
12 QEX – January/February 2011 Reprinted with permission © ARRL

Sivan Toledo, 4X6IZ

School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel, stoledo@tau.ac.il

A Driverless Ethernet Sound Card

1Notes appear on page 17.

Sivan describes a high performance Ethernet interface to a
PC that is portable across operating systems.

A growing class of radios relies on a lap-
top or desktop computer to perform signal
processing and to implement the radio’s user
interface. Examples include Flex Radio’s
transceivers (starting from the SDR-10001
and now including the Flex-3000 and Flex-
5000), the Softrock kits2, and others. In
all of these radios, which I will refer to as
software-defined radios (SDRs3), a radio
front-end is connected to a generic personal
computer (PC). This connection carries a
complex baseband signal, radio status infor-
mation, and commands to the radio.

Many radios in this class transfer analog
baseband signals to/from the PC. The PC
digitizes the incoming signal and produces
the outgoing signal using a sound card,
either built-in or external. The status and
command communication in early radios
used the serial or parallel port of the PC,
but recent radios tend to use a USB inter-
face. The overall architecture is shown in
Figure 1.

[It is the consensus of the author and our
technical reviewers that Hertz is an improper
unit to describe sample rate. There is no SI
unit for sample rate, so we have to choose
something appropriate. [We will use “SPS”
to mean samples per second.—Ed]

Some PC sound cards have high dynamic
range and moderate sampling rates (up to
192kSPS). Therefore, using a sound card is a
reasonable low-cost solution, but it has some
disadvantages. One possible disadvantage
is the difficulty of finding high-quality rea-
sonably-priced sound cards. The archives of
SDR user groups’ mailing lists suggest that
finding a suitable sound card is challenging
for many. Another disadvantage of using a
consumer sound card is the possibility of
rapid obsolescence. Cards that come with a
special driver, which is the case with many
high-end cards, only work on operating sys-

tems for which the vendor supplies drivers.
A sound card that works fine under Windows
XP, for example, may not be supported by
the vendor on Windows 7, or it may not be
supported on Linux. The third disadvantage
of relying on sound cards is their limited
bandwidth, at most 192kSPS.

To address these issues, some recent
radios include a sound card or non-audio
analog-to-digital and digital-to-analog con-
verters (ADCs and DACs). Such radios
include some Flex Radio products4, which
include a built-in sound card, the HPSDR
project, and the SDR-Widget project (which
aims to build a low-cost high-performance
sound card for softrock-type radios), and
others. Radio front-ends that sample faster
than 192kSPS also include ADCs and
DACs; these include the USRP radios,
the radios built by Pieter-Tjerk de Boer
(PA3FWM), and others5,6.

This article presents a novel way to com-
municate baseband samples to/from a PC.
More specifically, I will describe a sound-
card prototype that uses the most ubiquitous
Internet communication protocol, TCP/IP, to
communicate these samples. This approach
has significant advantages over the common
approach which uses a USB connection.

From USB to Ethernet

Most external sound cards use a USB

connection to transfer audio samples
to/from the PC. These cards usually use
the standard USB audio protocol7, but they
can also use custom USB protocols. Most
operating systems support the USB audio
protocol. Therefore, cards that use this pro-
tocol do not need a card-specific driver, and
they work with all operating systems. The
USB audio protocol uses a USB data trans-
fer mode called isochronous transfer8. The
isochronous mode allows the PC to choose
a sampling rate for which it can ensure
sufficient bandwidth on the USB bus. The
PC dedicates a fixed fraction of each USB
frame to the audio data transfer. Isochronous
transfers are not reliable: missing or cor-
rupt packets are not retransmitted. This is
a reasonable and common design decision
for real-time data. Sound cards that use a
specialized driver can also use isochronous
data transfers.

