
Nested-Dissection Orderings for Sparse LU with
Partial Pivoting

Igor Brainman1 and Sivan Toledo1

School of Mathematical Sciences, Tel-Aviv University
Tel-Aviv 69978, ISRAEL

Email: sivan@math.tau.ac.il
Home page: http://www.math.tau.ac.il/~sivan

Abstract. We describe the implementation and performance of a novel
fill-minimization ordering technique for sparse LU factorization with par-
tial pivoting. The technique was proposed by Gilbert and Schreiber in
1980 but never implemented and tested. Like other techniques for or-
dering sparse matrices for LU with partial pivoting, our new method
preorders the columns of the matrix (the row permutation is chosen
by the pivoting sequence during the numerical factorization). Also like
other methods, the column permutation Q that we select is a permuta-
tion that minimizes the fill in the Cholesky factor of QTATAQ. Unlike
existing column-ordering techniques, which all rely on minimum-degree
heuristics, our new method is based on a nested-dissection ordering of
ATA. Our algorithm, however, never computes a representation of ATA,
which can be expensive. We only work with a representation of A it-
self. Our experiments demonstrate that the method is efficient and that
it can reduce fill significanly relative to the best existing methods. The
method reduces the LU running time on some very large matrices (tens
of millions of nonzeros in the factors) by more than a factor of 2.

1 Introduction

Reordering the columns of sparse nonsymmetric matrices can significantly reduce
fill in sparse LU factorizations with partial pivoting. Reducing fill in a factor-
ization reduces the amount of memory required to store the factors, the amount
of work in the factorization, and the amount of work in subsequent triangular
solves. Symmetric positive definite matrices, which can be factored without piv-
oting, are normally reordered to reduce fill by applying the same permutation
to both the rows and columns of the matrix. When partial pivoting is required
for maintaining numerical stability, however, pre-permuting the rows is mean-
ingless, since the rows are exchanged again during the factorization. Therefore,
we normally preorder the columns and let numerical consideration dictate the
row ordering. Since columns are reordered before the row permutation is known,
we need to order the columns such that fill is minimized no matter how rows
are exchanged. (Some nonsymmetric factorization codes that employ pivoting,
such as UMFPACK/MA38 [2, 3], determine the column permutation during the

numerical factorization; such codes do not preorder columns so the technique in
this paper does not apply to them.)

A result by George and Ng [6] suggests one effective way to preorder the
columns to reduce fill. They have shown that the fill of the LU factors of PA
is essentially contained in the fill of the Cholesky factor of ATA for every row
permutation P . (P is a permutation matrix that permutes the rows of A and
represents the actions of partial pivoting.) Gilbert [8] later showed that this
upper bound on the fill of the LU factors is not too loose, in the sense that for
a large class of matrices, for every fill element in the Cholesky factor of ATA
there is a pivoting sequence P that causes the element to fill in the LU factors
of A. Thus, nonsymmetric direct sparse solvers often preorder the columns of A
using a permutation Q that minimizes fill in the Cholesky factor of QTATAQ.

The main challenge in column-ordering algorithms is to find a fill-minimizing
permutation without computing ATA or even its nonzero structure. While com-
puting the nonzero structure of ATA allows us to use existing symmetric ordering
algorithms and codes, it may be grossly inefficient. For example, when an n-by-
n matrix A has nonzeros only in the first row and along the main diagonal,
computing ATA takes Ω(n2) work, but factoring it takes only O(n) work.

This challenge has been met for the class of reordering algorithms based
on the minimum-degree heuristic. Modern implementations of minimum-degree
heuristics use a clique-cover to represent the graph GA of the matrix1 A (see [5]).
A clique cover represents the edges of the graph (the nonzeros in the matrix) as
a union of cliques, or complete subgraphs. The clique-cover representation allows
us to simulate the elimination process with a data structure that only shrinks
and never grows. There are two ways to initialize the clique-cover representation
of GATA directly from the structure of A. Both ways create a data structure
whose size is proportional to the number of nonzeros in A, not the number of
nonzeros in ATA. From then on, the data structure only shrinks, so it remains
small even if ATA is relatively dense. In other words, finding a minimum-degree
column ordering for A requires about the same amount of work and memory as
finding a symmetric ordering for AT +A, the symmetric completion of A.

