
Extremal Polygon Containment Problems

Sivan Toledo

Computer Science Department
Tel Aviv University

Abstract

Given a convex polygonal object P and an environ-
ment consisting of polygonal obstacles, we seek a place-
ment for the largest copy of P that does not inter-
sect any of the obstacles, allowing translation, rota-
tion and scaling. We employ the parametric search
technique of Megiddo [Me], and the fixed size polygon
placement algorithms developed by Leven and Sharir
[LS, LS1], to obtain an algorithm that runs in time
O(k2nλ4(kn) log3(kn) log log(kn)). We also present
several other efficient algorithms for restricted variants
of the extremal polygon containment problem, using the
same ideas. These variants include: placement of the
largest homothetic copies of one or two convex poly-
gons in another convex polygon and placement of the
largest similar copy of a triangle in a convex polygon.

1 Introduction

Let P be a convex polygon having k vertices and edges,
and let Q be a closed two dimensional space bounded by
a collection of polygonal obstacles (the “environment”)
having altogether n corners. The main problem solved
in this paper is to compute the largest possible place-
ment of a similar copy of P that can be placed inside
Q, that is, a placement in which the copy of P does
not intersect any of the obstacles. We also give efficient
algorithms that solve similar extremal polygon contain-
ment problems under more restrictive conditions, and
an algorithm that computes largest disjoint placements
of two polygons in a third.

Some papers study the fixed-size polygon contain-
ment problem, in which (the convex) P is only al-
lowed to translate and rotate and we wish to determine

whether there is any placement of a copy of P inside Q
[Ch, AB1].

Chazelle [Ch] studies the problem for the case where
P and Q are arbitrary simple polygons and presents a
naive algorithm that takes time O(k3n3(k + n) log(k +
n)). A more restricted case of the problem, in which
both P and Q are convex is also studied by Chazelle
[Ch], who solves this case in time O(kn2). Chazelle
gives a simple solution to an even more restricted ver-
sion in which P is a triangle; this version runs in time
O(n2). Avnaim and Boissonnat [AB1] present an al-
gorithm for the case where both P and Q are non-
convex, possibly non-connected polygons, which runs
in time O(k3n3 log(kn)). In another paper Avnaim and
Boissonnat [AB] investigate the problem of simultane-
ous placement of two or three not necessarily convex
polygons in a closed polygonal environment. For this
problem they allow translations only.

Extremal polygon containment problems were also
previously studied. Fortune [Fo], and Leven and Sharir
[LS1] consider the following problem: find the largest
homothetic copy of P inside Q. In other words, trans-
lation and scaling of P are allowed, but rotation is not.
When P is convex and Q is an arbitrary polygonal en-
vironment, this problem is solved in time O(kn log(kn))
by constructing a generalized Voronoi diagram of Q un-
der a convex distance function induced by P .

Chew and Kedem [CK] follow a related approach to
solve a more difficult variant of the problem, in which
P is also allowed to rotate, which is also the main prob-
lem studied in this paper. Instead of a Voronoi dia-
gram, they compute the Delaunay triangulation of Q
under the convex distance function induced by P at
some arbitrary fixed orientation. By using a clever
incremental technique for constructing all the topo-
logically different triangulations obtained as the ori-
entation of P varies, they solve the problem in time
O(k4nλ3(kn) logn), where λq(r) is the maximum length
of an (r, q)-Davenport-Schinzel sequence (which is al-
most linear in r for any fixed q) [ASS, HS].

In this paper we follow a different approach that
applies the parametric search technique introduced
by Megiddo [Me]. By exploiting efficient sequen-
tial and parallel algorithms for the fixed size contain-



ment problem, we solve the extremal problem in time
O(k2nλ4(kn) log3(kn) log log(kn)).

There are two advantages of our technique over the
technique of [CK]. First, our solution is considerably
faster than theirs when k is large — roughly two or-
ders of magnitude faster. Second, the application of
Megiddo’s technique to largest placement problems is
so natural that it is surprising that no one has ob-
served this connection before. Roughly speaking, a so-
lution for the fixed-size problem allows us to determine
whether any specified expansion ratio is too large or
too small. This, plus an efficient parallel version of the
fixed size containment algorithm, is all that is required
for Megiddo’s technique to apply (see below for more de-
tails). We demonstrate the generality of our approach
by considering several other extremal containment prob-
lems, and show that Megiddo’s technique applies to all
of them. Specifically we consider the extremal versions
of the following problems: placing a convex polygon
in another convex polygon under translation, placing
two convex polygons in a third convex polygon under
translation, placing a triangle in a convex polygon un-
der translation and rotation, and finally the general case
of placing a convex polygon in a polygonal environment
under translation and rotation. Except for the general
case, these problems were never solved before. Some
additional possible extensions of the technique are dis-
cussed at the end of the paper.

The paper is organized as follows. In the next sub-
section we give a brief review of Megiddo’s ingenious
parametric search technique. In section 2 we investi-
gate some simple versions of the extremal polygon con-
tainment problem, involving one and two polygons, and
allowing the polygons only to translate. Section 3 is de-
voted to a simple version of the general case, in which
we also allow rotation; we study the placement of a tri-
angle in a convex polygon. This can be regarded as
a warm-up exercise that sheds some light on the gen-
eral and more complex algorithm. In section 4 we state
some neccesary definitions and results from [LS], and
note that the combinatorial bound derived in that pa-
per can be somewhat improved. In section 5 we describe
a variant of the fixed size containment algorithm from
[KS], which we use as a decision procedure, to decide
whether a copy of P having some fixed expansion ratio
can be placed in Q. In section 6 we give a parallel ver-
sion of the fixed size containment algorithm. In section
7 we show how to combine the algorithms of section 5
and 6 to produce an algorithm for the largest placement
problem. We conclude in section 8 with a discussion of
our results and some open problems.

