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Sivan describes a high performance Ethernet interface to a 
PC that is portable across operating systems.

A growing class of radios relies on a lap-
top or desktop computer to perform signal 
processing and to implement the radio’s user 
interface. Examples include Flex Radio’s 
transceivers (starting from the SDR-10001 
and now including the Flex-3000 and Flex-
5000), the Softrock kits2, and others. In 
all of these radios, which I will refer to as 
software-defined radios (SDRs3), a radio 
front-end is connected to a generic personal 
computer (PC). This connection carries a 
complex baseband signal, radio status infor-
mation, and commands to the radio. 

Many radios in this class transfer analog 
baseband signals to/from the PC. The PC 
digitizes the incoming signal and produces 
the outgoing signal using a sound card, 
either built-in or external. The status and 
command communication in early radios 
used the serial or parallel port of the PC, 
but recent radios tend to use a USB inter-
face. The overall architecture is shown in 
Figure 1. 

[It is the consensus of the author and our 
technical reviewers that Hertz is an improper 
unit to describe sample rate. There is no SI 
unit for sample rate, so we have to choose 
something appropriate. [We will use “SPS” 
to mean samples per second.—Ed]

Some PC sound cards have high dynamic 
range and moderate sampling rates (up to 
192kSPS). Therefore, using a sound card is a 
reasonable low-cost solution, but it has some 
disadvantages. One possible disadvantage 
is the difficulty of finding high-quality rea-
sonably-priced sound cards. The archives of 
SDR user groups’ mailing lists suggest that 
finding a suitable sound card is challenging 
for many. Another disadvantage of using a 
consumer sound card is the possibility of 
rapid obsolescence. Cards that come with a 
special driver, which is the case with many 
high-end cards, only work on operating sys-

tems for which the vendor supplies drivers. 
A sound card that works fine under Windows 
XP, for example, may not be supported by 
the vendor on Windows 7, or it may not be 
supported on Linux. The third disadvantage 
of relying on sound cards is their limited 
bandwidth, at most 192kSPS.

To address these issues, some recent 
radios include a sound card or non-audio 
analog-to-digital and digital-to-analog con-
verters (ADCs and DACs). Such radios 
include some Flex Radio products4, which 
include a built-in sound card, the HPSDR 
project, and the SDR-Widget project (which 
aims to build a low-cost high-performance 
sound card for softrock-type radios), and 
others. Radio front-ends that sample faster 
than 192kSPS also include ADCs and 
DACs; these include the USRP radios, 
the radios built by Pieter-Tjerk de Boer 
(PA3FWM), and others5,6.

This article presents a novel way to com-
municate baseband samples to/from a PC. 
More specifically, I will describe a sound-
card prototype that uses the most ubiquitous 
Internet communication protocol, TCP/IP, to 
communicate these samples. This approach 
has significant advantages over the common 
approach which uses a USB connection.

 
From USB to Ethernet

Most external sound cards use a USB 

connection to transfer audio samples 
to/from the PC. These cards usually use 
the standard USB audio protocol7, but they 
can also use custom USB protocols. Most 
operating systems support the USB audio 
protocol. Therefore, cards that use this pro-
tocol do not need a card-specific driver, and 
they work with all operating systems. The 
USB audio protocol uses a USB data trans-
fer mode called isochronous transfer8. The 
isochronous mode allows the PC to choose 
a sampling rate for which it can ensure 
sufficient bandwidth on the USB bus. The 
PC dedicates a fixed fraction of each USB 
frame to the audio data transfer. Isochronous 
transfers are not reliable: missing or cor-
rupt packets are not retransmitted. This is 
a reasonable and common design decision 
for real-time data. Sound cards that use a 
specialized driver can also use isochronous 
data transfers.

USB sound cards suffer from several 
problems. One problem is limited sup-
port for high sampling-rates and for 24-bit 
samples. Release 1.0 of the USB Audio stan-
dard did not support high-end cards, which 
forces high-end cards to use card-specific 
drivers. This problem may disappear over 
time, since release 2.0 of the standard allows 
higher sampling rates and 24-bit samples, 
but operating system support for this ver-
sion is still patchy. A second problem is 
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Figure 1 – General SDR architecture when using a PC Sound card.
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that the USB driver transfers the samples 
to/from the operating system’s audio sub-
system. The software interfaces (APIs) that 
the audio subsystem presents to applications 
vary widely between different operating sys-
tems. Some operating systems have multiple 
audio interfaces with different capabilities 
(e.g., DirectSound and ASIO in Windows). 
This makes it difficult to write portable SDR 
applications. (There is a good reason for this 
complexity: multimedia applications like 
games and video editing need low latency 
control of audio streams, but this is less 
important for SDR applications.)

