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ABSTRACT

We present a design for a high-performance low-cost solid-state
disk (SSD). Ignoring garbage-collection costs, our SSD performs
only 1 + ε physical accesses to NAND flash pages for every re-
quest of a page-size block by the host, for some small ε . This
is true for all access patterns, including random writes, which are
usually slow on low-cost SSDs. Garbage collection in all SSDs is
determined primarily by how full the SSD is, and its cost is similar
in most SSDs. The unique feature in our design is that it achieves
high performance even with when the SSD contains only a small
amount of RAM. In most SSD designs, this would imply low per-
formance; in ours, it does not. A small RAM lowers the cost of
an SSD with a given flash array. Our design achieves high perfor-
mance with a small RAM using two innovative ideas. One is the use
of a clever mapping data structure. The second is a host-assisted
hinting mechanism that uses RAM on the host to compensate for
the small amount of RAM within the SSD. This mechanism is im-
plemented as an enhanced SCSI driver (kernel module). Our proto-
typing methodology is also a significant contribution. We simulate
the SSD in software, using files to represent the flash array, but the
resulting prototype is a working SCSI device that file systems can
be mounted on.

Categories and Subject Descriptors

D.4.2 [OPERATING SYSTEMS]: Storage Management—Allo-

cation/deallocation strategies, Garbage collection

General Terms

Design, Algorithms , Performance, Experimentation

Keywords

Flash, NAND flash, iSCSI, Hints, Host Assisted, Page Mapping

1. INTRODUCTION
Solid-state disks still provide dismal poor random write (and

sometimes random read) performance. Benchmarks of SSDs have
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shown that many of them perform poorly on random-write work-
loads [5, 2]. Random read performance is often excellent, on par
with sequential reads. This poor random-write performance is caused
by a coarse-granularity mapping of host sector addresses (or linear
block addresses, LBAs) to physical page addresses.

For example, the specification of the SiliconEdge Blue SSD [9]
lists sustained sequential read and write performance of 250 and
140 MB/s, respectively, but random read and write performance
of only 20 MB/s. Benchmarks show even worse slowdowns for
random accesses: 13 and 15 MB/s for random reads and writes,
respectively1, versus 229 and 176 MB/s for sequential reads and
writes [21].

One proposed solution to this problem relies on a log-structured
design that writes pages sequentially within flash erase blocks even
when the host writes to random LBAs. This requires a fine-grained
mapping mechanism that admits arbitrary mappings of host sec-
tors (or small contiguous clusters covering 4KB or 8KB) to flash
pages [5]. However, this solution assumes that the SSD has enough
RAM to store a full sector-to-page mapping table.

For a 256GB Silicon Blue SSD, a table that maps each 4KB host
sector to an arbitrary flash address requires about 256MB of RAM;
alas, the SSD only has 64MB of RAM. Even so, the SSD, which
is designed for laptops, is at least 10 times more expensive than a
high-end magnetic hard disk (HDD) for laptops . The SSD per-
forms 15 times better on random I/O and about 2 times better on
sequential I/O than an HDD.

It is clear that a large RAM would improve the random-I/O per-
formance [5] of SSDs. Still, the designers of recent SSD have opted
for a small RAM (still much larger than the RAM buffer of a com-
parable HDD) and relatively poor performance. Assuming that the
cost of NAND flash chips will continue to drop, the cost of a large
RAM will become even more significant.

Moderately-priced SSDs from other vendors also perform rel-
atively poorly on random writes [14, 13] (These Intel drives per-
form well on random reads, which is also the case for many other
SSDs [2]; Intel’s high-end SLC and low-end MLC drives differ
only in sequential performance, not in random-I/O performance).

High-end SSDs perform better, but at a much higher cost. The
Zeus-IOPS SSD [12] performs sequential writes at 115MB/s se-
quentially and random writes at 64MB/s; but it is 30 times more
expensive per GB than [13, 14, 9].

1The relatively poor random I/O performance of the SiliconEdge
is not due to garbage collection (GC) overhead. When the bench-
mark wrote randomly to the entire drive, performance dropped to
2-3MB/s, similar to an HDD, due to the overhead of GC. The spec-
ified random-write performance was achieved only when the writes
were limited to a small portion of the drive, which reduces the over-
head of GC. The fact that random reads are also slow also suggests
that the slowdown is due to mapping overhead, not to GC.



This dramatic price-performance may seem fundamental, but it
is not.