Nested-dissection ordering methods were proposed in the early 1970’s and
have been known since then to be theoretically superior to minimum-degree
methods for important classes of sparse symmetric definite matrices. Only in
the last few years, however, have nested-dissection methods been shown experi-
mentally to be more effective than minimum-degree methods.

In 1980 Gilbert and Schreiber proposed a method for ordering GATA using
nested-dissection heuristics, without ever forming ATA [7, 9]. Their method uses
wide separators, a term that they coined. They have never implemented or tested
their proposed method.

The main contribution of this paper is an implementation and an exper-
imental evaluation of the wide-separator ordering method, along with a new
presentation of the theory of wide separators.

1 The graph GA = (V,E) of an n-by-n matrix A has a vertex set v = {1, 2, . . . , n} and
an edge set E = {(i, j)|aij 6= 0}. We ignore numerical cancellations in this paper.

Modern symmetric ordering methods generally work as follows:

1. The methods find a small vertex separator that separates the graph G into
two subgraphs with roughly the same size.

2. Each subgraph is dissected recursively, until each subgraph is fairly small
(typically several hundred vertices).

3. The separators are used to impose a coarse ordering. The vertices in the
top-level separator are ordered last, the vertices in the second-to-top level
come before them, and so on. The vertices in the small subgraphs that are
not dissected any further appear first in the ordering. The ordering within
each separator and the ordering within each subgraph has not yet been
determined.

4. A minimum-degree algorithm computes the final ordering, subject to the
coarse ordering constraints.

While there are many variants, most codes use this overall framework.
Our methods apply the same framework to the graph of ATA, but without

computing it. We find separators in ATA by finding wide separators in AT +A.
We find a wide separator by finding a conventional vertex separator and widen-
ing it by adding to it all the vertices that are adjacent to the separator in one
of the subgraphs. Such a wide separator corresponds to a vertex separator in
ATA. Just like symmetric methods, our methods recursively dissect the graph,
but using wide separators. When the remaining subgraphs are sufficiently small,
we compute the final ordering using a constrained column-minimum-degree al-
gorithm. We use existing techniques to produce a minimum-degree ordering of
ATA without computing GATA (either the row-clique method or the augmented-
matrix method).

Experimental results show that our method can reduce the work in the LU
factorization by up to a factor of 3 compared to state-of-the-art column-ordering
codes. The running times of our method are higher than the running-times of
strict minimum-degree codes, such as COLAMD [10], but they are low enough
to easily justify using the new method. On many matrices, including large ones,
our method significanly reduces the work compared to all the existing column
ordering methods. On some matrices, however, constraining the ordering using
wide-separators increase fill rather than reduce it.

The rest of the paper is organized as follows. Section 2 presents the theory
of wide separators and algorithms for finding them. Our experimental results
are presented in Section 3. We discuss our conclusions from this research in
Section 4.

2 Wide Separators: Theory and Algorithms

Our column-ordering methods find separators in GATA by finding a so-called
wide separator in GAT+A. We work with the graph of AT +A and not with GA
for two reasons. First, this simplifies the definitions and proofs. Second, to the

best of our knowledge all existing vertex-separator codes work with undirected
graphs, so there is no point in developping the theory for the directed graph GA.

A vertex subset S ⊆ V of an undirected graph G = (V,E) is a separator if
the removal of S and its incident edges breaks the graph into two components
G1 = (V1, E1) and G2 = (V2, E2), such that any path between i ∈ V1 and j ∈ V2

passes through at least one vertex in S. A vertex set is a wide separator if every
path between i ∈ V1 and j ∈ V2 passes through a sequence of two vertices in S
(one after the other along the path).