USB sound cards suffer from several
problems. One problem is limited sup-
port for high sampling-rates and for 24-bit
samples. Release 1.0 of the USB Audio stan-
dard did not support high-end cards, which
forces high-end cards to use card-specific
drivers. This problem may disappear over
time, since release 2.0 of the standard allows
higher sampling rates and 24-bit samples,
but operating system support for this ver-
sion is still patchy. A second problem is

Radio
Frontend Sound Card

Sound Card
Driver

Audio
Subsystem

Software
Radio
Application

A
n

al
o

g
 S

am
p

le
s

D
ig

it
al

 S
am

p
le

s

Software running on a PCHardware

Figure 1 – General SDR architecture when using a PC Sound card.

 QEX – January/February 2011 13 Reprinted with permission © ARRL

that the USB driver transfers the samples
to/from the operating system’s audio sub-
system. The software interfaces (APIs) that
the audio subsystem presents to applications
vary widely between different operating sys-
tems. Some operating systems have multiple
audio interfaces with different capabilities
(e.g., DirectSound and ASIO in Windows).
This makes it difficult to write portable SDR
applications. (There is a good reason for this
complexity: multimedia applications like
games and video editing need low latency
control of audio streams, but this is less
important for SDR applications.)

An Ethernet connection to the sound
card solves these problems. If the sound
card sends and receives samples using UDP
or TCP, it communicates directly with the
SDR application without passing through
the operating system’s audio subsystem. The
data still passes through device drivers on the
PC, but now these are the networking drivers,
which are built into all operating systems.
Furthermore, the software interfaces to net-
working functions are essentially the same
across all operating systems, unlike the inter-
faces to the audio subsystem. This makes it
easy to write portable SDR applications.

The Ethernet frames carrying the base-
band samples can be transported on a direct
Ethernet cable connecting the sound card and
the PC or through an Ethernet switch. They
can also be transported though a USB con-
nection, using a standard Ethernet-over-USB
protocol; Windows, Linux, and MacOS come
with built-in support for USB Ethernet cards,
so no card-specific driver is needed. The pos-
sible interconnect architecture is shown in
Figure 2.

The sound card itself contains digital-to-
analog (DAC) and analog-to-digital (ADC)
chips, or a chip with both (usually referred
to as a CODEC) and a microcontroller. Low-
end USB sound cards use a single special-
purpose chip that serves both as a CODEC
and as a USB interface, but in this article
the focus is on higher performance designs
with a microcontroller. Until recently, micro-
controllers with a USB interface were sig-
nificantly cheaper than microcontrollers with
an Ethernet interface, and there was a wider
selection of the former. Today, however, there
are reasonably-low cost microcontrollers
with a complete 100Mb/s Ethernet inter-
face, including the physical signaling. The
main external components required are the
Ethernet socket and the isolation transformer,
which can be built into the socket. The pro-
totype described in this article uses such
a microcontroller, the Texas Instruments
LM3S9B96. This microcontroller also has
an interface to audio DACs, ADCs and
CODECs, making it suitable for sound cards.

The Prototype: Hardware and
Software

The Ethernet soundcard prototype is built
around a simple microcontroller evaluation
kit called EK-LM3S9B96 (Figure 4). [The
EK-LM3S9B96 was a limited edition kit that
is no longer available. The EK-LM3S9B92
uses an MCU with the exact peripherals and
capabilities of the LM3S9B96 but does not
include SafeRTOS or IEEE1588 in its Flash
ROM—Ed.] The board contains the micro-
controller and its oscillator crystals, a voltage
regulator, Ethernet and USB sockets (I did
not use the USB connection), and program-
ming and serial-port connections to a small
interface board. The interface board con-
nects to a PC through a USB cable, allowing
the PC to program the microcontroller and
allowing the microcontroller to send back
diagnostic or debugging information.

The evaluation board makes some of the
microcontroller pins available through 0.1”
headers, including all the CODEC interface
pins. I mounted the evaluation-kit board
on a large prototyping board that also had
space for the CODEC, a Texas Instruments
TLV320AIC23B. The line-in port and head-
phones output ports of the CODEC are con-
nected to standard ¼” stereo jacks.

