files. The conver-
sion actually fails on very large TrueType fonts, since in
a Type 42 font, all the TrueType tables except for the ta-
ble containing the glyph descriptions (the glyf table)
must fit into PostScript strings whose maximum size is
64KBytes. Large fonts can have tables that are too large.
Second, not all PostScript devices support Type 42 fonts.
Since the driver does not know whether the PostScript
output file will be rendered on a device that can rasterize
Type 42 fonts, it prefers to rely on Type 3 fonts which
are supported by all PostScript devices.

Conversion of TrueType fonts to Type 42 has one poten-
tial advantage over conversion to Type 3. In conversion
to Type 42 the TrueType font is essentially embedded as
is, including its hints. Our conversion to Type 3 repre-
sents the glyph outlines exactly, but strips the hints. At
small sizes, striping the hints can have an adverse effect
on the printed output. However, a few subjective visual
tests that we have performed showed little difference in
printed output even for well-hinted fonts like Arial. It
seems that at printer resolutions, as opposed to screen
resolutions, hinting has little effect.

To support fonts with more than 256 characters, the
driver uses Type 0 fonts. The PostScript font that the
driver downloads, whether Type 1, 3, or 42, uses a built-
in 8-bit encoding vector, StandardEncoding, but
the driver does not use this encoding; it is included in
the font only to make it a valid font. Suppose that the
document uses 300 characters from a font, say Georgia.
The base PostScript font, which has an 8-bit encoding,
is called Georgia. The driver creates two 8-bit encod-
ing vectors, one containing the first 255 characters that it
needs from the font (and .notdef), the other contain-
ing the other 45 characters. The first encoding is called
Georgia-ENC-00 and the second Georgia-ENC-
01. The driver then creates two derived 8-bit fonts in
which the Georgia is reencoded using the two encod-
ing vectors. These derived fonts are called Georgia-
Uni-00 and Georgia-Uni-01. Finally, the driver
defines a composite Type 0 font with an 8/8 mapping
that maps characters 0–255 to Georgia-Uni-00 and
characters 256–511 to Georgia-Uni-01.

Using Unicode to encode the composite fonts is also
possible, and indeed an earlier version of the driver used
such an encoding.

5 Suggestions for Future Development of
the Printer Driver

The driver can benefit from several additional features
that we have not yet implemented.

Conversion of TrueType Fonts to Type 1. The driver
currently converts TrueType fonts to Type 3 or Type 42
fonts. Conversion to Type 1 instead of Type 3 would
reduce output sizes and would speed up rasterization.
Type 1 use a special encoding for outline glyph descrip-
tions that is more compact than the Type 3 fonts that the
driver produces now. Furthermore, the compact encod-
ing allows for faster processing by the PostScript inter-
preter than the ASCII-encoded Type 3 fonts (Adobe even
produced at one time a hardware accelerator for raster-
izing Type 1 fonts [7, page 287]). What is needed to
implement this feature is a Type 1 encoder; several open-
source programs include such an encoder (e.g., t1asm
from the t1utils package), so the code can probably
be borrowed from one of them.

Subsetting of Type 1 Fonts. The driver currently
downloads Type 1 fonts without subsetting them. Sub-
setting Type 1 fonts would reduce somewhat the output
file sizes that the driver produces. Subsetting Type 1
fonts requires that the driver decodes the glyph descrip-
tions, which it does not currently do. It would then need
to encode the description of the glyphs that the docu-
ment needs. Again, similar code is available in t1asm
and t1disasm. Subsetting requires care, since the sub-
set font must obey all the constraints on Type 1 fonts,
such as constraints on composite glyphs and on subrou-
tines. Some programs, such as dvips, TEX’s PostScript
backend, subsets Type 1 fonts, but not always correctly.
Since Type 1 fonts are typically small, it is obviously
better not to subset them than to introduce bugs into the
driver by attempting to subset.

Tailoring the Output to Specific PostScript Devices.
PostScript devices differ in their capabilities. Devices
differ in the amount of memory they have, in the se-
lection of built-in-fonts that they have, in the PostScript
language features that they support, and in the area of
the page that they can print on, and so on. Therefore, a
PostScript document that is optimal for one device may
render poorly on another, or it may not render at all. The
current driver ignores the specifics of the output device
and always attempts to generate “generic” PostScript



that renders on any device. This strategy has several
significant drawbacks: it results in large file sizes, espe-
cially when the document contains hi-resolution images,
it prevents the driver from converting TrueType fonts to
Type 42 fonts, and it prevents the driver from notifying
applications about the imageable area of the page.