Our first task is to show that every wide separator in GAT+A is a separator
in GATA. (proofs are omitted from this abstract due to lack of space)

Theorem 1. A wide separator in GAT+A is a separator in GATA.

The converse is not always true. There are matrices with separators in GATA
that do not correspond to wide separators in AT+A. The converse of the theorem
is true, however, when there are no zeros on the main diagonal of A:

Theorem 2. If there are no zeros on the diagonal of A, then a separator in
GATA is a wide separator in GAT+A.

Given a code that finds conventional separators in an undirected graph, find-
ing wide separators is easy. The separator and its neighbors in either G1 or G2

form a wide separator:

Lemma 1. Let S be a separator in an undirected graph G. The sets S1 =
S ∪ {i|i ∈ V1, (i, j) ∈ E for some j ∈ S} and S2 = S ∪ {i|i ∈ V2, (i, j) ∈
E for some j ∈ S} are wide separators in G.

The proof of the theorem is trivial. The sizes of S1 and S2 are bounded
by d|S|, where d is the maximum degree of vertices in S. Given S, it is easy to
enumerate S1 and S2 in time O(d|S|). This running time is typically insignificant
compared to the time it takes to find S.

Which one of the two candidate wide separators should we choose? A wide
separator that is small and that dissects the graph evenly reduces fill in the
Cholesky factor of ATA, and hence in the LU factors of A. The two criteria
are usually contradictory. Over the years it has been determined the the best
strategy is to choose a separator that is as small as possible, as long as the ratio
of the number of vertices in G1 and G2 does not exceed 2 or so.

The following method, therefore, is a reasonable way to find a wide separator:
Select the smallest of S1 and S2, unless the smaller wide separator unbalances
the separated subgraphs (so that one is more than twice as large as the other)
but the larger does not. Our code, however, is currently more naive and always
choose the smaller wide separator.

3 Experimental Results

3.1 Experimental Setup

The experiments that this section describe test the effectiveness and perfor-
mance of several column-ordering codes. We have tested our new codes, which

implement nested-dissection-based orderings, as well as several existing ordering
codes.

Our codes build a hierarchy of wide separators and then use the separators
to constrain a minimum-degree algorithm. We obtain the wide separators by
widening separators in GAT+A that SPOOLES [1] finds. SPOOLES is a new
library of sparse ordering and factorization codes that is being developped by
Cleve Ashcraft and others. Our codes then invoke a column-mininum-degree
code to produce the final ordering. One minimum-degree code that we use is
SPOOLES’s multi-stage-minimum-degree (MSMD) algorithm, which we run on
the augmented matrix. The other minimum-degree code that we used is a version
of COLAMD [10] that we modified to respect the constraints imposed by the
separators.

The existing minimum-degree codes that we have tested include COLAMD,
SPOOLES’s MSMD (operating on the augmented matrix with no separator con-
straints), and COLMMD, a column minimum-degree code, originally written by
Joseph W.-H. Liu and distributed with SuperLU.

We use the following acronims to refer to the ordering methods: MSMD
refers to SPOOLES’ minimum-degree code operating on the augmented ma-
trix without constraints, WS+MSMD refers to the same minimum-degree code
but constrained to respect wide separators, and similarly for COLAMD and
WS+COLAMD.

In one set of experiments we first reduced the matrices to block triangular
form (see [12]) applied the ordering and factorization to the diagonal blocks in
the reduced form.

We always factor the reordered matrix using SuperLU [4, 11], a state-of-
the-art sparse-LU-with-partial-pivoting code. SuperLU uses the BLAS; we used
the standard Fortran BLAS for the experiments. We plan to use a higher-
performance implementation of the BLAS for the final version of the paper.

We conducted the experiments on a 500MHz dual Pentium III computer with
1 GByte of main memory running Linux. This machine has two processors, but
our code only uses one processor.