1.1 Parametric Search Technique

We describe below the idea behind Megiddo’s technique
[Me]. The exposition is driven by our needs, so it is not
the most general possible. Suppose we have a decision
problem P(I, δ) that receives as input a collection I of
n data items, and a real parameter δ. Furthermore,
assume that the decision is a monotone function of δ
for every fixed input data, that is, there exists a real
number δ? = δ?(I) so that

P(I, δ) =
{
T δ ≤ δ?(I)
F δ > δ?(I)

We want to find the value δ? for a given input I.
Assume that we have both an efficient sequential al-

gorithm As for solving P(I, δ) at any given δ, and a par-
allel algorithm Ap, assumed to run in Valiant’s model
of computation [Va]. We will denote the running time
of As by Ts, the running time of Ap by Tp, and the
number of processors it uses by P . Assume moreover
that the flow of execution of Ap depends only on com-
parisons, each of which is resolved by testing the sign
of a low-degree polynomial in δ and the input items.
Megiddo’s technique then runs the algorithm Ap “gener-
ically”, without specifying the value of δ, with the in-
tention of simulating its execution at the unknown δ?.

At each step of Ap, where there are at most P com-
parisons to resolve, all the roots of all the associated
polynomials are computed. If we knew between which
two of them (in the natural ordering of the roots) δ?

lies, we could resolve all the comparisons, because the
sign of the polynomials is constant between consecutive
roots, and continue to the next parallel step. So we
search δ? in the list of O(P ) roots, using binary search
and utilizing As to decide if a given root pi is below or
above δ? (i.e., we solve P(I, pi)). This search requires
O(P + Ts logP ) time per parallel step, for a total of
O(PTp + TsTp logP ) time.

Through this execution of the generic Ap, we obtain a
sequence of progressively smaller intervals, each known
to contain δ?. In our applications, the value δ? must be
a left endpoint of one of the intervals, and so at the end
of the execution of Ap, the left endpoint of the resulting
interval is δ?. A more detailed discussion is presented
later.

2 Placement of Polygons Under
Translation

In this section we investigate problems of placement of
the largest homothetic copies of polygons inside another
polygon (i.e. allowing translations only).

Definitions: We denote the set of translations of P



that place it inside Q by C(P,Q), and the set of trans-
lations of P that make it intersect Q by O(P,Q)

We will assume that the polygons P and Q are given
as an array of their vertices in counter clockwise direc-
tion, P = (p1, . . . , pk) and Q = (q1, . . . , pn). We will
consider Q as fixed and P as movable, and we will use
the vertex p1 as a reference point for P .

Proposition 2.1 ([Ch]) If P and Q are convex, then
C(P,Q) is a convex polygon with at most n edges.

Proposition 2.2 ([GRS]) If P and Q are convex,
then O(P,Q) is a convex polygon with at most n + k
edges.

2.1 Computation of C(P,Q)

We assume that both P and Q are convex. The pro-
cedure given below for the computation of C(P,Q) is
taken from Chazelle [Ch].

1. For each edge qiqi+1 of Q, we find the vertex pi of
P that is nearest to it, when P lies completely on
the same side of the line qiqi+1 as Q (there may be
two such vertices, in which case we choose one of
them arbitrarily).

This may be done in time O(n + k) by merging
the normal diagrams of P and Q, i.e., merging the
edges of P and Q to a single list sorted by slope,
and finding for each edge of Q between which edges
of P it lies in the merged list.

2. For every i = 1, 2, . . . , n we place P so that pi lies
on the edge qiqi+1, and P andQ lie on the same side
of the line qiqi+1. Now we draw a line ti parallel to
qiqi+1 and passing through the reference point p1

of P .

Let hti denote is the half plane that lies below ti if
Q lies below the line qiqi+1 and above ti otherwise.
The computation of all the hti takes O(n) time, a
constant time for each half plane.

3. As shown in [Ch], C(P,Q) =
⋂
i hti, so what re-

mains to do is to compute the intersection of the n
half planes. We note that the half planes are given
sorted by their slope. We compute the intersection
by solving the dual convex hull problem, and the
sorting of half planes by slope gives us a convex hull
problem of n points sorted by their x-coordinate.
This problem can be solved in O(n) time, using the
beneath-beyond algorithm.

We conclude that the computation of C(P,Q) can be
done in O(n+ k) time.

In order to apply the parametric search technique of
Megiddo, we need a parallel version of this algorithm.

Step 1, the merging of the normal diagrams, could be
performed in parallel in O(log log(min(n, k))) parallel
time using

√
nk processors, using Valiant’s algorithm

[Va]. However, the normal diagrams of P and Q are
independent of the expansion ratio, so no comparison
that this merge generates depends on δ?. We can thus
implement this step sequentially, “outside” the generic
scheme of Megiddo. Step 2 involves no comparisons, so
it too can be performed sequentially. The coefficients
of the ti’s will be however functions of the expansion
ratio of P . Step 3 is performed in parallel using the
parallel algorithm for computing the convex hull of a
plane point set, by Aggarwal et al. [ACGOY], that
works in O(log n) time and uses O(n) processors.