In this paper we describe the prototype of a high-performance
SSD that uses a small amount of RAM. Our design relies on two
ideas to achieve high performance. One, described in Section 3, is
a two-level log-structured mapping data structure that can deliver
good sequential and random performance with the amount of RAM
that is now used in low-end SSDs. A host-assisted hinting mecha-
nism, described in Section 4, improves performance from good to
excellent by caching mapping information on the host’s large and
inexpensive RAM. The relationships between our techniques and
other issues in SSD design are explained in Section 5.

The prototype is implemented in software, using simulated NAND
flash chips that store information in files. The prototype is a SCSI
device, which allows us to test it under real file systems and real
workloads. The host side of the hinting mechanism is a kernel mod-
ule that modifies the behaviour of the SCSI disk driver in Linux.
The SSD prototype can work with existing SCSI device drivers;
the hinting mechanism is not used, but the SSD works and its fine-
grained mapping mechanism delivers good performance. The pro-
totype, which is freely available under the GNU Public License2,
is described in Section 6.

Section 7 presents experimental results that support our perfor-
mance claims and Section 8 presents our conclusions. The next
section discusses related work.

2. RELATED WORK
The mapping mechanisms of commercial SSDs are proprietary,

but the literature does describe several mapping schemes. Some
designs use a block-level mapping, sometimes with mechanisms
that avoid a read-modify-write cycle on every random write [18,
16]. Kang et al. [15] partition the sector space into super-blocks
that are mapped into erase-block groups; each group contains data
blocks and log blocks that are merged once in a while. LAST uses a
block-level map-ping for most of the data and a page-level mapping
for a small subset of the data [19]. Birrell et al. [5] proposed a page-
level mapping with a flat mapping table in RAM; this requires a
large RAM in the SSD.

Our design is a generalization of DFTL [11], which also uses a
two-level page mapping. DFTL uses page-sized mapping chunks,
which create a very large overhead for random writes; its authors
assume that the access pattern exhibits locality. Mapping chunks
are cached in RAM, and if the hit-rate is low, performance de-
grades. Our small chunks work well even under a totally random
workload with no locality. Another difference is that DFTL caches
mapping entries in the SSD’s RAM whereas we also cache them
on the host, where RAM is plentiful.

Arpaci-Dusseau et al.[3] proposed recently to eliminate entirely
the mapping from the SSD. In their proposed design, the SSD in-
forms the host where it stored a particular block; the host is respon-
sible for keeping appropriate mapping information. In other words,
the host and the SSD communicate using physical flash addresses
rather than LBAs. Such designs must cope with address changes
that result when the SSD reclaims blocks or performs wear level-
ling. Our design is somewhat similar in that the host maintains the
mapping to physical addresses, but because the host’s mappings
are treated as hints, we do not need to keep the host and the SSD
completely consistent. On the other hand, our prototype does store
the mapping on the SSD. In Arpaci-Dusseau et al.’s [3] design, the
SSD decides on the address of a new data block; NANDFS [24]

2The code is available at http://www.tau.ac.il/~stoledo/
research.html.

uses a similar nameless writing scheme for the interface between
the file-system layer and block layer.

Parallelism has emerged as a major concern in recent papers [20,
1]. Our prototype is event driven and concurrent; it can drive mul-
tiple flash chips on multiple buses, but parallelism is not the main
concern of this paper.

Hints are pieces of information that are usually correct, that im-
prove performance when correct, but are allowed to be incorrect.
The utility of hints has been known for a long time (see [17] and
the references there pertaining to hints). We are not aware of uses
of hints in SSD designs.

The SCSI framework that we use to prototype our SSD, tgt [10],
has been used in several research projects [8, 7]. SCST [6] is a sim-
ilar framework, but it runs in the kernel rather than in user mode.

3. THE MAPPING DATA STRUCTURE
The mapping structure that we propose maps every 4 KB cluster

(which we refer to as a sector below) to an arbitrary 4 KB page on
flash. We store each entry in 4 bytes, which allows for SSDs of up
to 16 TB. The mapping entries are stored in contiguous chunks of
c entries; c is a parameter of the design. The chunks are stored on
dedicated erase units, but usually not in order. An array in RAM,
called the root array, stores a pointer to the on-flash physical ad-
dress of each chunk, and a 4-byte version number associated with
each chunk; version numbers are discussed later. The total size of
this array is 8n/cp, where n is the total size in bytes of all the sec-
tors stored in the SSD and p is the size of each sector. In a 1 TB
SSD with 4 KB sectors and 64-entries chunks, the root array occu-
pies 32 MB.