There are two approaches to tailoring PostScript out-
put to specific devices. In one approach, a dialog wid-
get allows the user to tailor the output. For example,
the PostScript output dialog of Adobe Illustrator 9.0 for
Windows allows the user to select between PostScript
level-1, level-2, or level-3, to decide whether to down-
load fonts into the document, and to decide on the color
model. Other high-end applications offer similar capa-
bilities, and so does Adobe Acrobat for Linux. In the
other approach, the driver uses a PostScript Printer De-
scription (PPD) file to determine the capabilities of the
output device. The driver uses the PPD files in two ways.
First, it can determine automatically whether some de-
vice features are available and adapt the output accord-
ingly, without any input from the user. For example, the
driver can determine, using the PPD file, that the device
is a PostScript level-2 device with support for Type 42
fonts. Second, the driver can determine which capabil-
ities of the printer are under software control and ask
the user to decide how to process the document. For ex-
ample, the driver can determine that printer X can print
on both sides of the paper (duplex capability), so it in-
corporates in the dialog widget a checkbox for duplex
printing, whereas printer Y can only print on one side,
so this checkbox is not included in the dialog widget.
Adobe’s generic PostScript printer drivers for Windows
and MacOS use this approach.

The first approach is useful when the PostScript output
is intended to be used on several devices or to be further
processed. For instance, when users produce PostScript
to be put on a web site, or when users produce an encap-
sulated PostScript (EPS) figure to be included in other
documents. The first approach is also useful when the
printer driver cannot determine the PPD file that corre-
sponds to a particular output device. Most Unix/Linux
printing systems do not associate PPD files with print-
ers, so the PPD-less approach is more suitable to them.
The main disadvantages of the first approach, compared
to the second, is that it presents the users with options
that they may not understand, and that it makes it nearly
impossible to support all the features that a PostScript
device may have. A user may not know the difference
between PostScript levels or what it means to download
fonts, so including such options in dialogs can be con-
fusing. Also, some PostScript devices have fairly ex-
otic capabilities, such as stapling and binding, and it is

unlikely that a generic and easy-to-use interface would
support all of them.

It seems that the most reasonable solution for this driver
would be to allow the user to control the output without
using PPD files. To avoid confusion, we think that the
extra options should not be in the main printing dialog,
but accessible through an “advanced options” button or
a similar mechanism. This makes it clear that setting the
extra options is not necessary and that it requires some
expertise.

Support for Additional Font Formats. The vast ma-
jority of scalable fonts that are used on X11 systems
today are Type 1 and TrueType fonts, so by virtue of
supporting them the driver supports most of the fonts
that users have. But FreeType, the font rasterization
library that is used by the XFree86 X server, by Xft,
and by some stand-alone font servers, can rasterize fonts
in other formats as well (www.freetype.org). The
most important font formats that FreeType supports be-
sides Type 1 and TrueType are OpenType fonts and CID
fonts with Type 1 outlines. Since FreeType supports
these formats, XFree86 and Xft can support them. If
such fonts become widely used on X11 systems, then
the driver should support them. OpenType fonts are
currently only available from Adobe, and they are not
widely used. On the other hand, Adobe announced that
it plans to convert its entire font library, which is cur-
rently offered in Type 1 format, to OpenType format,
and Windows 2000 supports OpenType, so such fonts
may become more widely used in the future.

Regarding CID fonts, these are used solely for CJK
fonts; we do not know whether support for CID fonts
is important to users of X11 systems.

Adding support for bitmap fonts, and in particular, to the
X core fonts, would create a more robust fall-back ren-
dering mechanism when the driver cannot find the font
file or cannot download it. In such cases, the driver can
simply retrieve the bitmap glyphs using the X protocol
(or using Xft if the font is an Xft font) and download
a PostScript font with bitmap glyph descriptions. The
resulting output may look coarse, since it would con-
tain scaled-up versions of low-resolution bitmaps, but it
would at least render all the glyphs that the user can see
on the screen.



6 Why Users Need a Unified Font-
Handling Mechanism for Printer
Drivers

Quite a few other X11 libraries and programs in-
clude a PostScript printer driver that can download
fonts. These include StarOffice (through a com-
mercial printer-driver called Xprinter, http://www.
bristol.com/xprinter), AbiWord, Sun’s JDK
and JRE, Wine (and in particular, the version of Wine
distributed with Corel’s Linux applications). The over-
all functionality in all of these drivers is basically sim-
ilar: they provide a drawing API to the application and
produce PostScript output. The drawing API’s of the
various drivers differ, but not by much. The capabilities
of the drivers, in terms of font processing, are similar
but not uniform. For example, Xprinter only supports
Type 1 fonts, but it supports PPD files, which the other
drivers do not.