An Ethernet connection to the sound 
card solves these problems. If the sound 
card sends and receives samples using UDP 
or TCP, it communicates directly with the 
SDR application without passing through 
the operating system’s audio subsystem. The 
data still passes through device drivers on the 
PC, but now these are the networking drivers, 
which are built into all operating systems. 
Furthermore, the software interfaces to net-
working functions are essentially the same 
across all operating systems, unlike the inter-
faces to the audio subsystem. This makes it 
easy to write portable SDR applications.

The Ethernet frames carrying the base-
band samples can be transported on a direct 
Ethernet cable connecting the sound card and 
the PC or through an Ethernet switch. They 
can also be transported though a USB con-
nection, using a standard Ethernet-over-USB 
protocol; Windows, Linux, and MacOS come 
with built-in support for USB Ethernet cards, 
so no card-specific driver is needed. The pos-
sible interconnect architecture is shown in 
Figure 2.

The sound card itself contains digital-to-
analog (DAC) and analog-to-digital (ADC) 
chips, or a chip with both (usually referred 
to as a CODEC) and a microcontroller. Low-
end USB sound cards use a single special-
purpose chip that serves both as a CODEC 
and as a USB interface, but in this article 
the focus is on higher performance designs 
with a microcontroller. Until recently, micro-
controllers with a USB interface were sig-
nificantly cheaper than microcontrollers with 
an Ethernet interface, and there was a wider 
selection of the former. Today, however, there 
are reasonably-low cost microcontrollers 
with a complete 100Mb/s Ethernet inter-
face, including the physical signaling. The 
main external components required are the 
Ethernet socket and the isolation transformer, 
which can be built into the socket. The pro-
totype described in this article uses such 
a microcontroller, the Texas Instruments 
LM3S9B96. This microcontroller also has 
an interface to audio DACs, ADCs and 
CODECs, making it suitable for sound cards.

The Prototype: Hardware and 
Software

The Ethernet soundcard prototype is built 
around a simple microcontroller evaluation 
kit called EK-LM3S9B96 (Figure 4). [The 
EK-LM3S9B96 was a limited edition kit that 
is no longer available. The EK-LM3S9B92 
uses an MCU with the exact peripherals and 
capabilities of the LM3S9B96 but does not 
include SafeRTOS or IEEE1588 in its Flash 
ROM—Ed.] The board contains the micro-
controller and its oscillator crystals, a voltage 
regulator, Ethernet and USB sockets (I did 
not use the USB connection), and program-
ming and serial-port connections to a small 
interface board. The interface board con-
nects to a PC through a USB cable, allowing 
the PC to program the microcontroller and 
allowing the microcontroller to send back 
diagnostic or debugging information.

The evaluation board makes some of the 
microcontroller pins available through 0.1” 
headers, including all the CODEC interface 
pins. I mounted the evaluation-kit board 
on a large prototyping board that also had 
space for the CODEC, a Texas Instruments 
TLV320AIC23B. The line-in port and head-
phones output ports of the CODEC are con-
nected to standard ¼” stereo jacks.

The software on the microcontroller is 
based on example code that came with the 
microcontroller. The networking software I 
used is lwIP (light weight IP), a small and 
free implementation of IP, TCP, and UDP. 
lwIP provides several programming inter-
faces. I used the raw interface, which is the 
lowest level interface, since it provides maxi-
mum performance and control. 

I wrote the PC software in Java. I tested it 
on Windows XP, but it should run unmodified 
on Linux, too. The rendezvous or enumera-
tion mechanism that allows the PC applica-
tion and the sound card to find each other is 
described later in this article.