The design also uses a bitmap in RAM that specifies whether
each sector-size portion of flash is in use. Its size is n/8p; For the
1 TB unit, the size is also 32 MB. This amount of RAM required
is reasonable and it remains so even if the SSD’s capacity is scaled
up (it is up to 32 times smaller than the amount required to keep the
entire mapping in RAM). In SSDs that do not have enough RAM
for the bitmap, the bit map can be replaced by an array of counters,
one for each block. The counters specify the number of obsolete
pages in a block, to allow the garbage collector to choose blocks for
cleaning; the counters require only a 1/32 fraction of the space of
the bitmap. The disadvantage of the counters is that they force the
garbage collector to determine the current mapping of each sector
on a page that is being cleaned, which increases the number of
read latencies incurred during cleaning. The host-assist mechanism
described below can also be used to represent an approximation
of the bitmap with little RAM usage on the SSD, and to assist in
verifying the validity of reclaimed physical pages without having
to read the relevant mapping chunks from flash.

To find sector s on flash, the controller fetches entry ⌊s/c⌋ of
the root array; it points to the physical flash address of the chunk
containing the mapping of s. The controller reads the chunk. Be-
cause chunks are read without reading an entire page, each chunk is
protected by a separate error-correction code (ECC). We note that
on most modern NAND chips, reading a small fraction of a page
is significantly faster than reading the entire page (because transfer
times on the NAND bus are relatively long).

To serve a read request, the controller now reads the requested
sector from flash and sends it to the host. To serve a write request,
the controller uses the mapping of s to invalidate the old copy of
s (in the bitmap), queues the new sector to be written to an arbi-
trary erased page, modifies the chunk containing s to show the new
mapping, and queues the chunk to be written to flash as well.

The mapping data structure is illustrated in Figure 1; Figure 2
shows how the SSD changes it when the host writes data to an LBA.
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Figure 1: An illustration of the two-level mapping mechanism. On the left we see the root array in RAM, and on the right the flash

array, consisting of 6 erase units containing 2 pages each. The example shows how LBA 1 is mapped to flash. This LBA is mapped

through the second entry in the 12th (and last) mapping chunk. The root array indicates that the chunk is the 12th one stored on

physical page 2. The second entry in this chunk points to physical page 7. This page stores LBA 1.

We write chunks to flash lazily. Each chunk that we write to
flash contains not only c pointers, but also a version number and
their index in the root array.

Sectors written to flash are self-identifying: they are written with
metadata containing an ECC and the host sector number. If the
SSD crashes before writing all the queued chunks, it reads recently-
written pages, determines which sectors they contain, and updates
the mapping.

4. HOST-ASSISTED MAPPING
Low-cost SSDs often lack enough RAM to store an arbitrary

page-mapping in RAM. But the host often has enough RAM to
store this mapping, or at least a fraction with a high hit rate.

We have developed a host-assist mechanism for SSDs. This
mechanism allows the host to assist the SSD in various tasks, and
in particular in mapping sectors.

The mechanism allows the SSD and the host to exchange infor-
mation using what is essentially an out-of-band channel that is not
used for the normal read/write requests.

We have prototyped the mechanism over iSCSI. The SSD, which
we prototyped using the tgt user-space SCSI target framework, ex-
poses one disk LUN and one custom LUN that is used for the assist
mechanism. The host sends hints to the SSD by writing to the cus-
tom LUN. The host also keeps at least one read request pending on
this LUN at all times, allowing the SSD to send mapping chunks to
the host whenever it chooses.

When the SSD reads or modifies a mapping chunk, it sends
the chunk to the host as a response to the outstanding read re-
quest on the custom LUN. On the host, a kernel thread receives
the chunk and caches it. This cache of chunks on the host is used
by an interceptor function. The interceptor is invoked by the SCSI
driver on every request to the SSD. For every request directed at the

hint-enabled SSD, the interceptor attempts to find relevant mapping
chunks. If it finds any, it writes them to the custom LUN, concate-
nated with the original read or write SCSI request. This constitutes
a hint. The interceptor then sends the original request to the data
LUN. If the host can’t find the chunk, the interceptor sends only
the original request. This structure is illustrated in Figure3.

When the SSD receives a hint before the actual read/write re-
quest, it uses the mapping in the hint instead of reading the map-
ping from flash. This saves one read latency for most random reads
and writes.