The software on the microcontroller is
based on example code that came with the
microcontroller. The networking software I
used is lwIP (light weight IP), a small and
free implementation of IP, TCP, and UDP.
lwIP provides several programming inter-
faces. I used the raw interface, which is the
lowest level interface, since it provides maxi-
mum performance and control.

I wrote the PC software in Java. I tested it
on Windows XP, but it should run unmodified
on Linux, too. The rendezvous or enumera-
tion mechanism that allows the PC applica-
tion and the sound card to find each other is
described later in this article.

Overcoming Scheduling Jitter
The main challenge that I faced in this

project was to drive the sound card’s DAC.
The common wisdom is that UDP is the
appropriate Ethernet protocol for transport-
ing real-time data, such as audio9. UDP is
an IP protocol that is used to send so-called
datagrams, or discrete limited-length pack-
ets of data between applications. UDP is not

reliable; the protocol itself does not acknowl-
edge packets and does not retransmit lost or
corrupt packets, although applications can
implement acknowledgements and retrans-
mission for important data.

In spite of the common wisdom, it turns
out that UDP does not work well when
one side in the communication channel is
a microcontroller with a limited amount of
RAM. The problem is not with receiving data
from the sound card, but with sending data to
it; the problem turns out to be more severe
under Windows than under Linux.

To understand the problem, let’s consider
what happens when the sound card sends and
receives baseband samples using UDP pack-
ets. We will assume that the PC processes
incoming baseband samples into audio that
it sends to an internal sound card, and that
it sends baseband samples that are derived
from its internal sound card’s microphone
input.

Let’s start with the direction that does
work well, sending data from the sound card.
The microcontroller receives a baseband
sample from the ADC or CODEC every few
microseconds and puts it automatically in a
hardware queue. When the queue reaches a
certain level, it generates an interrupt signal
that causes the microcontroller to remove
samples from the queue and place them in a
buffer in RAM. When this buffer has enough
samples to be worth sending in an Ethernet
frame (usually up to 1500 bytes), the micro-
controller sends them to the PC in one UDP
packet. A packet every millisecond is a rea-
sonable rate; at 24-bits per sample, two sam-
pling channels, and 192kSPS, a millisecond
of audio is 1152 bytes, small enough to trans-
port in one packet. At lower sampling rates or
lower resolutions we can either send shorter
packets or send less frequently. When the PC
receives a packet, its network card generates
an interrupt that causes the operating system
to process the packet. The operating system
stores the packet in a buffer until the SDR
application retrieves it. This operating system
buffering response happens even if the PC
happens to be running some other application
when the packet arrives. At some later time
the PC’s operating system will switch to the
SDR application. When the application will
reach the point where it reads UDP packets,
the packet will be delivered to it.

Radio
Frontend Sound Card

Ethernet
Switch

Networking
Drivers

Software
Radio
Application

Ethernet Cable

USB Cable

Figure 2 – SDR architecture when using Ethernet connection to the PC.

14 QEX – January/February 2011 Reprinted with permission © ARRL

The PC’s operating system can buffer
lots of packets. If many packets are buffered
when the SDR application is scheduled to
run, it will receive all of these packets, pro-
cess them, and create audio for the internal
sound card. The buffering and the fact that
processing is delayed do not prevent the
software radio from producing continuous
audio; they only mean that the audio that the
user hears was received some time ago, say a
quarter or half a second.

Now let’s consider the other direction,
which is more troublesome. The PC’s oper-
ating system runs the SDR application once
in a while. The application reads audio from
the internal sound card. The operating sys-
tem buffers this audio, so it is not lost even
if the SDR application is suspended for
hundreds of milliseconds. The SDR applica-
tion processes this audio, produces baseband
samples, and sends them to our sound card
in UDP packets. If the SDR application is
scheduled to run only every 100ms, say,
what the sound card sees is a period of almost
100ms with no data at all, and then a burst of
UDP packets. A burst after 100ms will con-
tain about eighty 1500-byte packets at 24-bit
and 192kSPS.