We now combine the sequential and parallel algo-
rithms to obtain an algorithm that computes the largest
homothetic copy of P that can be placed inQ. Note that
the problem at hand satisfies the requirements of sec-
tion 1.1, that is, when the expansion ratio δ is smaller
than some (unknown) value δ?, there is a placement of
P inside Q, and when δ > δ? there is no such placement.
We run the generic parallel algorithm, without specify-
ing δ. We resolve comparisons needed by the algorithm
by computing the set of real roots of the characteristic
polynomials associated with the comparisons, and lo-
cating δ? in this (ordered) set by binary search. The
decisions made during the binary search are based on
the outcome of the fixed-size algorithm, applied to a
copy of P with expansion ratio equal to the root δ be-
ing compared. Note that the decision step only tells us
whether δ ≥ δ? or δ < δ?. In order not to get stuck, we
interpret δ ≥ δ? as δ > δ? and continue in this manner.
When the entire algorithm terminates, it will have pro-
duced an interval I so that δ? is either its left endpoint
or an interior point. However, the second case is impos-
sible, because the output of the generic algorithm is the
same for all δ ∈ int(I), but the output must change at
δ?, by definition. Hence δ? is the left endpoint of I.

The running time of the algorithm is O(n + k), for
the initial step 1 performed just once, plus the cost of
the parametric search itself, which, by Section 1.1, is
O(n log2 n). We thus obtain:

Theorem 1 Given a convex polygon P with k vertices
and a convex polygon Q with n vertices, we can compute
a placement of the largest homothetic copy of P inside
Q in O(k + n log2 n) time.

Remark. As noted by Chazelle [Ch], this will work
even if P is not convex, because in this case we simply
apply our algorithm to conv(P ) instead of P .

2.2 Computation of O(P,Q)

As shown by Guibas et al. [GRS], the calculation of
O(P,Q) in the case of two convex polygons P and Q



amounts to the merging of the lists of their edges sorted
by slope.

This takes time O(n+ k) using a serial algorithm, or
O(log log(min(n, k))) parallel time using

√
nk proces-

sors, using Valiant’s algorithm [Va].

2.3 Finding Largest Homothetic Place-
ments of Two Convex Polygons In-
side a Third

We now consider the following problem. Given two con-
vex polygons P1 and P2 having k1 and k2 vertices re-
spectively, and a third convex polygon Q having n ver-
tices, find the largest expansion ratio α such that αP1

and αP2 can be translated into Q without overlapping
each other.

For the fixed-size containment problem we use the
procedure given by Avnaim and Boissonnat [AB] and
Guibas et al. [GRS]. The procedure computes the set
U of all the valid translations Tr of P1 relative to P2,
for which there exists a translation that position both
P1 and P2 in Q in their valid relative position without
overlapping. This is done by several consecutive appli-
cations of the primitive operations C and O:

1. Compute C1 = C(P1, Q).

2. Compute C2 = C(P2, Q).

3. If C1 or C2 is empty then return ∅.

4. Compute I = O(P2, P1).

5. Compute S = O(C2, C1).

6. Compute S?, the polygon symmetric to S with re-
spect to the origin.

7. Return U = S? \ I.

The correctness of this algorithm is proved in [AB].
From the propositions above and the descriptions of al-
gorithms for the computations of C and O, it follows
that the running time of this algorithm is O(n+k1+k2).

The parallel version of the algorithms for computing
C and O can be used for performing steps 1–5 of the
algorithm above. Step 6 does not involve comparisons,
so we need not perform it in parallel. Step 7 is more
difficult to handle, but we exploit the fact that we are
only interested in the existence of a translation in U , not
in its full structure. So instead of computing U , we will
only decide in step 7 whether U = S?\I is empty or not.
As both S? and I are convex polygons, the difference
is not empty if and only if the convex hull of S? ∪ I is
not simply I. So computing the convex hull of S? ∪ I is
sufficient to decide on the non-emptiness of U , and this

computation can be performed in O(log(n + k1 + k2))
parallel time using O(n+ k1 + k2) processors.

Applying the parametric search paradigm, we obtain

Theorem 2 Given two convex polygons P1 and P2 with
k1 and k2 vertices respectively, and a convex polygon
Q with n vertices we can compute disjoint placements
of the largest homothetic copies of P1 and P2 inside Q
(with the same expansion ratio), without intersecting
each other in O((n+ k1 + k2) log2(n+ k1 + k2)) time.

The assumption that the expansion of P1 and P2 is
the same is not necessary; we only have to assume that
the expansion ratios of the two polygons are expressed
by two monotone increasing functions of the same pa-
rameter, f1(α)P1, f2(α)P2.

3 Placing a Triangle Under
Translation and Rotation

Before we tackle the general problem of extremal con-
tainment of a convex polygon in a general polygonal en-
vironment, we consider a restricted version in which we
compute the largest similar copy of a triangle T = ABC
in a convex polygon Q = (q1, . . . , qn).

This (fixed size) containment problem was studied by
Chazelle [Ch]. He observed that there is a free place-
ment of T in Q if and only if there is a placement of T
in Q in which a vertex of T and a vertex of Q coincide.
Thus in order to test if there exists a free placement of
T in Q, we go over all the 3n pairs of a vertex of T and
a vertex of Q and for each pair test if there is a free
placement such that the relevant vertices coincide.