To work correctly without coupling the SSD and the host too
tightly, the SSD attaches a version number to chunk pointers in the
root array and to the chunks sent up to the host. It uses a chunk
from the host only if its version number is up to date; otherwise it
ignores it.

Figure 4 illustrates how the hinting mechanism changes the map-
ping process, using the example of Figures 1 and 2. Note that since
the version in the hint matches the version in the root array, one
read operation from flash is eliminated. The figure also illustrates
the fact that mapping chunks are written to flash lazily when the
SSD accumulates an entire page worth of dirty mapping chunks.

The hints are small relative to the data pages; therefore, they
do not consume much bandwidth on the SCSI interconnect. The
default size of chunks are 256 bytes long (and map 16 LBAs; they
can be configured to be larger or smaller). Other fields in the hint
occupy 28 bytes.

Hints are not necessary for the SSD to function correctly. If the
SSD is used with an existing SCSI driver (on any operating system),
the driver will not attach to the custom LUN, will not read mapping
chunks, and will not send hints. Random reads and writes would be
slower than on a host that implements hinting, but the SSD would
work (and would deliver good but not excellent performance).
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hinting mechanism is not active. Time progresses from top to
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5. ADDITIONAL DESIGN ISSUES
Our work focuses on one aspect of SSD design, namely effi-

cient mapping mechanisms. The design of SSDs must address a
few more issues. Some of them are essentially orthogonal to the
mapping and some are not. In this section, we list these issues and
explain if and how they interact with our mapping mechanism.

Checkpointing and Startup.
All SSDs map LBAs to physical flash addresses using a non-

trivial data structure. Some representation of the mapping must be
stored on flash. Upon startup, the SSD must locate this information,
read at least part of it, and initialize its mapping data structures in
RAM. Like other non-volatile storage systems that rely on RAM
data structures (e.g., file systems), an SSD must be able to startup
even if it did not shut down properly. The checkpointing and startup
mechanisms can be designed so that they are essentially orthogo-
nal to the mapping mechanisms. We have designed such a check-
pointing mechanism and verified that it works correctly with our
mapping design. This checkpointing and recovery mechanism also
supports mapping bad erase blocks to functional ones. The design
uses conventional persistence techniques. Our analysis shows that
the startup and recovery take much less than a second, even on a
large SSD (512 GB). The details are described in Appendix A.

Reclamation and allocation.
Because SSDs do not overwrite sectors in place, every write re-

quest from the host turns one page into garbage, obsolete data that
can be erased. Modern operating systems can also inform the SSD
that a certain sector will not be read before it is written again, using
the so-called trim command [22]. This also marks the page con-
taining the sector as garbage. When the number of erased blocks
drops below some threshold (which in theory can be 1), the SSD
must select a block (or several), copy the non-obsolete data on it to
erased storage, and erase it. This reclaims the storage that obsolete
data occupied. For reclamation to be effective, the selected block
should have as much obsolete data as possible. If the physical ca-
pacity of the SSD is much larger than the total size of LBAs that
it stores and if the reclamation threshold is low, then the SSD can
guarantee a lower bound on the number of pages that are reclaimed
every time a block is cleaned. In other cases, reclamation might be
ineffective.

The SSDs allocation policy is responsible for deciding on which
erase block to write each sector. In some workloads, the allocation
policy can have an effect on the effectiveness of reclamation. For
example, in a workload dominated by sequential reads and writes,
allocating nearby LBAs on nearby pages benefits reclamation, be-
cause many pages on a block are likely to become obsolete within a
short span of time, when the relevant sectors are being sequentially
overwritten. On the other hand, in a random-write workload any
attempt to maintain spatial locality will only increase overheads
without delivering any benefits. This would be the case, for exam-
ple, in a block-level mapping mechanism.

Our design contributes to the allocation and reclamation aspects
of the SSD in that it decouples them completely from the map-
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ping aspect. Our results below show that our mapping mechanism
is almost as effective on random accesses as it is on sequential
access. Reclamation costs are higher under random-write work-
loads, as they are in any SSD, but the mapping overheads (read-
ing/writing mapping chunks) are the same. This gives the SSD
designer the freedom to allocate sectors to erased pages in any way
that is likely to enhance the effectiveness of reclamation. The de-
signer can choose to co-locate nearby LBAs, or to co-locate LBAs
that belong to the same application object (file or directory, if the
SSD can detect this kind of information). Our mapping mechanism
does not constrain the allocation and reclamation policies.