Overcoming Scheduling Jitter
The main challenge that I faced in this 

project was to drive the sound card’s DAC. 
The common wisdom is that UDP is the 
appropriate Ethernet protocol for transport-
ing real-time data, such as audio9. UDP is 
an IP protocol that is used to send so-called 
datagrams, or discrete limited-length pack-
ets of data between applications. UDP is not 

reliable; the protocol itself does not acknowl-
edge packets and does not retransmit lost or 
corrupt packets, although applications can 
implement acknowledgements and retrans-
mission for important data. 

In spite of the common wisdom, it turns 
out that UDP does not work well when 
one side in the communication channel is 
a microcontroller with a limited amount of 
RAM. The problem is not with receiving data 
from the sound card, but with sending data to 
it; the problem turns out to be more severe 
under Windows than under Linux.

To understand the problem, let’s consider 
what happens when the sound card sends and 
receives baseband samples using UDP pack-
ets. We will assume that the PC processes 
incoming baseband samples into audio that 
it sends to an internal sound card, and that 
it sends baseband samples that are derived 
from its internal sound card’s microphone 
input.

Let’s start with the direction that does 
work well, sending data from the sound card. 
The microcontroller receives a baseband 
sample from the ADC or CODEC every few 
microseconds and puts it automatically in a 
hardware queue. When the queue reaches a 
certain level, it generates an interrupt signal 
that causes the microcontroller to remove 
samples from the queue and place them in a 
buffer in RAM. When this buffer has enough 
samples to be worth sending in an Ethernet 
frame (usually up to 1500 bytes), the micro-
controller sends them to the PC in one UDP 
packet. A packet every millisecond is a rea-
sonable rate; at 24-bits per sample, two sam-
pling channels, and 192kSPS, a millisecond 
of audio is 1152 bytes, small enough to trans-
port in one packet. At lower sampling rates or 
lower resolutions we can either send shorter 
packets or send less frequently. When the PC 
receives a packet, its network card generates 
an interrupt that causes the operating system 
to process the packet. The operating system 
stores the packet in a buffer until the SDR 
application retrieves it. This operating system 
buffering response happens even if the PC 
happens to be running some other application 
when the packet arrives. At some later time 
the PC’s operating system will switch to the 
SDR application. When the application will 
reach the point where it reads UDP packets, 
the packet will be delivered to it.
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Figure 2 – SDR architecture when using Ethernet connection to the PC.
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The PC’s operating system can buffer 
lots of packets. If many packets are buffered 
when the SDR application is scheduled to 
run, it will receive all of these packets, pro-
cess them, and create audio for the internal 
sound card. The buffering and the fact that 
processing is delayed do not prevent the 
software radio from producing continuous 
audio; they only mean that the audio that the 
user hears was received some time ago, say a 
quarter or half a second.

Now let’s consider the other direction, 
which is more troublesome. The PC’s oper-
ating system runs the SDR application once 
in a while. The application reads audio from 
the internal sound card. The operating sys-
tem buffers this audio, so it is not lost even 
if the SDR application is suspended for 
hundreds of milliseconds. The SDR applica-
tion processes this audio, produces baseband 
samples, and sends them to our sound card 
in UDP packets. If the SDR application is 
scheduled to run only every 100ms, say, 
what the sound card sees is a period of almost 
100ms with no data at all, and then a burst of 
UDP packets. A burst after 100ms will con-
tain about eighty 1500-byte packets at 24-bit 
and 192kSPS.

The large, infrequent bursts cause two 
problems. One is the need to buffer enough 
baseband samples to bridge over the periods 
in which no data is received. At 48kSPS and 
16-bit samples, the microcontroller only 
needs to buffer 9.6KB to be able to feed the 
DAC for 100ms. But at 192kSPS and 24 bits, 
it needs to buffer 115KB. This is possible 
with an external RAM chip, but usually not 
with the internal RAM of a microcontroller 
(the LM3S9B96 has 96KB of RAM). The 
other problem is the high likelihood of lost 
packets. The PC can send the packets in such 
a burst much faster than a relatively slow 
microcontroller can process them, so many 
of these packets are likely to be lost.

I implemented such a protocol. It worked 
fine at 48kSPS but not at 96kSPS. At this 
rate, there were many gaps in the analog 
baseband signal produced by the sound card.

The severity of this problem depends on 
how often the PC’s operating system sched-
ules the SDR application. To measure this, I 
wrote a small application that simply reads 

(and discards) audio from the internal sound 
card. The program reads a fixed amount 
of audio every time. The amount of audio 
ranged from 1ms worth of audio to 100ms. 
The program measured the time periods 
between successive audio-read operations. 
Ideally, these periods would be close to t mil-
liseconds when the program asks for t mil-
liseconds worth of audio. But this is almost 
never the case.