When the vertices of such a pair, say A and q1, co-
incide, we use the angle θ of rotation around the fixed
vertex A of T to describe the placement of T . The
placement is free iff both edges AB and AC lie in the
half-planes whose intersection is Q. As B and C can in-
tersect the line defining the half-plane only twice when
T rotates around A, we can generate an interval of
placements (= angles) that are free relative to that half-
plane. The intersection of all n intervals is the set of free
placements. This intersection can be computed in time
O(n) per pair, or O(n2) overall.

The parallel version works by sorting all the end-
points of all free intervals for each vertex-vertex contact,
and then computes their intersection using a standard
“prefix-sum” technique. This takes O(log n) time and
uses O(n) processors per pair [Co], or O(log n) time and
O(n2) processors overall. Thus we obtain:

Theorem 3 Given a triangle T and a convex poly-
gon Q with n vertices, we can compute a placement of
the largest possible similar copy of T inside Q in time
O(n2 log2 n).



The discussion above is similar in nature to the solu-
tion of the general case given below. The increased com-
plexity caused by allowing rotations prevents us from
computing the set of all possible free placements as we
did when translation alone was allowed. Instead we re-
strict our attention to a distinguished subset of “crit-
ical” free placements that necessarily exist if any free
placement exists. There is also an analogy between com-
puting the intersection of relatively free intervals to find
a free placement, and the use of lower envelopes below.
The details of the general case, however, are much more
complex.

4 The General Case — Finding
Free Critical Orientations

We now begin the description of our solution to the
general case. In this section we give a short exposition
of the definitions and results in [LS]; this is needed in
order to present the algorithms in subsequent sections.
The material is taken almost verbatim from [LS].

Let P be a convex polygonal object having k ver-
tices, free to translate and rotate (but not to change
its size) in a closed two-dimensional space Q bounded
by a collection of polygonal obstacles (“walls”) having
altogether n corners.

A free critical placement of P is one at which it makes
simultaneously three distinct contacts with the walls,
and is fully contained in Q, so that it cannot penetrate
any obstacle.

A (potential) contact pair O is a pair (W,S) such that
either W is a (closed) wall edge and S is a corner of P
or W is a wall corner and S is a (closed) side of P . The
contact pair is said to be of type I in the first case, and
of type II in the second case.

An actual obstacle contact is said to involve the con-
tact pair O = (W,S) if this contact is of a point on S
against a point on W , and, furthermore, if this contact
is locally free, i.e., the inner angle of P at S lies entirely
on the exterior side of W if S is a corner of P , and the
entire angle within the wall region Qc at W lies exterior
to P if W is a wall corner.

The tangent line T of a contact pair O = (W,S) is
either the line passing through W if W is a wall edge
or the line passing through W and parallel to S if S is
a side of B (in the second case T depends of course on
the orientation of P ).

Let O1, O2 two contact pairs. We say that O2 bounds
O1 at the orientation θ if the following conditions hold
(see Figure 1):

1. There exists a (not necessarily free) placement Z =
(X, θ) of P at which it makes two simultaneous
obstacle contacts involving O1, O2.

hhhhhhhhhhhhhhhhhhh
�
� C

C �
�
�
�
�
�
�
�
�
�
��

bb

((

O1

O2

T2

T1

���
���

���E
E
E
E
E
EE
`````````̀

P s
s

ss

{FO1,O2 (θ)

Q
Q

W1

W2

S2

z

S1

Figure 1: A bounding function.

2. As we move P from Z without changing the orien-
tation θ, along the tangent T1, in the direction of
the intersection z of the two tangents T1 and T2,
the subset P ? = conv(S1 ∪ S2) of P intersects W2

until S1 touches W1.

It is shown in [LS] that for any double obstacle con-
tact, one of the contact pairs always bounds the other.
Let O1 be any contact pair and consider all contact pairs
that bound O1 (at any orientation θ). For each such pair
O2 we define the bounding function FO1,O2(θ) over the
domain Π = ΠO1,O2 of orientations θ of P in which O2

bounds O1. For each θ ∈ Π, we define FO1,O2(θ) to
be the distance from the endpoint of the contact wall
farthest from z (the intersection of the tangents) to the
contact point of O1, at the placement Z = (X, θ) in
which P simultaneously makes two obstacle contacts
involving O1, O2; (see Figure 1). Note that Π need not
be connected, but it consists of at most five subintervals
(this is proved in [LS], Lemma 2.2).

The dependence of the bounding function on a spe-
cific endpoint of the contact wall suggests that we group
the bounding functions FO1,O2 of O1 into two classes,
AL and AR, so that in each class the functions are re-
lated to the same endpoint of the contact wall of O1.

With each class AE , E ∈ {L,R}, of each contact pair
O1, we associate a function

ΨE;O1(θ) = min{FO1,O(θ) : FO1,O ∈ AE}.

This is the lower envelope of the functions in AE . An
intersection of two bounding functions of the same class,
FO1,O2 and FO1,O3 , that lies on the lower envelope of
that class, is called a breakpoint of the lower envelope.

Critical free orientations (i.e. orientations of critical
free placements) can arise in three situations. The first
kind of orientations is of critical placements at which
two contact pairs simultaneously bound a third one,
and both belong to the same class. Each such place-
ment is represented as a breakpoint on some lower en-
velope. The second kind of orientations arise at critical



placements where two contact pairs bound a third one
but belong to different classes. The third kind of orien-
tations arise when no two contact pairs bound a third,
but rather at critical placements involving three contact
pairs O1, O2 and O3 so that O1 bounds O2, O2 bounds
O3, and O3 bounds O1. see Figure 2 for an illustration.

�
���

���
��E
E
E
E
E
EE
`````````̀

P
EEE
E
E
EE

�
�
�
�

css

s
s
s
s
O1

O2

O3

AA

��

PP

L
L

��

Figure 2: A critical contact of the third kind.