The large, infrequent bursts cause two
problems. One is the need to buffer enough
baseband samples to bridge over the periods
in which no data is received. At 48kSPS and
16-bit samples, the microcontroller only
needs to buffer 9.6KB to be able to feed the
DAC for 100ms. But at 192kSPS and 24 bits,
it needs to buffer 115KB. This is possible
with an external RAM chip, but usually not
with the internal RAM of a microcontroller
(the LM3S9B96 has 96KB of RAM). The
other problem is the high likelihood of lost
packets. The PC can send the packets in such
a burst much faster than a relatively slow
microcontroller can process them, so many
of these packets are likely to be lost.

I implemented such a protocol. It worked
fine at 48kSPS but not at 96kSPS. At this
rate, there were many gaps in the analog
baseband signal produced by the sound card.

The severity of this problem depends on
how often the PC’s operating system sched-
ules the SDR application. To measure this, I
wrote a small application that simply reads

(and discards) audio from the internal sound
card. The program reads a fixed amount
of audio every time. The amount of audio
ranged from 1ms worth of audio to 100ms.
The program measured the time periods
between successive audio-read operations.
Ideally, these periods would be close to t mil-
liseconds when the program asks for t mil-
liseconds worth of audio. But this is almost
never the case.

Table 1 shows the actual periods that I
measured for t=10ms. The experiments were
conducted on a Dell D820 laptop connected
to ac power. The laptop has a dual-core Intel
T7200 processor running at 2GHz and it ran
either Windows XP SP3 or Linux 2.6.31. The
test program is written in Java, so exactly the
same code runs under Linux and Windows.
The results for other values of t, ranging
from 1ms to 40ms, were similar; the results
at 60ms, 80ms, and 100ms were similar
under Windows but showed increased laten-
cies under Linux. I ran the experiment when
no other application was running (the idle
row), when another application ran one CPU-
intensive thread that used one of the two
available cores (CPUs), and when the other
application ran two CPU-intensive threads.
The maximums are over experiments lasting
100s. The typical values are derived from
the number of periods greater than 100ms
in Windows and greater than 25ms in Linux;
these numbers were always close to 800 and
2344, respectively.

The results show several interesting facts.
The first is that both operating systems sched-
ule the application at roughly constant inter-
vals, even when the application asks for just
a small amount of audio every time. Windows
suspends the program for about 125ms, then
runs it until it extracts all the available audio.
At this point the program blocks while wait-
ing for more audio. Windows suspends it
again for 125ms rather than until the amount
of audio it asked for is available. Linux does
the same, but with a shorter scheduling inter-
val of about 43ms.

The other interesting fact is that Windows
does not run the application often enough
when the CPU is busy. When only one core
is busy, the maximum scheduling latency
for processes with a normal priority rises a

bit, but the program still runs often enough
to process all the audio. When both cores
are busy, Windows does not run the program
often enough to collect all the audio even
though this application presents a very small
CPU load. When we increase the priority
of the audio program to real-time priority
(using the task manager), the problem disap-
pears. Windows schedules the program often
enough to process all the audio with the usual
latency. Linux does not suffer from this prob-
lem and schedules the program often enough
even when the CPU is heavily loaded.

The conclusion is that to receive data over
UDP, the soundcard would need to be able to
cope with gaps on the order of 150ms when
Windows sends data and around 50ms when
Linux sends the data, and with the packet
bursts at the end of such periods. Current
microcontrollers cannot do this.

Audio Transport over TCP
To address this problem, I designed a

TCP-based10 transport strategy. TCP is a reli-
able protocol. The receiver sends acknowl-
edgements to the transmitter. Packets that
are not acknowledged are retransmitted until
they do. To avoid wasting bandwidth on
packets that the receiver cannot accept due to
its limited buffer space, the receiver informs
the transmitter how much data it is willing
to receive. This amount is called the win-
dow. TCP contains numerous other features,
mostly to avoid network congestion. TCP is
widely used on the Internet. For example,
Web pages are delivered using TCP.