We tested the ordering methods on a set of nonsymmetric sparse matri-
ces from Tim Davis’s sparse matrix collection2. We used all the nonsymmetric
matrices in Davis’s collection that were not too small (less than 0.1 second fac-
torization time with one of the ordering methods) and that did not require more
than 1Gbytes to factor. The matrices are listed in Table 1. For further details
about the matrices, see Davis’s web site (the final version of this paper will in-
clude a table listing the order and number of nonzeros for each matrix; the table
is omitted from this abstract due to lack of space).

3.2 Results and Analysis

Table 1 summarizes the results of our experiments. The table shows experiments
without reduction to block triangular form.
2 http://www.cise.ufl.edu/~davis/sparse/

Columns 2–9 in the table show that wide-separator ordering techniques are
effective. Wide separator (WS) orderings are the most effective ordering meth-
ods, in terms of work in the factorization, on 23 out of the 41 test matrices. WS
orderings are the most effective on 9 out of the 10 largest matrices (largest in
terms of work in the factorization). On the single matrix out of the 10 largest
where a WS ordering was not the best, it required only 7% more flops to factor.

The reduction in work due to wide separators is often significant. On the
larget matrix in our test suite, li, wide separators reduce factorization work by
almost a factor of 2. The reduction compared to the unconstrained MD methods
is also highly significant on raefsky3, epb3, and graham1.

When WS orderings do poorly compared to MD methods, however, they
sometimes do significantly poorer. On ex40, for example, using wide separa-
tors requires 2.66 times the number of flops that COLAMD alone requires. The
slowdowns on some of the lhr and bayer matrices are even more dramatic, but
reduction to block triangular form often resolves these problems.

On lhr14c, for example, reduction to block triangular form prior to the
ordering and factorization reduced the ordering time by more than a factor of
10 and reduced the number of nonzeros in MSMD+WS from 2.1e9 to 8.2e7 (and
to 4.5e7 for MSMD alone). These experiments are not reported here in detail
because we conducted them too late. The complete results will appear in the
final version of the paper.

As columns 7–9 in the table show, reducing flop counts generally translates
into reducing the running time of the factorization algorithm and reducing the
size of the LU factors. The detailed comparisons between ordering methods other
than COLAMD and WS+COLAMD are similar and are omitted from the table.
Hence, our remarks concerning the flop counts above also apply to the running
time of the factorization code and the amount of memory required to carry out
the factorization and to store the factors.

Wide-separator orderings are more expensive to compute than strict mini-
mum-degree orderings, but the extra cost is typically small compared to the
subsequent factorization time. Column 10 in the table shows the cost of ordering
relative to the cost of the factorization. The table shows that a few matrices take
longer (sometimes much longer) to order than to factor. This happens to matrices
that arise in chemical engineering (the bayer matrices and the lhr matrices).
We hope to resolve this issue using reduction to block tridiagonal form. Another
point that emerges from the table is that on small matrices, wide-separator
orderings are expensive to compute relative to the cost of the factorization.

4 Conclusions And Future Work

Our main conclusion from this research is that hybrid wide-separator/minimum-
degree column orderings are effective and inexpensive to compute. They often
reduce substantially the amount of time and storage required to factor a sparse
matrix with partial pivoting, compared to minimum-degree orderings such as
COLAMD and COLMMD. They are more expensive to compute than minimum-

Table 1. A comparison of wide-separator and mimimum-degree column orderings.
Columns 2–6 show the number of floating-point operations (flops) required to factor
the test matrices using 5 different ordering methods. The flop counts for the most
efficient method (or methods) are printed in bold. Columns 7–9 show the effectiveness of
WS+COLAMD relative to that of COLAMD: %T compares factorization running times
(< 100 means that WS+COAMD is better), %F compares flops, and %Z compares
number of nonzeros in the factors. The last column, denoted %O, show the time to find
wide-separators as a percentage of the WS+COLAMD factorization time.