Wear Levelling.
It was previously shown that wear levelling can be completely

decoupled from the mapping, allocation, and reclamation policies
and mechanisms [4, 24].

6. IMPLEMENTATION
The core of our SSD prototype is a concurrent SSD simula-

tor. The simulator simulates individual NAND chips, using a soft-
ware API to represent NAND flash operations (read, program, and
erase). We currently simulate only basic operations; our code cur-
rently does not support advanced operations like dual-plane reads
and writes, copy-back writes, and so on, but they can be easily
added. The simulator uses files to represent the non-volatile stor-
age of flash chips. Data is transferred to and from simulated chips
on simulated NAND buses. Each bus can support any number of
flash chips. The use of the chip-select-don’t-care feature allows
one chip to perform a flash-array action (erasure, reading, or pro-
gramming) while the bus transfers data and/or commands to/from
another chip. The buses are driven by a controller component that
handles SCSI requests, maintains the sector-to-page mapping, and
performs garbage collection.

A typical SSD today has around 10 NAND flash chips and sev-
eral NAND buses. To ensure that the concurrency is designed and
implemented correctly, each flash chip is simulated by a separate
thread. Buses are protected by locks, to ensure that a single bus is
not used for two transfers at the same time.

A controller code executes SCSI requests and drives the buses
and chips. The controller consists of the bulk of the SSD prototype.
The controller is single-threaded but concurrent. It can drive many
buses, chips, and DMA channels concurrently.

We note that even though we use a separate thread to simu-
late each chip, actual running times do not accurately reflect the
SSD’s performance. For example, when the files that represent the
chips are stored on a single magnetic disk, different simulated chips
cannot access their non-volatile storage concurrently, and random
reads are very slow. Therefore, the simulator can theoretically keep
track of simulated time, but the timing of responding to SCSI re-
quests is not correct.

Our SSD implementation performs on-demand garbage collec-
tion. When the SSD runs out of storage, it selects the block with
the largest number of obsolete pages and reclaims their storage.
Idle-time reclamation would have improved performance. Our pro-
totype does not perform checkpointing, orderly shutdown, and nor-
mal or post-crash startup. When the code starts, it initializes the
SSD to an empty state. We have designed the details of checkpoint-
ing, recovery, and wear levelling using standard techniques [4, 24],
but we have not implemented them.

The SSD code runs under tgt, a user-space SCSI framework [10].
To the host, the SSD appears as a normal iSCSI disk device. The
interface between our SSD code and the rest of tgt is fairly simple:
tgt calls our code when it receives a SCSI request to either the disk
or the custom LUN. After processing the SCSI request inside our
code, we invoke a tgt completion function to provide responses to
SCSI requests.

Our host-side code consists of a single kernel module that must
be loaded after the SCSI driver. We didn’t change any existing ker-
nel or SCSI drivers sources. Instead, we dynamically patch relevant
callback tables to refer to our own functions. Our SSD-assist mod-
ule contains the kernel thread that receives the chunks, the intercep-
tor function that sends hints to the SSD, and the chunk cache that
both of them use. When the module is loaded, it writes a pointer
to the interceptor into an existing function table in the SCSI driver.
This causes the interceptor to be invoked on each iSCSI request.



The interceptor overrides a function in the SCSI driver by first in-
voking new functionality and then calling the overridden function,
to preserve the SCSI driver’s functionality.

The FTL implementation and the kernel module together consist
of about 2,500 lines of code.

7. EXPERIMENTAL RESULTS
We performed two main types of experiments with the SSD pro-

totype. Both experiments used the same setup. A VirtualBox vir-
tual machine ran a Linux kernel into which our hinting device driver
was loaded. The SSD prototype ran on the same machine under tgt
and it exported an iSCSI disk. The iSCSI disk was used either as a
block device by a benchmark program or the ext4 file system was
mounted on it.

The SSD was configured to include 8 NAND flash chips con-
nected through 4 buses. The total capacity was kept small, 4GB,
to allow us to run experiments quickly. In this configuration the
amount of RAM required by our controller simulator was less than
1 MB. The small total size of the SSD should not make a significant
difference in our experiments.

In one set of experiments, we mounted a file system on top of
the SSD block device and ran Linux applications from that file sys-
tem (mainly a kernel build). We repeated the experiments with and
without hints. This verified that the prototype works correctly.