These are necessary conditions for a critical free place-
ment of P , that is, one of the three situations must oc-
cur at a critical free placement. However, they are not
sufficient, and while our algorithm will find every orien-
tation of any of the three kinds, it must also be able to
discard critical placements that are not free.
Remark. In [LS] it is proved that the number of break-
points along one lower envelope is O(λs(kn)) for some
fixed s ≤ 6 (see the remark after Lemma 2.3 in [LS]).
We give a simple argument that shows s ≤ 4.

Our argument relies on the fact that we can partition
the functions FO,O′ in a class AE(O) into two subsets,
one arising from contacts O′ of type I and the other
from contacts O′ of type II. As shown in [LS], two func-
tions from the same subset intersect at most twice, and
functions from different subsets intersect at most four
times. Hence the lower envelope of functions in the
same subset has complexity O(λ4(kn)) (since they are
only partial functions) and since the final envelope of
the class is the envelope of these two sub-envelopes, it
easily follows that it too has complexity O(λ4(kn)).
Remark. The analysis of [LS], when turned into an
algorithm, can produce a list of all these critical place-
ments in time O(knλ4(kn) log(kn)). However, detecting
which of these placements is indeed free is not straight-
forward. In the context of motion planning, as stud-
ied in [KS], it is possible to sift out the critical orien-
tations and obtain a subset of free critical placements
that include all placements reachable from a given ini-
tial placement, and perhaps some other non-reachable
but free placements. This can be done within the same
time bound, O(knλ4(kn) log(kn)), but cannot guaran-
tee that all free placements are found, and is therefore
unsuitable for our purpose. This issue is discussed in

the algorithms that we give below. In our solution, we
do detect all free critical placements, at an extra cost
of O(k log n) per placement. Performing this faster still
appears to be an open problem.

5 A Sequential Algorithm

In this section we present a sequential algorithm for the
fixed size containment problem, that is to determine
whether it is possible to place a similar copy of the con-
vex polygonal object P , at some fixed expansion ratio
to the original P , in the polygonal environment Q. To
solve this decision problem we solve a related problem
— finding all the critical free orientations of P . If the
set of critical free orientations is empty, the solution to
our decision problem is “no”, otherwise the answer is
“yes”.

5.1 Generating All the Critical Place-
ments

Below we give the algorithm that generates all the crit-
ical placements. Each one of them needs to be tested
to decide whether it is free, using the algorithm of the
next subsection.

The algorithm closely follows the first stages of the al-
gorithm in [KS]. However, the data structures used are
simpler, to ease the task of parallelizing the algorithm
later. We do not consider critical contacts in which P
has only one degree of freedom (a corner of P against a
corner of Q, an edge of P against an edge of Q), because
they can be handled exactly like the triangle in section
3, that also has one degree of freedom in every critical
placement.

Step 1: Find all bounding functions. For every two con-
tact pairs Oi, Oj , find the range of orientations ΠOi,Oj

in which Oj bounds Oi toward a specific endpoint E
of Oi. Split the resulting bounding functions FOi,Oj
into (at most five) “subfunctions”, each defined over a
connected interval, and add them to the appropriate
collection AL(Oi) or AR(Oi).

Step 2: Calculate lower envelopes. We describe the cal-
culation of the lower envelope ofAL(O) which is denoted
by ΨL;O; ΨR;O is calculated similarly.

1. Fix a contact pair O and partition AL(O) into two
disjoint subsets A′L and A′′L of roughly equal size.

2. Compute recursively the two lower envelopes

Ψ′(θ) = min{FO,Oi(θ) : FO,Oi ∈ A′L}

Ψ′′(θ) = min{FO,Oi(θ) : FO,Oi ∈ A′′L}.



Each of the recursive calculations produces a se-
quence of angular intervals, delimited by break-
points, in each of which the corresponding par-
tial lower envelope is attained by a single bounding
function.

3. Merge these two sequences of intervals to obtain
a refined sequence Γ of angular intervals. In the
merging process mark every breakpoint in Γ as red
if it was originally a breakpoint of Ψ′ or as black if
it was originally a breakpoint of Ψ′′. In addition,
maintain a pointer from each red node in Γ to the
black interval it lies in (an interval of Ψ′′) and from
each black node to the red interval it lies in. For
each interval I ∈ Γ there exist two unique contact
pairs O′, O′′ with FO,O′ ∈ A′L, FO,O′′ ∈ A′′L such
that Ψ′(θ) = FO,O′(θ), Ψ′′(θ) = FO,O′′(θ) for each
θ ∈ I. By the analysis of [LS] the two functions
FO,O′ , FO,O′′ intersect in at most four points (some
of which may not belong to I), which can be cal-
culated, as the roots of some quartic polynomial,
in constant time. Each of these intersections which
lies in I is clearly a breakpoint of Ψ = ΨL;O. Add
these points to Γ and mark them as white nodes.
Every breakpoint of Ψ is either of this kind (a white
node) or is a breakpoint of Ψ′ or of Ψ′′, i.e. one of
the red or black nodes. Now we need to eliminate
from Γ the red and black nodes which do not lie on
the lower envelope Ψ. For each red (black) node,
we follow the pointer to the black (red) interval it
lies in, and check which is higher — the red break-
point in Ψ′ or the bounding function on Ψ′′. If the
former is higher we prune it from the list Γ, other-
wise the breakpoint remains in Γ. Thus at the end
of the process Γ represents the breakpoints in Ψ.