Name MSMD WS+ COLMMD COLAMD WS+ %T %F %Z %O

MSMD COLAMD

bwm2000 2.75E+04 7.86E+04 2.75E+04 2.86E+04 2.83E+04 200 98 98 100
cavity04 9.57E+05 9.57E+05 1.30E+06 6.37E+05 6.37E+05 100 100 100 0
poli large 1.45E+05 1.45E+05 1.65E+05 1.70E+05 1.70E+05 100 100 37
bayer10 1.04E+07 3.01E+07 1.24E+07 1.01E+07 1.45E+07 125 143 2040
lhr04c 1.47E+07 6.73E+07 1.68E+07 1.77E+07 3.25E+07 164 183 128 150
bayer02 1.09E+07 1.09E+07 9.72E+06 9.28E+06 9.28E+06 117 100 362
rw5151 3.12E+07 3.16E+07 3.29E+07 3.29E+07 2.92E+07 92 88 92 37
lhr07c 2.78E+07 2.22E+08 3.16E+07 3.06E+07 6.67E+07 196 217 135 132
bayer04 2.79E+07 2.79E+07 2.41E+07 2.51E+07 2.51E+07 100 100 447
lhr10c 3.72E+07 3.32E+08 3.98E+07 3.92E+07 1.31E+08 197 334 152 533
lhr11c 4.77E+07 4.77E+07 5.18E+07 5.22E+07 5.22E+07 116 100 100 343
memplus 3.95E+07 3.95E+07 4.01E+07 5.60E+09 5.60E+09 94 100 100 0
ex19 9.45E+07 1.12E+08 7.08E+07 4.07E+07 1.09E+08 230 267 151 83
lhr14c 8.68E+07 2.10E+09 8.46E+07 8.51E+07 2.60E+08 191 305 149 284
bayer01 6.12E+07 4.82E+08 6.47E+07 4.76E+07 1.11E+08 121 233 8857
ex35 1.03E+08 1.33E+08 9.25E+07 5.65E+07 1.38E+08 207 244 136 34
cavity26 1.77E+08 1.39E+08 1.71E+08 2.04E+08 1.48E+08 75 72 85 19
epb1 1.47E+08 1.22E+08 1.02E+08 1.43E+08 1.25E+08 116 87 95 27
goodwin 6.42E+08 5.77E+08 5.06E+08 1.91E+09 6.44E+08 34 33 57 15
epb2 7.14E+08 5.17E+08 7.14E+08 6.46E+08 5.64E+08 107 87 97 15
garon2 1.18E+09 1.20E+09 1.28E+09 1.06E+09 1.98E+09 184 186 119 5
shyy161 1.07E+09 9.00E+08 1.04E+09 1.03E+09 7.56E+08 77 73 92 34
graham1 1.69E+09 9.24E+08 1.42E+09 1.33E+09 9.54E+08 72 71 82 11
epb3 2.22E+09 8.09E+08 1.79E+09 2.06E+09 1.18E+09 77 57 83 27
olafu 3.16E+09 2.71E+09 2.96E+09 2.84E+09 2.58E+09 73 90 89 21
rim 2.89E+09 2.01E+09 2.12E+09 5.55E+09 1.77E+09 31 31 54 28
venkat50 4.30E+09 4.36E+09 5.84E+09 4.51E+09 4.91E+09 93 108 85 13
venkat25 4.30E+09 4.36E+09 5.84E+09 4.51E+09 4.91E+09 94 108 85 14
venkat01 4.30E+09 4.36E+09 5.79E+09 4.46E+09 4.87E+09 93 109 85 14
ex40 3.69E+09 3.39E+09 2.29E+09 1.08E+09 2.87E+09 268 265 146 8
af23560 5.33E+09 7.01E+09 4.95E+09 4.52E+09 9.50E+09 181 210 133 1
raefsky3 1.05E+10 5.24E+09 7.75E+09 1.04E+10 5.47E+09 45 52 64 11
ex11 1.55E+10 1.19E+10 1.43E+10 1.19E+10 1.12E+10 76 94 92 6
raefsky4 1.56E+10 7.80E+09 1.07E+10 1.10E+10 8.56E+09 62 77 80 9
psmigr 1 1.48E+10 1.48E+10 1.66E+10 1.68E+10 1.68E+10 94 100 100 0
psmigr 3 1.58E+10 1.58E+10 1.72E+10 1.74E+10 1.74E+10 95 100 100 0
psmigr 2 1.56E+10 1.56E+10 1.74E+10 1.76E+10 1.76E+10 94 100 100 0
wang3 3.12E+10 1.55E+10 3.47E+10 2.78E+10 2.45E+10 84 88 90 0
wang4 3.70E+10 2.45E+10 3.52E+10 3.37E+10 2.72E+10 81 80 89 0
bbmat 5.97E+10 4.77E+10 4.46E+10 4.46E+10 5.82E+10 109 130 112 4
li 1.59E+11 8.10E+10 2.17E+11 1.63E+11 8.15E+10 44 50 72 4