I initially tried a straightforward strategy
for receiving data from the PC. The micro-
controller allocated a buffer for incoming
audio and announced the size of this buffer
as the initial window. As incoming packets
fill the buffer, the window shrinks. As the
microcontroller uses up data from the buf-
fer to send to the CODEC (thereby making
space available for more data from the PC),
the window grows. The microcontroller pro-
gram updated the window every millisecond.

This simple strategy worked as long as no
packets were lost. When a packet from the
PC was lost, the loss triggered a weird behav-
ior in Windows XP that caused a significant
amount of audio to be lost. A TCP sender can

Table 1
Comparison of Task Latency Across Scheduling Parameters
Time in ms

Windows XP Windows XP Linux
Normal Priority Realtime Priority Normal Priority

 Maximum Typical Maximum Typical Maximum Typical
Idle 146 125 126 125 43 43
One Core Busy 155 125 129 125 51 43
Two Cores Busy -- -- 129 125 64 43

 QEX – January/February 2011 15 Reprinted with permission © ARRL

sense that a single packet was lost, because
subsequent packets that are not lost trigger
the receiver to send acknowledgments. These
acknowledgements do not acknowledge the
lost packet, of course, but the packet before.
The repeated acknowledgements of the same
packet allow the sender to conclude that one
packet was lost, and it retransmits it. For
some reason, Windows XP retransmitted
only part of this lost packet (740 bytes out
of 1460), not all of it. The microcontroller
acknowledged what it received, but Windows
apparently was waiting for an acknowl-
edgement of the entire packet. At this point
Windows stopped sending for about 200ms.
After that period, it retransmitted the entire
missing packet and things got back to nor-
mal. But by this time, audio has been lost,
producing a gap in the analog output of the
sound card. This sequence of events hap-
pened every few seconds; it was not a rare
event. I discovered why the audio was lost
using wireshark, a free TCP tracing program.

The moral here is not that Windows XP
is defective (it eventually did transmit all
the data, and there might be an obscure but
good reason for the way it behaved), or that
TCP is wrong for this application. The moral
is that TCP implementations include many
complex behaviors that fast computers with
a lot of memory can easily cope with but that
microcontrollers cannot always cope with.

I decided to use TCP in a simpler way that
would not excite any complex TCP behavior.
The new strategy also used a large circular

buffer to store incoming audio, but it only
advertises to the PC a window of one packet
(1460 bytes). This allows the PC to send
only one packet at a time. When the packet
is received, the microcontroller copies its
content to its audio buffer. Every millisecond,
the microcontroller examines the amount of
free space in this buffer. If it is greater than
1460 bytes, it opens the TCP window to
one packet, allowing the PC to send another
packet. This strategy results in one of two
behaviors. When the buffer is fairly empty,
say initially or after a period in which the
PC did not send data, the microcontroller
acknowledges every packet immediately,
opening the window back to one packet.
This allows the PC to send another packet
resulting in a fast packet-acknowledgement
ping-pong like behavior. When the buffer
is nearly full, which is the way it should be
most of the time, the microcontroller receives
a packet, acknowledges it, but keeps the
window closed. The microcontroller checks
the state of the buffer every millisecond;
once enough space to receive another packet
becomes available, the microcontroller opens
the window, allowing the PC to send another
packet. At 192kSPS and 24 bits, this happens
on average every 1.26ms. At lower rates and
resolutions, this happens less frequently. In
both behaviors, the microcontroller essen-
tially throttles the PC, allowing it to send one
packet at a time. This rules out complex TCP
behaviors that occur when there are multiple
outstanding unacknowledged packets.