The main set of experiments is designed to evaluate the perfor-
mance of the SSD. Each experiment starts by filling the block de-
vice sequentially. This brings the SSD to a state in which it must
perform garbage collection. We then run vdbench [23] to gener-
ate block-device workloads: random or sequential reads or writes.
Each request is for 4 KB, or one flash page. During the run of vd-
bench, the SSD prototype counts the number of pages written to or
read from flash, the number of erasures, and the number of bytes
transferred on NAND buses. We count separately operations that
are triggered by SCSI requests and operations that are triggered
by garbage collection. When the SSD writes pages of mapping
chunks, the pages include both SCSI-triggered chunks and garbage-
collection-triggered chunks. We consider all of these page write
operations to be SCSI related (this makes our results seem a little
worse than they really are).

The metric that we use to evaluate different SSD configurations
is the average flash-chip time consumed by each SCSI operation.
We compute this average by multiplying the number of pages read
by amount of time NAND chips take to read a page, the number of
page written by the program time, and so on, and then divide by
the total number of blocks requested through the SCSI interface.
The graphs below also show a breakdown of the average time to
different components.

We repeated the main set of experiments 5 times, and the results
presented here are the averages. The results were stable, and the
largest variance exhibited between the runs was 1.5%.

The structure of the prototype does not allow us to make accurate
real-time measurements, as explained in the previous section.

Figure 5 summarizes the performance benefits of our SSD design
over a DFTL-like approach. The DFTL performance was evalu-
ated by using page-size chunks and by tuning off the host-assisted
hinting mechanism. We can see that reading mapping chunks ac-
counts for a significant portion of the running time on random reads
and writes. Writing chunks constitute a significant overhead for
all writes because we commit the chunks immediately. Delaying
chunk writes would have improved sequential-write performance
significantly but not random-write performance. The performance
of our SSD design is significantly better.

The next graphs drill down to explain where the performance im-
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Figure 6: The benefit of using small mapping chunks. The

graph compares the DFTL-like results on the left (same data as

the leftmost bars in Figure 5) to our SSD’s performance with-

out the hinting mechanism.

provement comes from. Figure 6 shows the performance improve-
ment that is due to the use of small mapping chunks. The time to
write chunks is reduced because we write them only when the SSD
fills a full page. The time to read chunks is also reduced because
the transfer time on the NAND bus is much lower when we read a
single chunk rather than a full page.

Figure 7 presents the performance benefits of using host-assisted
mapping. The time to both read chunks is significantly reduced.
This improves the performance of random reads and writes. In
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Figure 7: The effect of mapping hints on our SSD. The four

bars on the left show the performance without hints (and with

small mapping chunks; same data as the rightmost bars in Fig-

ure 6), and the four on the right show the performance with

hints. The time to read hints almost disappears. The red hori-

zontal line shows the cost of transferring a page from the con-

troller to the NAND chip and programming a page. The blue

line shows the cost of reading a page and transferring the data

to the controller. With small chunks and hinting, performance

is almost optimal for all access patterns.

particular, the use of hinting with small mapping chunks brings
the cost of every read and write close to the minimum dictated by
the NAND flash timing; random reads and writes are as fast as
sequential ones, and they take essentially no time beyond the time
to transfer a page and execute the NAND operation on the flash
chip. This is the most important result of this paper.

Figures 8 and 9 explore the effects of hinting on flash devices
with alternate timing characteristics. Figure 8 shows that when
flash read operations are relatively slow, which is the case on some
MLC NAND flash chips, the impact of the hinting mechanism is
even grater. Some 3Xnm chips take about 200us to read a page and
about 1.5ms to program a page or erase a block. The bus transfer
times are similar to those of older chips. On such chips, the high
cost of page read operations makes hinting particularly useful in
random-read operations; writes are so slow that the use of hinting
does not make a big difference. Figure 9 explores a possible fu-
ture enhancement to NAND flash chips, in which the bus timing
improves. In this graph, we assume a hypothetical transfer time of
5ns per byte. Again, the use of hinting becomes more significant,
because the faster NAND bus makes reading chunk pages relatively
more expensive.

Figure 10 demonstrates the effect of limiting the capacity of hints
stored on the host. We repeated our random write benchmark with
varying amounts of storage allocated to the hints cache on the host.
The amounts of hint storage ranged from 20% of the amount re-
quired to keep the full mapping on the host to 100% (about 3 MB).
We then measured the percentage of SCSI requests that triggered
a chunk read from flash, i.e. that were not preceded by a useful
hint. The data shows that there is a clear and simple correlation
between the effectiveness of the hinting mechanism and the size
of memory allocated in the host for storing hints. On workloads
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Figure 8: The impact of hints on our SSD when flash read and

program times are longer (200us and 1.5ms, typical of some

3Xnm MLC devices) but bus transfer times remain the same.