Table 1 shows the actual periods that I 
measured for t=10ms. The experiments were 
conducted on a Dell D820 laptop connected 
to ac power. The laptop has a dual-core Intel 
T7200 processor running at 2GHz and it ran 
either Windows XP SP3 or Linux 2.6.31. The 
test program is written in Java, so exactly the 
same code runs under Linux and Windows. 
The results for other values of t, ranging 
from 1ms to 40ms, were similar; the results 
at 60ms, 80ms, and 100ms were similar 
under Windows but showed increased laten-
cies under Linux. I ran the experiment when 
no other application was running (the idle 
row), when another application ran one CPU-
intensive thread that used one of the two 
available cores (CPUs), and when the other 
application ran two CPU-intensive threads. 
The maximums are over experiments lasting 
100s. The typical values are derived from 
the number of periods greater than 100ms 
in Windows and greater than 25ms in Linux; 
these numbers were always close to 800 and 
2344, respectively.

The results show several interesting facts. 
The first is that both operating systems sched-
ule the application at roughly constant inter-
vals, even when the application asks for just 
a small amount of audio every time. Windows 
suspends the program for about 125ms, then 
runs it until it extracts all the available audio. 
At this point the program blocks while wait-
ing for more audio. Windows suspends it 
again for 125ms rather than until the amount 
of audio it asked for is available. Linux does 
the same, but with a shorter scheduling inter-
val of about 43ms.

The other interesting fact is that Windows 
does not run the application often enough 
when the CPU is busy. When only one core 
is busy, the maximum scheduling latency 
for processes with a normal priority rises a 

bit, but the program still runs often enough 
to process all the audio. When both cores 
are busy, Windows does not run the program 
often enough to collect all the audio even 
though this application presents a very small 
CPU load. When we increase the priority 
of the audio program to real-time priority 
(using the task manager), the problem disap-
pears. Windows schedules the program often 
enough to process all the audio with the usual 
latency. Linux does not suffer from this prob-
lem and schedules the program often enough 
even when the CPU is heavily loaded.

The conclusion is that to receive data over 
UDP, the soundcard would need to be able to 
cope with gaps on the order of 150ms when 
Windows sends data and around 50ms when 
Linux sends the data, and with the packet 
bursts at the end of such periods. Current 
microcontrollers cannot do this.

Audio Transport over TCP
To address this problem, I designed a 

TCP-based10 transport strategy. TCP is a reli-
able protocol. The receiver sends acknowl-
edgements to the transmitter. Packets that 
are not acknowledged are retransmitted until 
they do. To avoid wasting bandwidth on 
packets that the receiver cannot accept due to 
its limited buffer space, the receiver informs 
the transmitter how much data it is willing 
to receive. This amount is called the win-
dow. TCP contains numerous other features, 
mostly to avoid network congestion. TCP is 
widely used on the Internet. For example, 
Web pages are delivered using TCP.

I initially tried a straightforward strategy 
for receiving data from the PC. The micro-
controller allocated a buffer for incoming 
audio and announced the size of this buffer 
as the initial window. As incoming packets 
fill the buffer, the window shrinks. As the 
microcontroller uses up data from the buf-
fer to send to the CODEC (thereby making 
space available for more data from the PC), 
the window grows. The microcontroller pro-
gram updated the window every millisecond.

This simple strategy worked as long as no 
packets were lost. When a packet from the 
PC was lost, the loss triggered a weird behav-
ior in Windows XP that caused a significant 
amount of audio to be lost. A TCP sender can 