Sending baseband samples from the
sound card is easier. The microcontroller
reads baseband samples from the CODEC
into a circular 2-packet buffer. Every milli-
second, the microcontroller checks whether
one of these packets is full. If it is, it sends it
to the TCP driver. I configured TCP with a
send buffer of about 10 packets (16KB), so
no data is lost if the PC acknowledges pack-
ets rather slowly. Normally the PC acknowl-
edges packets immediately.

Figure 3 shows a simplified diagram of
this microcontroller software architecture.
TCP packets are received by the Ethernet
device driver (an interrupt service routine),
which passes them to lwIP, which in turn
passes them to the sound-card’s TCP receive
handler function. This function places the
data in a large circular buffer (30KB). The
data is extracted from this buffer by the
CODEC’s interrupt service routine. If the
buffer is empty, the CODEC’s interrupt rou-
tine sends zero samples to the CODEC, but
this should never happen when the sound
card functions normally. The same interrupt
service routine also removes samples from
the CODEC’s input queue and stores them in
a separate two-packet circular buffer. Once a
millisecond, a periodic function is invoked
by lwIP. It checks if more than a full packet
has been extracted from the large buffer. If
so, it updates lwIP’s window to allow the PC
to send another packet. It also checks if there
is a full packet in the small circular buffer. If
so, it sends the data to lwIP’s TCP send buf-
fer, which is a circular buffer maintained by
lwIP itself. I configured it to 16KB. If lwIP
needs to retransmit a packet, it retransmits it
from this buffer.

Results
The TCP mechanism works well without

dropping audio up to at least 192kSPS. The
CODEC only supports 96kSPS and lower, so
to test at 192kSPS, I simply replicated each
sample and verified that no data is lost.

I tested the sound card by sending audio
to it from the PC’s microphone and by receiv-
ing PC audio that the sound card digitized
from the analog output of an iPod music
player. I also tested the card with complex
baseband samples from a 14MHz radio front
end (a Softrock Lite). The baseband samples
were processed by an SDR application
(Rocky) that demodulated radio signals.

I tested the system using three different
Ethernet interconnects and using the Dell
D820 running Windows. One was simply an
Ethernet cable connecting the sound card and
the PC. In this configuration, both the PC and
the sound card used a technique called Auto
IP to obtain IP addresses. This interconnect
provides the highest possible performance
and lowest possible latency.Figure 3 – Software architecture block diagram

CODEC
Interrupt
Routine

lwIP

TCP Receive
Handler

1ms
Periodic
Task

Sound Buffers

TCP Send Buffer

Ethernet Device Driver

Data Data
 Window
 Updates

16 QEX – January/February 2011 Reprinted with permission © ARRL

In the second setup, the PC and sound
card were both connected to an Ethernet
switch. I tried both a D-Link switch designed
for home use (more accurately, an ADSL
modem with a built-in wired and wireless
Ethernet switch, a DSL-2650U) and a large
Cisco switch. In both of these setups, the
sound card performed well without dropping
any audio up to 192kSPS.

A third setup did not support high sam-
pling rates. In this setup, the sound card was
connected to the home switch through an
Ethernet cable, but the PC was connected
to the switch through a WiFi connection
(802.11g, running at strong signal strength
and 54Mb/s). In this setup, performance
was good without dropped audio up to
48kSPS, but at 92kSPS and higher the PC-to-
soundcard direction dropped a lot of audio. I
eventually traced this to round-trip latency
of about 2ms associated with the WiFi con-
nection. That is, about 2ms pass between
the time the PC sent a packet of data and
the time the PC receives an acknowledge-
ment with a window update allowing it to
send another packet. This latency restricts
the effective bandwidth between the PC and
the sound card. Achieving high bandwidth in
high-latency channels is exactly the reason
that TCP normally uses large windows rather
than the single-packet window that is used
here; but as explained above, large windows,
a small microcontroller, and high data rates
do not work well together.