The existence of several different drivers harms users,
for two reasons. First, not all the fonts that the user has
work in all applications and in all situations. For ex-
ample, a TrueType font that works fine in Corel’s Pho-
toPaint does not work in StarOffice. Or a commercial
font that works fine in some applications does not work
in StarOffice because StarOffice depends on the font
metric file (.afm), and the AFM parser sometimes fails
on valid files. Some situations are even more confusing
to users, as when a font works in an application in one
locale but not in another, even though the font’s glyph
repertoire supports both locales. The second reason that
multiple font-handling drivers harm users is that fonts
are hard to install. To use a new font, the user typi-
cally needs to configure each application (that is, each
driver). StarOffice has a font installation dialog, and so
do Corel’s applications. AbiWord only uses fonts that
are stored in (or linked to) its own font directory, so to
use a new font with AbiWord, the user must copy the
font to (or create a link in) AbiWord’s font directory and
update configuration files in that directory. This situa-
tion also means that when new applications are installed,
they typically only use the fonts that came with them, not
fonts that are already installed on the system.

The best way to fix the problem is to unify the printer
drivers, or at least the font-handling component of the
drivers. A unified font-handling mechanism would mean
that a a font only needs to be installed once, and that
once a font works in one application, it works in all ap-
plications. And as the font subsetting and downloading
mechanism of Qt/X11 shows, printer drivers can support
fonts without any configuration besides that required for

X11 itself.

Tools like kfontinst take a different approach: they
provide the user with a unified font-installation inter-
face, but they attempt to configure multiple driver to use
newly-installed fonts. This solution is an effective stop-
gap measure, but we think that in the long run unifying
the mechanisms is preferable. Tools like kfontinst
need to be configured themselves, in order to find all
the required configuration files; they typically do not
support all drivers and applications (e.g., kfontinst
only configures X11 and StarOffice); specific applica-
tions may still fail to handle fonts that other applications
handle well. A unified font-handling mechanism suffers
from none of these problems.

The simplest way to unify the font-handling mechanisms
of printer drivers is using a stand-alone library. The API
of QPSPrinterFontPrivate can serve as a first draft to the
API of this library. Another option is to add the re-
quired features to FreeType, since significant amounts
of code in FreeType can be reused for font subsetting
and downloading. Another good reason to add this func-
tionality to FreeType is that environments that need to
rasterize fonts often also need to download fonts to print
jobs. However, the font-file discovery mechanism that
we use does not seem appropriate for FreeType since it
is X11 specific. Another option is to include the font-
handling mechanism in a generic printer-driver library,
which could perhaps support not only PostScript, but
other page-description languages as well, such as HP’s
PCL. This is obviously a larger-scale project.

7 Summary

This paper describes the font discovery, subsetting, and
downloading mechanism in Qt/X11. The mechanism
addresses a major usability issue: prior to the imple-
mentation of this mechanism, users of Qt applications
(and hence users of KDE) could not print non-Latin text,
and could only print Latin text in fonts that are built into
most printers. The new mechanism allows users to print
text in any script that Qt/X11 supports, which includes
western scripts (primarily Latin, Cyrillic, and Greek),
Arabic, Hebrew, and east-Asian scripts. Thai and Indic
scripts probably need additional support to render prop-
erly. The new mechanism also allows users to print Latin
text using a wide variety of fonts.

The mechanism achieves our main design goals, which
were support for common font formats, support for Uni-



code, and lack of configuration files.

The paper presents possible enhancements to the printer
driver and suggests that a unified font-subsetting-and-
downloading mechanism would be beneficial to both de-
velopers and users.

References

[1] Adobe Systems. Adobe Type 1 Font Format. Avail-
able online on http://partners.adobe.
com/asn/developer/technotes/main.
html. 1990.

[2] Adobe Systems. CID-Keyed Font Technology
Overview. Adobe Technical Note #5092, available
online on http://partners.adobe.com/
asn/developer/technotes/main.html.
1994.

[3] Adobe Systems. Adobe CMap and CID
Font Files Specification, Version 1.0. Adobe
Technical Note #5014, available online on
http://partners.adobe.com/asn/
developer/technotes/main.html. 1996.

[4] Adobe Systems. PostScript Printer Descrip-
tion File Format Specification, Version 4.3.
Adobe Technical Note #5003, available on-
line on http://partners.adobe.com/
asn/developer/technotes/main.html.
February 1996.

[5] Adobe Systems. The Type 42 Font Format Speci-
fication. Adobe Technical Note #5012, available
online on http://partners.adobe.com/
asn/developer/technotes/main.html.
1998.

[6] Adobe Systems. PostScriptő Language Refer-
ence Manual. Third edition. Available online
on http://partners.adobe.com/asn/
developer/technotes/main.html. 1999.

[7] Ken Lunde. CJKV Information Processing.
O’Reilley, 1999.

[8] Microsoft. TrueType 1.0 Font Files, Technical
Specification Revision 1.66. Available on-
line on http://www.microsoft.com/
typography, August 1995.

[9] Microsoft. OpenType Specifications Ver-
sion 1.3. Available online on http:

//www.microsoft.com/typography,
April 2001.

[10] Keith Packard. Design and implementation of the
X rendering extension. Proceedings of Usenix
2001, FREENIX track. 12 Pages. Boston, June
2001.