Note that maintaining the red/black pointers can be
done in time proportional to the length of the list (in
one pass over the list), and the same time bound applies
to the pruning of the redundant nodes.

The merging step can be done in time proportional
to the length of Γ, which, by [LS1] and the comments
in Section 2, is O(λ4(kn)). Hence the calculation of
the lower envelope ΨL;O takes O(λ4(kn) log kn) time,
so all these envelopes can be computed in overall time
O(knλ4(kn) log kn).

The collection of breakpoints is a superset of all the
critical orientations of the first kind; every one of them
will later be tested to decide whether it is free, in the
manner described in the next subsection.

Step 3: Calculate critical orientations of the second
kind. These are orientations at which P makes si-
multaneously, at some free placement, obstacle con-
tacts involving three distinct contact pairs O1, O2, O3

such that two of them, say O2, O3 bound O1 but with

FO1,O2 ∈ AL(O1) while FO1,O3 ∈ AR(O1). In this case
we first reflect and translate one of the envelopes, so
that they both measure the distance from the same end-
point of O1. Then we merge the lists of breakpoints in
ΨL;O1 and in ΨR;O1 and compute the intersections of
the bounding functions from the two lower envelopes
over each resulting interval in the same way as in the
previous step. These orientations are added to the list
of critical orientations.

Clearly, this step runs in O(knλ4(kn)) time. Again,
we will later discard non-free critical orientations found
in this step.

Step 4: Calculate critical orientations of the third kind.
Finally, we calculate the third and most complex kind
of critical orientations. At each such orientation θ,
P can make simultaneously a free triple contact in-
volving three distinct contact pairs O1, O2, O3, such
that FO1,O2 ∈ AE1(O1), FO2,O3 ∈ AE2(O2), FO3,O1 ∈
AE3(O3), where Ei ∈ {L,R} for i = 1, 2, 3, and such
that all three functions lie at θ on the corresponding
lower envelopes.

To find these orientations we first merge all break-
point lists from all the lower envelopes calculated in
step 2, to obtain a single sorted list Φ consisting of
O(knλ4(kn)) refined noncritical intervals. Each inter-
val I ∈ Φ has the property that each lower envelope is
attained over it by a single bounding function.

Next we find all the critical orientations of the third
kind (not necessarily free). For each possible triple con-
tact that the algorithm considers, we find its (at most
four) critical orientations, and then test which of these
orientations is indeed free.

We start by considering the first interval in Φ, de-
noted I0. For each contact pair O1 and each side
E1 ∈ {L,R}, find the unique contact pair O2 such that
ΨE1;O1 = FO1,O2 over I0. For each E2 ∈ {L,R}, find the
unique contact pair O3 such that ΨE2;O2 = FO2,O3 over
I0. For each E3 ∈ {L,R} for which ΨE3;O3 = FO3,O1

over I0 conclude that (O1, O2, O3, E1, E2, E3) is a criti-
cal contact, perhaps not free. Compute its critical orien-
tations. Those that lie in I0 are tested to decide whether
they are free, and if so they are reported as such (the
algorithm can thus be halted right now with an affir-
mative answer to the decision problem). The other ori-
entations do not lie in I0, so we find the interval each
of them lies in, by binary search over the sorted list Φ,
and test whether the corresponding critical placement is
free. This takes O(kn log(kn)) time, excluding the tests
for being free, O(log(kn)) time for each contact pair.

Each interval I 6= I0 in Φ can induce new critical
triplets but fortunately only a constant number of them.
The interval I was formed because its left endpoint rep-
resents a break in one of the lower envelopes, say ΨL;O1 .
So we need to repeat the process we did at I0, but this



time starting with only one particular contact (O1) and
one lower envelope (ΨL;O1). Thus every interval I in-
duces only O(1) new candidates for the critical orienta-
tions that we seek. Finding the bounding functions on
the lower relevant envelopes is now accomplished by a
binary search over the list of breakpoints on each enve-
lope. This takes O(knλ4(kn) log(kn)) time, as each of
the O(knλ4(kn)) intervals requires O(log(kn)) time for
the binary searches.

5.2 Deciding whether a critical orienta-
tion represents a free placement

As mentioned above, the set of critical orientations com-
puted so far may contain orientations that correspond
to critical placements that are not free, so we need to
test each critical placement whether it is indeed free.

To perform this test we use the following simple
method. In a preliminary step, we prepare data struc-
tures that will enable us to perform this test, at any
query placement of P , in time O(k log n). These data
structures depend only on Q. As we are required to
perform at most O(knλ4(kn)) such tests, the total time
they require is O(k2nλ4(kn) logn). As the environment
Q is static during the execution of the (largest place-
ment) algorithm, we need to build the data structures
only once, “outside” the generic execution of the paral-
lel version of the algorithm.