degree orderings, but the cost is typically small relative to the cost of the sub-
sequent factorization.

The use of the block triangular decomposition of the matrices and ordering
seems to resolve the problems with some of the chemical engineering problems,
but we are still investigating this issue.

Acknowledgments: Thanks to John Gilbert for telling us about wide-separator
orderings. Thanks to John Gilbert and Bruce Hendrickson for helpful comments
on an ealy draft of the paper. Thanks to Cleve Ashcraft for his encouragement,
for numerous discussions concerning this research, and for his prompt response
to our questions concerning SPOOLES.

References

1. Cleve Ashcraft and Roger Grimes. SPOOLES: An object-oriented sparse matrix
library. In Proceedings of the 9th SIAM Conference on Parallel Processing for
Scientific Computing, San-Antonio, Texas, 1999. 10 pages on CD-ROM.

2. T. A. Davis and I. S. Duff. An unsymmetric-pattern multifrontal method for sparse
lu factorization. SIAM Journal on Matrix Analysis and Applications, 19:140–158,
1997.

3. T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for unsym-
metric sparse matrices. ACM Transactions on Mathematical Software, 25:1–19,
1999.

4. James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and
Joseph W. H. Liu. A supernodal approach to sparse partial pivoting. SIAM
Journal on Matrix Analysis and Applications, 20:720–755, 1999.

5. A. George and J. W. H. Liu. The evolution of the minimum-degree ordering
algorithm. SIAM Review, 31:1–19, 1989.

6. Alan George and Esmond Ng. On the complexity of sparse QR and LU fac-
torization on finite-element matrices. SIAM Journal on Scientific and Statistical
Computation, 9:849–861, 1988.

7. John R. Gilbert. Graph Separator Theorems and Sparse Gaussian Elimination.
PhD thesis, Stanford University, 1980.

8. John R. Gilbert. Predicting structure in sparse matrix computations. SIAM Jour-
nal on Matrix Analysis and Applications, 15:62–79, 1994.

9. John R. Gilbert and Robert Schreiber. Nested dissection with partial pivoting. In
Sparse Matrix Symposium 1982: Program and Abstracts, page 61, Fairfield Glade,
Tennessee, October 1982.

10. S. I. Larimore. An approximate minimum degree column ordering algorithm. Mas-
ter’s thesis, Department of Computer and Information Science and Engineering,
University of Florida, Gainesville, Florida, 1998. Also available as CISE Tech
Report TR-98-016 at ftp://ftp.cise.ufl.edu/cis/tech-reports/tr98/tr98-016.ps.

11. Xiaoye S. Li. Sparse Gaussian Elimination on High Performance Computers. PhD
thesis, Department of Computer Science, UC Berkeley, 1996.

12. Alex Pothen and Chin-Ju Fan. Computing the block triangular form of a sparse
matrix. ACM Transactions on Mathematical Software, 16(4):303–324, December
1990.