UDP Enumeration and Control
The sound card uses TCP for baseband

(audio), but it uses UDP to rendezvous
with the PC application and for command
and control functions. I designed this UDP
protocol earlier as a mechanism for PC
programs to control and communicate with
various technical gadgets. The protocol
works not only with the sound card, but also
with another microcontroller board, where
the Ethernet frames are transported through
a USB interconnect. The Ethernet-over-
USB firmware supports both the propri-
etary Windows Ethernet-over-USB protocol,
called RNDIS, and with the USB standard
protocol, called CDC-ECM, which is sup-
ported by Linux (and by recent versions of
Windows). In both cases, the drivers are built
into the operating system.

When the sound card boots, it tries to
obtain an IP address using the DHCP proto-
col. This succeeds in virtually any Ethernet
environment except a direct cable connec-
tion. If the DHCP protocol fails, the card uses
an auto-IP address. This behavior is part of
lwIP. Now the sound card sends a broadcast
UDP packet once a second announcing what
kind of hardware it is. Since the packet is sent
to a broadcast address, the sound card does

not need to know the IP address of the PC
that will control it.

The PC application listens for such pack-
ets. When it receives one, it sends back a
point-to-point UDP packet acknowledging
the broadcast. Once the soundcard receives
this packet, it knows the IP address of the PC.
It starts listening for an incoming TCP con-
nection request from the PC.

The UDP connection remains useful for
sending commands to the sound card and for
receiving status information from it. In this
protocol, commands are sent in both direc-
tions. The sender expects an acknowledge-
ment for every command. A command that is
not acknowledged is retransmitted until it is.

The UDP channel continues to send
heartbeat messages in both directions once a
second, unless there are other commands to
send. If either side fails to receive these mes-
sages for a few seconds, it assumes that the
other side has disconnected. In this event, the
PC application reflects this on the user inter-
face, and the sound card goes back to sending
periodic broadcast messages.

Summary
When sending real-time data over UDP

from a general-purpose operating system
like Windows or Linux, scheduling policies
cause data to be sent in bursts with fairly long
delays between bursts. Microcontrollers with
limited amount of buffering and process-
ing power cannot handle this burst property.
TCP transport avoids the burst issue because
the microcontroller can throttle the incom-
ing data by opening only single-packet win-
dows. In principle, opening larger windows
should also work, but it fails in practice,
at least when sending from Windows XP,
because single packet loss triggers complex
TCP behaviors that sometimes generate long
latencies.

The use of single-packet windows links

the maximum throughput to the round-trip
latency. In direct cable connection and con-
nection through a wired Ethernet switch, the
prototype supported full-duplex two-channel
192kSPS rate. But when communicating
through WiFi, the round trip latency rose and
the throughput dropped, allowing only up
to 48kSPS. This would also limit through-
put when the IP connection goes through
multiple switches and routers, which also
increases the latency.

From the application viewpoint, real-time
data transport over TCP (or UDP when pos-
sible) reduces the dependency of SDR appli-
cations on both sound-card device drivers
and the audio system’s API.

Appendix: Additional Technical
Details

The schematic of the CODEC circuit is
shown in Figure 5. The microphone-input
and line-output portions of the circuit are not
wired in my prototype. The circuit was not
optimized for high dynamic range and low
noise; it was intended only as a platform for
testing the Ethernet-based protocol.

The microcontroller is configured to
generate the 12.28MHz master clock for the
CODEC. The same clock frequency is used
for all CODEC sampling rates. The CODEC
is configured as a clock master for both
the DAC and the ADC, and the microcon-
troller is configured as a slave in both. The
CODEC therefore generates the bit clock
and the left-right clock signals. Configuring
the microcontroller as an audio clock slave
gets around a silicon bug in revision B of the
microcontroller. I also configured the audio
as left-justified (rather than the more standard
I2S format) to get around a related bug.

The microcontroller cannot generate a
master clock at exactly 12.28MHz; it uses a
fractional clock divider to get close, but there
is some discrepancy between the CODEC’s

Figure 4 – Photo of the development system. The bottom board contains the CODEC parts.
The board on the top left is the TI development system. The board in the plastic box is the

debugging interface.