Table 1
Comparison of Task Latency Across Scheduling Parameters
Time in ms

Windows XP  Windows XP Linux 
Normal Priority Realtime Priority Normal Priority

  Maximum    Typical Maximum    Typical Maximum    Typical
Idle 146 125 126 125 43 43
One Core Busy 155 125 129 125 51 43
Two Cores Busy  -- -- 129 125 64 43
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sense that a single packet was lost, because 
subsequent packets that are not lost trigger 
the receiver to send acknowledgments. These 
acknowledgements do not acknowledge the 
lost packet, of course, but the packet before. 
The repeated acknowledgements of the same 
packet allow the sender to conclude that one 
packet was lost, and it retransmits it. For 
some reason, Windows XP retransmitted 
only part of this lost packet (740 bytes out 
of 1460), not all of it. The microcontroller 
acknowledged what it received, but Windows 
apparently was waiting for an acknowl-
edgement of the entire packet. At this point 
Windows stopped sending for about 200ms. 
After that period, it retransmitted the entire 
missing packet and things got back to nor-
mal. But by this time, audio has been lost, 
producing a gap in the analog output of the 
sound card. This sequence of events hap-
pened every few seconds; it was not a rare 
event. I discovered why the audio was lost 
using wireshark, a free TCP tracing program. 

The moral here is not that Windows XP 
is defective (it eventually did transmit all 
the data, and there might be an obscure but 
good reason for the way it behaved), or that 
TCP is wrong for this application. The moral 
is that TCP implementations include many 
complex behaviors that fast computers with 
a lot of memory can easily cope with but that 
microcontrollers cannot always cope with.

I decided to use TCP in a simpler way that 
would not excite any complex TCP behavior. 
The new strategy also used a large circular 

buffer to store incoming audio, but it only 
advertises to the PC a window of one packet 
(1460 bytes). This allows the PC to send 
only one packet at a time. When the packet 
is received, the microcontroller copies its 
content to its audio buffer. Every millisecond, 
the microcontroller examines the amount of 
free space in this buffer. If it is greater than 
1460 bytes, it opens the TCP window to 
one packet, allowing the PC to send another 
packet. This strategy results in one of two 
behaviors. When the buffer is fairly empty, 
say initially or after a period in which the 
PC did not send data, the microcontroller 
acknowledges every packet immediately, 
opening the window back to one packet. 
This allows the PC to send another packet 
resulting in a fast packet-acknowledgement 
ping-pong like behavior. When the buffer 
is nearly full, which is the way it should be 
most of the time, the microcontroller receives 
a packet, acknowledges it, but keeps the 
window closed. The microcontroller checks 
the state of the buffer every millisecond; 
once enough space to receive another packet 
becomes available, the microcontroller opens 
the window, allowing the PC to send another 
packet. At 192kSPS and 24 bits, this happens 
on average every 1.26ms. At lower rates and 
resolutions, this happens less frequently. In 
both behaviors, the microcontroller essen-
tially throttles the PC, allowing it to send one 
packet at a time. This rules out complex TCP 
behaviors that occur when there are multiple 
outstanding unacknowledged packets.

Sending baseband samples from the 
sound card is easier. The microcontroller 
reads baseband samples from the CODEC 
into a circular 2-packet buffer. Every milli-
second, the microcontroller checks whether 
one of these packets is full. If it is, it sends it 
to the TCP driver. I configured TCP with a 
send buffer of about 10 packets (16KB), so 
no data is lost if the PC acknowledges pack-
ets rather slowly. Normally the PC acknowl-
edges packets immediately.

Figure 3 shows a simplified diagram of 
this microcontroller software architecture. 
TCP packets are received by the Ethernet 
device driver (an interrupt service routine), 
which passes them to lwIP, which in turn 
passes them to the sound-card’s TCP receive 
handler function. This function places the 
data in a large circular buffer (30KB). The 
data is extracted from this buffer by the 
CODEC’s interrupt service routine. If the 
buffer is empty, the CODEC’s interrupt rou-
tine sends zero samples to the CODEC, but 
this should never happen when the sound 
card functions normally. The same interrupt 
service routine also removes samples from 
the CODEC’s input queue and stores them in 
a separate two-packet circular buffer. Once a 
millisecond, a periodic function is invoked 
by lwIP. It checks if more than a full packet 
has been extracted from the large buffer. If 
so, it updates lwIP’s window to allow the PC 
to send another packet. It also checks if there 
is a full packet in the small circular buffer. If 
so, it sends the data to lwIP’s TCP send buf-
fer, which is a circular buffer maintained by 
lwIP itself. I configured it to 16KB. If lwIP 
needs to retransmit a packet, it retransmits it 
from this buffer.

Results
The TCP mechanism works well without 

dropping audio up to at least 192kSPS. The 
CODEC only supports 96kSPS and lower, so 
to test at 192kSPS, I simply replicated each 
sample and verified that no data is lost.