If a critical placement is not free, then either a vertex
of Q lies inside P , or an edge of P intersects an edge of
Q. To test whether the first situation occurs we insert
the n vertices of Q into a data structure that supports
fast counting of points inside a query polygon. We use
the technique of [PY, Ed], which uses O(n2) storage,
O(n2) preprocessing, and can answer a query in time
O(k log n) for a query polygon with k sides. Given a
placement of P , we query the number of points inside
it and declare the placement non-free if any such point
is found. To test whether the second situation arises,
we preprocess Q for segment intersection queries, that
is, given a query segment, determine quickly whether it
intersects an edge of Q. For this we use the technique
of [Ch1]. Again, this can be implemented with O(n2)
storage, O(n2) preprocessing, and can answer a segment
intersection query in O(log n) time. For each critical
placement of P , we query this structure with each edge
of P , and declare the placement as non-free if any such
intersection is found. If none of these bad situations are
detected, the placement is free.

We have thus shown:

Theorem 4 Given a convex polygon P with k sides,
and a polygonal environment Q with n edges, we can
compute all free critical placements of P inside Q in
time O(k2nλ4(kn) log(kn)).

6 A Parallel Algorithm

We now present a parallel version of the algorithm, or
rather comment on how to perform each step in paral-
lel. Recall that we do not need a strong parallel com-
putation model. All we seek is a scheme in which many
independent comparisons are performed at each parallel
step. Thus we ignore synchronization and other book-
keeping problems, use Valiant’s weak model of paral-
lel computation [Va], and perform tasks in a sequential
manner when they do not involve comparisons but only
manipulation of pointers.

Step 1 can clearly be carried out by O(k2n2) proces-
sors in O(1) parallel time, with each processor calculat-
ing one bounding function.

Step 2 is performed using a divide and conquer strat-
egy. The divide phase and the recursive calls can
be done in parallel. The merge phase can be done
using Valiant’s merging algorithm [Va] which runs in
O(log log(kn)) parallel time using O(λ4(kn)) processors
per envelope. Once the merge is done, maintenance
of the red/black pointers can be done serially because
this is a mere manipulation of pointers and involves no
comparisons. The testing of red (black) breakpoints
against their containing black (red) non-critical inter-
vals can be done in O(1) parallel time using O(λ4(kn))
processors per envelope. The subsequent pruning of
breakpoints can be done serially, because it involves no
comparisons. The total time required to compute all
the lower envelopes is thus O(log(kn) log log(kn)) using
O(knλ4(kn)) processors.

Step 3 also uses a merge, but only once for each
contact pair, and the calculation of envelope intersec-
tions over all contact pairs can clearly be done in par-
allel. The total parallel time for this step is therefore
O(log log(kn)) using O(knλ4(kn)) processors.

Step 4 first requires the merging of all O(kn) lower
envelopes into one sorted list of breakpoints Φ. This
can be done recursively. We divide the lower envelopes
into two collections of roughly equal size, compute the
two merged lists of breakpoints Φ′, Φ′′ and merge them.
The merging step takes O(log log(kn)) parallel time us-
ing O(knλ4(kn)) processors, so the whole process takes
O(log(kn) log log(kn)) time using O(knλ4(kn)) proces-
sors.

The handling of the first interval I0 ∈ Φ can be done
in parallel using O(kn) processors and O(log(kn)) time.
All the other intervals are each assigned a single proces-
sor and the time it takes to find the new critical triple
contacts is O(log(kn)). The test to decide whether a
critical orientation is free is performed in the same man-
ner as in the sequential case. We use k processors to
perform the O(k) queries in O(log n) time. The data
structures depend only on Q and so can be preprocessed
just once, outside the generic parallel scheme.



We conclude that all critical free orientations
can be calculated in parallel, under Valiant’s com-
parison model, in time O(log(kn) log log(kn)) using
O(k2nλ4(kn)) processors.

7 The Overall Algorithm

We now apply Megiddo’s technique to our problem, us-
ing the algorithms of sections 5 and 6. We run the par-
allel algorithm generically, without specifying the ex-
pansion ratio δ. We resolve comparisons made by the
parallel algorithm by using our sequential algorithm, in
the manner explained in section 1.1.

The only fine point is to verify that comparisons in-
volve only evaluations of signs of low degree polynomials
in the unspecified δ. Indeed, a free placement of P in Q
has to satisfy a set of algebraic constraints (see [SS]). In
our case these constraints are mainly algebraic inequal-
ities that describe the disjointness of P and Q. Com-
puting a critical triple contact amounts to setting three
inequalities as tight constraints (i.e. equalities), and
solving these three equations in three unknowns (the
(x, y, θ) coordinates of P ), discarding solutions which
are not locally free. Computing a breakpoint thus re-
duces to computing the critical triple contact placement
associated with the three contact pairs that define the
breakpoint. Evaluating a bounding function at a given
orientation amounts to setting the two constraints in-
volved in the corresponding two contact pairs to be
tight, and adding a third constraint that the slope of
the line passing between two fixed points in P will be
at the given orientation. This will give us the desired
placement of P , and we can calculate the value of the
bounding function which is simply an affine transfor-
mation of the placement. Using the standard transfor-
mation t = tan(θ/2), all contact constraints, and thus
all functions of δ computed by the algorithm, become
algebraic, and no trigonometric functions need be used.

Since the only place where dependence on δ can arise
is in the coefficients of the constraints, and since the
functions of δ are polynomials of the first or second de-
gree, we are assured that all the equations in δ we have
to solve during the algorithm are algebraic equations of
bounded degree. We assume that this kind of equations
can be handled in constant time.