 QEX – January/February 2011 17 Reprinted with permission © ARRL

sampling rate and the rate at which the PC
sends or consumes audio data. A better but
more expensive solution would be to drive
the CODEC with a crystal or a canned oscil-
lator at exactly 12.28MHz.

Sivan Toledo is Professor of Computer
Science at Tel-Aviv University. He holds BSc
and MSc degrees from Tel-Aviv University
and a PhD from the Massachusetts Institute
of Technology, where he was also Visiting
Associate Professor in 2007-2009. He was
licensed in 1982. You can contact him at
stoledo@tau.ac.il.

Figure 5 – Schematic of the development board and CODEC interface.

1

3
2

DDVB1

KLCB3

TUOD6

NID4

NICRL5

TUOCRL7

TUOKLC 2

DDVPH 8

TUOPHL 9

TUOPHR 01

DNGPH 11

TUOL 21

TUOR 31

DDVA 41

DNGA 51

DIMV 61

SAIBCIM71

NICIM81

NIENILR91 NIENILL02

SCn12 EDOM22

NIDS32

KLCS42

KLCM/ITX52

OTX62

DDVD72

DNGD82

FU74.0

FU74.0

K74 K74

001

001

tuptuO eniL oiduA

1

3
2

+

FU022

+
FU022

K74 K74

FU1.0 FU2.2 FU2.2 FU2.2

FU1.0

1

3
2 K7.4

K01 FP72

FU2.2

K01

tuptuO enohpdaeH oiduA

tupnI enohporciM

FU1.0

tupnI eniL

ADS0C2I/3BP

LCS0C2I/2BP

DSXTS2I/0FP

SWXTS2I/7DP

DSXRS2I/4DP

SWXRS2I/1DP

KLCMXT/1FP

TUOV

G
N
D

NIV

V5+

K7.4 K7.4

V3.3+ V3.3+

KLCMXRS2I/5DP

KCSXT/6DP

KCSXRS2I/0DP

1

3
2 K7.4

K7.4

K7.4 K7.4
FP72 FP72

FU74.0

FU74.0

Schematics derived from
those of the Texax Instruments
DK-LN3S9B96

LP2950-33

10uF 10uF

TLV320AIC23B

V3.3+

Notes
1Gerald Youngblood, AC5OG, Software-

defined radio for the masses. QEX Jul/Aug
2002, Sep/Oct 2002, Nov/Dec 2002, and
Jan/Feb 2003

2See groups.yahoo.com/group/softrock40
3The term SDR encompasses a wider range

of radio architectures, including radios
that do not use a personal computer but a
special-purpose computer. In this article,
however, I will use the term SDR to refer to
radios that use a personal computer to do
some of the signal processing

4www.flex-radio.com
5These receivers have a Web interface

accessible from wwwhome.cs.utwente.
nl/~ptdeboer/ham/sdr

6See, for example, Jim Ahlstrom, N2ADR, An
all-digital SSB exciter for HF, QEX May/Jun
2008

7 USB Implementers Forum. USB Device
Class Definition for Audio Devices. Release
1.0, 1998, and Release 2.0, 2006

8 See Jan Axelson, USB Complete, 4th edition,
Lakeview Research, 2009, or John Hyde,
USB By Example, 2nd edition, Intel Press,
2001

9UDP appears to be used by all or most
Ethernet-based SDR platforms, such as the
USRP2 (www.ettus.com), Jim Ahlstrom’s
radios, and Pieter-Tjerk de Boer’s radios.
The PC applications for these radios run on
Linux, not Windows, which helps, as we’ll
see later in the article

10 For good coverage of TCP, see W. Stevens,
TCP/IP Illustrated, 3 volumes, Addison-
Wesley, 1994

Schematic derived from those
of the Texas Instruments
DK-LN3S9B96