I tested the sound card by sending audio 
to it from the PC’s microphone and by receiv-
ing PC audio that the sound card digitized 
from the analog output of an iPod music 
player. I also tested the card with complex 
baseband samples from a 14MHz radio front 
end (a Softrock Lite). The baseband samples 
were processed by an SDR application 
(Rocky) that demodulated radio signals.

I tested the system using three different 
Ethernet interconnects and using the Dell 
D820 running Windows. One was simply an 
Ethernet cable connecting the sound card and 
the PC. In this configuration, both the PC and 
the sound card used a technique called Auto 
IP to obtain IP addresses. This interconnect 
provides the highest possible performance 
and lowest possible latency.Figure 3 – Software architecture block diagram
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In the second setup, the PC and sound 
card were both connected to an Ethernet 
switch. I tried both a D-Link switch designed 
for home use (more accurately, an ADSL 
modem with a built-in wired and wireless 
Ethernet switch, a DSL-2650U) and a large 
Cisco switch. In both of these setups, the 
sound card performed well without dropping 
any audio up to 192kSPS.

A third setup did not support high sam-
pling rates. In this setup, the sound card was 
connected to the home switch through an 
Ethernet cable, but the PC was connected 
to the switch through a WiFi connection 
(802.11g, running at strong signal strength 
and 54Mb/s). In this setup, performance 
was good without dropped audio up to 
48kSPS, but at 92kSPS and higher the PC-to-
soundcard direction dropped a lot of audio. I 
eventually traced this to round-trip latency 
of about 2ms associated with the WiFi con-
nection. That is, about 2ms pass between 
the time the PC sent a packet of data and 
the time the PC receives an acknowledge-
ment with a window update allowing it to 
send another packet. This latency restricts 
the effective bandwidth between the PC and 
the sound card. Achieving high bandwidth in 
high-latency channels is exactly the reason 
that TCP normally uses large windows rather 
than the single-packet window that is used 
here; but as explained above, large windows, 
a small microcontroller, and high data rates 
do not work well together.

UDP Enumeration and Control
The sound card uses TCP for baseband 

(audio), but it uses UDP to rendezvous 
with the PC application and for command 
and control functions. I designed this UDP 
protocol earlier as a mechanism for PC 
programs to control and communicate with 
various technical gadgets. The protocol 
works not only with the sound card, but also 
with another microcontroller board, where 
the Ethernet frames are transported through 
a USB interconnect. The Ethernet-over-
USB firmware supports both the propri-
etary Windows Ethernet-over-USB protocol, 
called RNDIS, and with the USB standard 
protocol, called CDC-ECM, which is sup-
ported by Linux (and by recent versions of 
Windows). In both cases, the drivers are built 
into the operating system.

When the sound card boots, it tries to 
obtain an IP address using the DHCP proto-
col. This succeeds in virtually any Ethernet 
environment except a direct cable connec-
tion. If the DHCP protocol fails, the card uses 
an auto-IP address. This behavior is part of 
lwIP. Now the sound card sends a broadcast 
UDP packet once a second announcing what 
kind of hardware it is. Since the packet is sent 
to a broadcast address, the sound card does 

not need to know the IP address of the PC 
that will control it.

The PC application listens for such pack-
ets. When it receives one, it sends back a 
point-to-point UDP packet acknowledging 
the broadcast. Once the soundcard receives 
this packet, it knows the IP address of the PC. 
It starts listening for an incoming TCP con-
nection request from the PC.

The UDP connection remains useful for 
sending commands to the sound card and for 
receiving status information from it. In this 
protocol, commands are sent in both direc-
tions. The sender expects an acknowledge-
ment for every command. A command that is 
not acknowledged is retransmitted until it is.

The UDP channel continues to send 
heartbeat messages in both directions once a 
second, unless there are other commands to 
send. If either side fails to receive these mes-
sages for a few seconds, it assumes that the 
other side has disconnected. In this event, the 
PC application reflects this on the user inter-
face, and the sound card goes back to sending 
periodic broadcast messages.