The running time of the algorithm can easily be de-
duced by “plugging in” the running time of the sequen-
tial and parallel algorithms into the analysis of section
1.1. The fact that δ? is the left endpoint of the final
interval is justified as in section 2.1. This establishes
our main result:

Theorem 5 Given a convex polygon P with k sides,
and a polygonal environment Q with n edges, we can

compute a placement of the largest possible similar copy
of P inside Q in time O(k2nλ4(kn) log3(kn) log log(kn)).

8 Conclusion

In this paper we have applied Megiddo’s parametric
search technique to a variety of extremal polygon place-
ment problems. In addition, we presented a decision al-
gorithm for the general fixed-size polygon containment
problem, which improves upon results obtained in pre-
vious papers that studied related problems.

Our work raises a few open problems. One is to
improve our algorithm by about an order of k, bring-
ing its complexity close to the motion-planning algo-
rithm of [KS]. We believe that Megiddo’s technique can
be applied to many other extremal containment prob-
lems. As an example we mention the problem of finding
the largest stick (line segment) that can be placed in-
side a simple polygon, and the problem of finding the
largest stick that can be placed in a polyhedral environ-
ment in 3-space. Finally, can our technique be turned
into a motion-planning algorithm, that finds a “highest-
clearance” path among obstacles, as in [CK1].

Acknowledgements

I would like to thank my M.Sc. thesis advisor, Professor
Micha Sharir for all forms of valuable assistance he has
given me. I would also like to thank the Special Interdis-
ciplinary Program at Tel-Aviv University for supporting
my studies.

References

[AB] F. Avnaim and J. D. Boissonnat, The polygon
containment problem: 1. Simultaneous contain-
ment under translation, Technical report 689,
INRIA Sopfia Antipolis, June 1987.

[AB1] F. Avnaim and J. D. Boissonnat, Polygon place-
ment under translation and rotation, 5th An-
nual Symp. on Theoretical Aspects of Computer
Science, Lectures Notes in Comp. Science 294,
Springer-Verlag, New-York, 1988, 322–333.

[ACGOY] A. Aggarwal, B. Chazelle, L. Guibas, C.
Ó’Dúnlaing and C. Yap, Parallel computational
geometry, Algorithmica, 3 (1988), 293–327.

[ASS] P. Agarwal, M. Sharir and P. Shor, Sharp up-
per and lower bounds on the length of general
Davenport-Schinzel sequencees, J. Combin. The-
ory Ser. A, 52 (1989), 228–274.



[Ch] B. Chazelle, The polygon containment problem,
in Advances in Computing Research, Vol I: Com-
putational Geometry, (F.P. Preparata, ed.), JAI
Press, Greenwich, Connecticut (1983), 1–33.

[Ch1] B. Chazelle, Reporting and counting segment in-
tersections, J. Comp. Sys. Sci., 32 (1986), 156–
182.

[CK] L. P. Chew and K. Kedem, Placing the largest
similar copy of a convex polygon among polyg-
onal obstacles, Proc. Fifth ACM Symposium on
Computational Geometry, 1989, 167–173.

[CK1] L. P. Chew and K. Kedem, High-clearance mo-
tion planning for a convex polygon among polyg-
onal obstacles, Technical report 90-1133, Dept.
of Computer Science, Cornell University, June
1990.

[Co] R. Cole, Parallel merge sort, 27th IEEE Symp.
on Foundations of Computer Science, 1986, 511–
516.

[Ed] H. Edelsbrunner, Algorithms in Combinatorial
Geometry, Springer-Verlag, Berlin (1987).

[Fo] S. Fortune, Fast algorithms for polygon contain-
ment, Proc. 12th International Colloquium on
Automata, Languages and Programming, Lec-
ture Notes in Comp. Science 194, Springer-
Verlag, New-York, 1985, 189–198.

[GRS] L. Guibas, L. Ramshaw and J. Stolfi, A ki-
netic framework for computational geometry,
24th IEEE Symp. on Foundations of Computer
Science, 1983, 100-111.

[HS] S. Hart and M. Sharir, Nonlinearity of
Davenport-Schinzel sequences and of general-
ized path compression schemes, Combinatorica,
6 (1986), 151–177.

[KS] K. Kedem and M. Sharir, An efficient motion-
planning algorithm for a convex polygonal ob-
ject in two-dimensional polygonal space, Discrete
and Computational Geometry 5 (1990), 43–75.

[LS] D. Leven and M. Sharir, On the number of criti-
cal free contacts of a convex polygonal object in
two-dimensional polygonal space, Discrete and
Computational Geometry 2 (1987), 255–270.

[LS1] D. Leven and M. Sharir, Planning a purely
translational motion for a convex object in two-
dimensional space using generalized Voronoi dia-
grams, Discrete and Computational Geometry 2
(1987), 9–31.

[Me] N. Megiddo, Applying parallel computation in
the design of serial algorithms, J. ACM 30
(1983), 852–856.

[PY] M.S. Paterson and F.F. Yao, Point retrieval for
polygons, J. Algorithms, 7 (1986), 441–447.

[SS] J. T. Schwartz and M. Sharir, On the Piano
Movers Problem: II. General techniques for com-
puting topological properties of real algebraic
manifolds, Advances in Applied Mathematics 4
(1983), 298–351.

[Va] L. Valiant, Parallelism in comparison problems,
SIAM J. Computing 4 (1975), 345-348.