The impact on writes becomes smaller, because of the long la-

tency, but the impact on reads becomes larger.
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Figure 9: The impact of hints when bus transfer times drop to

5ns per byte.

with more temporal or spatial locality, a small hints cache would
be much more effective than on a random-access workload.

8. CONCLUSIONS
This paper makes two contributions. The main contribution con-

sists of two orthogonal techniques that together reduce mapping-
related read and write amplification in NAND flash solid-state disks
(SSDs). SSDs must use a complex mapping of LBAs to flash ad-
dresses, because flash erasures have large granularity and because
wear levelling is used to ensure high endurance. The mapping is
stored on flash and reading and updating it require performing flash
operations. These operations increase the number of flash opera-
tions that are performed beyond the number required to actually
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Figure 10: The effect of limiting the memory allocated for hints

storage on the host-side device driver. The 100% point allows

the entire page-level mapping to be stored on the host. The blue

line displays the behaviour in a purely random workload, and

the green line in a workload where only 50% of the requests are

random and the rest are sequential.

access the data. This increase is called amplification.
The use of two-level mapping with a large root node in RAM

and small internal nodes stored on flash is the first innovation of
this paper. This is an enhancement of the DFTL mapping scheme,
which also uses two levels. The internal mapping nodes in DFTL,
however, occupy a full page. The DFTL scheme has a much larger
overhead than ours on random access with poor temporal locality.
It has a slightly smaller overhead on sequential accesses, but the
difference is tiny.

The second technique that we use reduces read amplification.
Fundamentally, we rely on a large cache in RAM for the mapping
entries. The innovation in our design lies in that the cache is stored
on the SCSI host, not on the SSD. In general, RAM on the SSD is
expensive; most SSDs do not have enough RAM to store an entire
page-granularity mapping. RAM on the host is cheaper and it can
be used much more flexibly (that is, the cache can be shrunk to
make RAM available to other uses).

Two ideas make a host-based cache effective. One is the fact that
the SCSI device driver understands the mapping mechanism of the
SSD, so it can send mapping entries with each SCSI request. By
pushing mappings to the SSD when they are going to be used, we
eliminate the round-trip latency that a request-reply protocol would
have required. That is, it is better for the host to push the mapping
than for the SSD to request it.

The other idea that makes host-based caching effective is the use
of the pushed mappings as hints rather than as definitive mappings.
The use of hints allows our design to avoid the complexity that
would be required if the host and the SSD tried to keep consistent
views of a mapping that changes all the time.

The two techniques together mean that our SSD performs only
1+ε physical accesses to NAND flash pages for every request of a
page-size block by the host, for a very small ε . This is true for all
access patterns, including random writes, which are usually slow
on low-cost SSDs. The SSD is that efficient even when it has a
small RAM. This shows that there is no reason to accept a mem-
ory/performance tradeoff or a sequential-access/random-access trade-

off in the design of mapping schemes for SSDs. We can have the
best of both worlds.

The other main contribution of this paper is the prototyping method-
ology that we used to evaluate the design. By implementing the
SSD as an iSCSI device we were able to achieve three objectives
simultaneously. First, we were able to prototype the SSD using
software alone; any prototype that uses SCSI or SATA interfaces
would have required hardware design or FPGA design. Second,
the SSD prototype appears as a normal block device, which allows
us to mount file systems and run applications on top of it. Third,
the fact that the SSD appears as a SCSI device allowed us to imple-
ment the modified SCSI driver that includes hinting support and to
demonstrate that this can be done without any changes to existing
Linux SCSI drivers. We believe that similar implementation tech-
niques are possible in other operating systems. We also believe that
the same principles are applicable to other SSD interfaces, such as
SATA or Fibre Channel.
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APPENDIX

A. ADDITIONAL DESIGN DETAILS
In this appendix we provide additional details on our SSD de-

sign. These details involve issues that do not affect performance
to a significant degree. We have not implemented the mechanisms
described here.

A.1 The Block Allocator and the Bad Block
Mapper

The block allocator and the bad-block mapping mechanism use
an in-RAM array that stores the state of each erasure block: in use,
in the process of being erased, erased, or garbage (it needs to be
erased). This array, like all the other data structures of the SSD, is
committed to flash lazily; we explain the commit mechanism later.