Summary
When sending real-time data over UDP 

from a general-purpose operating system 
like Windows or Linux, scheduling policies 
cause data to be sent in bursts with fairly long 
delays between bursts. Microcontrollers with 
limited amount of buffering and process-
ing power cannot handle this burst property. 
TCP transport avoids the burst issue because 
the microcontroller can throttle the incom-
ing data by opening only single-packet win-
dows. In principle, opening larger windows 
should also work, but it fails in practice, 
at least when sending from Windows XP, 
because single packet loss triggers complex 
TCP behaviors that sometimes generate long 
latencies. 

The use of single-packet windows links 

the maximum throughput to the round-trip 
latency. In direct cable connection and con-
nection through a wired Ethernet switch, the 
prototype supported full-duplex two-channel 
192kSPS rate. But when communicating 
through WiFi, the round trip latency rose and 
the throughput dropped, allowing only up 
to 48kSPS. This would also limit through-
put when the IP connection goes through 
multiple switches and routers, which also 
increases the latency.

From the application viewpoint, real-time 
data transport over TCP (or UDP when pos-
sible) reduces the dependency of SDR appli-
cations on both sound-card device drivers 
and the audio system’s API. 

Appendix: Additional Technical 
Details

The schematic of the CODEC circuit is 
shown in Figure 5. The microphone-input 
and line-output portions of the circuit are not 
wired in my prototype. The circuit was not 
optimized for high dynamic range and low 
noise; it was intended only as a platform for 
testing the Ethernet-based protocol.

The microcontroller is configured to 
generate the 12.28MHz master clock for the 
CODEC. The same clock frequency is used 
for all CODEC sampling rates. The CODEC 
is configured as a clock master for both 
the DAC and the ADC, and the microcon-
troller is configured as a slave in both. The 
CODEC therefore generates the bit clock 
and the left-right clock signals. Configuring 
the microcontroller as an audio clock slave 
gets around a silicon bug in revision B of the 
microcontroller. I also configured the audio 
as left-justified (rather than the more standard 
I2S format) to get around a related bug.

The microcontroller cannot generate a 
master clock at exactly 12.28MHz; it uses a 
fractional clock divider to get close, but there 
is some discrepancy between the CODEC’s 

Figure 4 – Photo of the development system.  The bottom board contains the CODEC parts. 
The board on the top left is the TI development system.  The board in the plastic box is the 

debugging interface.
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sampling rate and the rate at which the PC 
sends or consumes audio data. A better but 
more expensive solution would be to drive 
the CODEC with a crystal or a canned oscil-
lator at exactly 12.28MHz.
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Science at Tel-Aviv University. He holds BSc 
and MSc degrees from Tel-Aviv University 
and a PhD from the Massachusetts Institute 
of Technology, where he was also Visiting 
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Figure 5 – Schematic of the development board and CODEC interface.
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Notes
1Gerald Youngblood, AC5OG, Software-

defined radio for the masses. QEX Jul/Aug 
2002, Sep/Oct 2002, Nov/Dec 2002, and 
Jan/Feb 2003

2See groups.yahoo.com/group/softrock40
3The term SDR encompasses a wider range 

of radio architectures, including radios 
that do not use a personal computer but a 
special-purpose computer. In this article, 
however, I will use the term SDR to refer to 
radios that use a personal computer to do 
some of the signal processing

4www.flex-radio.com
5These receivers have a Web interface 

accessible from wwwhome.cs.utwente.
nl/~ptdeboer/ham/sdr

6See, for example, Jim Ahlstrom, N2ADR, An 
all-digital SSB exciter for HF, QEX May/Jun 
2008

7 USB Implementers Forum. USB Device 
Class Definition for Audio Devices. Release 
1.0, 1998, and Release 2.0, 2006

8 See Jan Axelson, USB Complete, 4th edition, 
Lakeview Research, 2009, or John Hyde, 
USB By Example, 2nd edition, Intel Press, 
2001

9UDP appears to be used by all or most 
Ethernet-based SDR platforms, such as the 
USRP2 (www.ettus.com), Jim Ahlstrom’s 
radios, and Pieter-Tjerk de Boer’s radios. 
The PC applications for these radios run on 
Linux, not Windows, which helps, as we’ll 
see later in the article

10 For good coverage of TCP, see W. Stevens, 
TCP/IP Illustrated, 3 volumes, Addison-
Wesley, 1994

Schematic derived from those 
of the Texas Instruments 
DK-LN3S9B96