The bad-block mapping mechanism is a very low-level one, be-
cause all the other modules require its services. Some blocks are
marked on-flash by the manufacturer as bad. When we format the
FTL’s on-flash data structures, we scan the SSD for such blocks and
we mark them in-use in the array; this ensures that they will never
be allocated and hence they will never be used. We also reserve a
range of blocks to serve as replacement for blocks that go bad.

Blocks may also go bad during normal operation, as indicated
by a failed erasure or program operation. When an erasure opera-
tion fails, we mark the failed block as in-use in the in-RAM data

structure. Normally, this information will commit to flash later and
this ensures that the block will never be used. If the SSD crashes
before this information is committed to flash, the block’s state will
revert to garbage or in-the-process-of-being-erased. In the latter
case, we modify the state to garbage. Either way, the SSD will
attempt to erase the block again. If the erasure succeeds, the block
will continue to be used; if it fails, it will again be marked as in-use.

Failures during programming operations are a bit more difficult
to handle. When a programming operation occurs, the SSD selects
a replacement block (which is still marked in the array as erased)
and writes to the metadata area of its first page a data structure that
indicates that it is now replacing the failed block, and the page at
which the replacement begins. The SSD then starts the program-
ming operation again, but now directs it to the replacement block.
The page offset within the block remains the same.

When the SSD boots, it reads the first page of all the blocks that
have been initially reserved as replacements and builds an in-RAM
data structure that specifies the current replacement mappings. This
data structure is never committed back to flash. On every write and
every read, the SSD checks whether the page to be read or writ-
ten is in a block that has been replaced; writes are directed to the
replacement block, and reads are directed to either the replaced or
the replacement, depending on their offset. When a replaced block
needs to be erased, the SSD erases only the replacement block; the
replaced block will remain marked in-use forever, but since there
are no references to its pages anywhere, it will never be actually
used. There is no need to maintain the replacement after such an
erasure.

A.2 Checkpointing and Crash Recovery
Our checkpointing mechanism is general and it is decoupled

from all the other modules. Our main design objective has been
orthogonality of this mechanism rather than performance. It is not
inefficient asymptotically, but it is not highly optimized either.

The design assumes that all the modules whose data structures
need to be checkpointed use static memory allocation and that the
location of their data structures is known to the checkpointing mech-
anism. Our prototype satisfies these assumptions.

The other modules modify their in-RAM data structures only in
the context of transactions. Transactions cannot span flash opera-
tions; they must end before a module initiates a flash read, program,
or erasure. We therefore assume that transactions always complete
in RAM (although they might not be committed to flash before a
crash). The beginning and ending of transactions are reported to the
checkpointing mechanism, as well as redo and undo records for all
the individual RAM modification operations that constitute a trans-
action. Our SSD is single threaded and event driven, so there is at
most one active transaction at any given time. Thus, transactions
have a total order, and they commit in order. The redo records of a
transaction are not allowed to span more than half a flash page.

The checkpoint mechanism stores transaction records in an in-
RAM buffer whose size is at least half a flash page (it can be larger
to improve performance).

A module can request that a specific transaction be committed
to flash. An example for such a transaction would be changing a
block’s state from garbage to in the process of being erased. The
checkpointing mechanism responds by committing all the transac-
tions up to this one (and perhaps a few later ones). The checkpoint-
ing mechanism also writes to flash when its buffer contains at least
half a page of transaction records. The records written back to flash
must be part of a completed transaction..

Transaction records and RAM checkpoints are stored in a linked
list of flash blocks. Each page in these blocks contains half a page



of RAM image of the FTL’s static data structures, and up to half a
page of redo records. The undo records are only stored in RAM for
internal FTL use as explained below. The half-page RAM images
are copied from RAM to flash cyclically and lazily; this copying is
triggered by transactions that must commit, or an accumulation of
more than half a page of redo records as described earlier.

To avoid writing page images that contain modifications from
uncommitted transactions, we apply all the undo records of trans-
actions whose records are still in RAM to the half-page image be-

fore we copy it to flash. These records are applied backwards in
time, to ensure that the on-flash image is the one that existed just
after the last committed transaction ended.

When the SSD boots after a crash, the checkpointing mechanism
locates the end of the linked list of blocks reads backwards until it
finds an image of each half-page of RAM. It then reads the pages
in this list from oldest to newest, copying the half-page images to
RAM and redoing the actions of committed transactions.


