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Abstract

We present atsl, an automatically-tuned sorting library. Atsl generates an
in-core sorting routine optimized to the target machine for a specific data type.
Atsl finds a high-performance sorting routine by searching an algorithmic space
that we have defined. The search space includes basic sorting algorithms and
automatically-generated compositions of sorting algorithms. Performance mea-
surements are used both for ranking candidate algorithms and for characterizing
the behavior of candidates in specific settings (ranges of array sizes). These char-
acterizations allow atsl to generate hybrid algorithms that intelligently exploit
the strengths of particular algorithms, such as high speed at specific input-size
ranges. Many sorting algorithms can be tuned using numeric parameters. Atsl

searches these parameter spaces to find values that yield high performance on
the target machine. The building blocks from which atsl synthesizes sorting
algorithms include adaptations of many of the most effective hand-tuned sorting
routines, including several that are tuned for cache efficiency.

An extensive experimental evaluation shows that atsl generates high-perfor-
mance codes that are well tuned for the target machine and data type. The
experiments were conducted on six different machines, of several architectures,
and with three different compilers. The algorithms that are generated are fast;
in particular, they beat the hand-tuned building blocks and the compiler’s C++
built-in sorting routine. The algorithms that atsl generates on different machines
and using different compilers are different from each other.

1. Introduction

We describe atsl, a system for creating automatically-tuned sorting libraries.
Given a data type, atsl synthesizes a large number of sorting algorithms for
that type, measures their performance on the target machine, and constructs a
high-performance sorting routine.

Our main goals in designing atsl were to create sorting algorithms that would
match and beat the best hand-coded sorting libraries, and to create a highly-
usable system. We were less interested in other aspects of the problem, such
as adapting to specific inputs (beyond their size) and efficient searching of the
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parameter space. These aspects are important, but they were already explored
by others [15, 16].

In the last few years, automatically-tuned libraries have been successfully de-
veloped for several fundamental computations. Atlas [24] and PHiPAC [2] are
automatically-tuned libraries for dense-matrix kernels (e.g., matrix multiplica-
tion); Oski [23] generates sparse-matrix kernels; Fftw [8] and uhfft [18] are
automatically-tuned FFT libraries. Some of these systems, like atlas and fftw

are already widely used in practice. The problems that have been addressed by
these systems share two common features: the problems are important, so they
deserve the software engineering effort that goes into such a system, and there
is a substantial literature on algorithms to solve them. In virtually all cases,
the literature not only describes multiple algorithms, but also many architecture-
dependent and -independent optimizations, tuning techniques, and comparisons.
In other words, automatic tuning systems exploit years or decades of research on
tuning by hand.

Sorting belongs to the same category of problems, but until recently, there were
no automatically-tuning systems for sorting algorithms. Sorting is important, and
sorting algorithms have been investigated for at least half a century. In particular,
several architecture-dependent optimizations, such as cache-efficient algorithms,
have been investigated in the last few years. Therefore, we set out in June
2003 to develop a system for synthesizing automatically-tuned sorting libraries.
We were especially interested in exploiting, matching, and beating hand-crafted
cache-optimized sorting techniques.

Recently, Li, Garzarán and Padua presented a similar system [16], which ap-
pears to produce algorithms of similar quality. Our system is quite similar to
theirs, and our main conclusions match theirs: that an automatic tuning of sort-
ing algorithms is viable and can produce better results than hand-coding. How-
ever, our approach is somewhat different than theirs. The three most important
differences between our results and theirs are that we propse a formal and ab-
stract definition of the search space, that our system is designed to be open and
to easily accomodate new algorithms and implementations, and that our results
show that automatic tuning is superior to virtually all the hand-tuned codes pro-
duced in the last decade or so. We discuss these differences in more detail in
Chapter 8.

The rest of this paper is organized as follows. We survey relevant related
work in the next chapter. The description of atsl spans Chapters 3 through 6.
Atsl constructs an efficient algorithm by searching a large space of potential
candidates. These candidates are mostly synthetic algorithms that are automati-
cally generated from hand-coded building blocks and from hand-coded templates.
Chapter 3 describes this search space. More specifically, it describes a notation,
a naming scheme for sorting algorithms. Essentially, atsl searches this name
space. To evaluate an algorithm in this space, atsl must synthesize it. Chap-
ter 4 explains how atsl synthesizes a given algorithm. Chapter 5 describes how
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atsl searches the space and how it compares candidate algorithms. The design
and implementation of atsl are described in Chapter 6. Experimental results,
which show the effectiveness of atsl (but also one weakness) are presented in
Chapter 7. We present our conclusions from this research in Chapter 8.

2. Related Work

Three categories of published research are relevant to our research. Obviously,
one category consists of papers on specific sorting algorithms. Another category
consists of papers on adapting sorting algorithms to specific architectural fea-
tures, such as cache memories. The last category consists of papers on systems
for automatically producing highly-tuned algorithms for various problems, not
necessarily sorting.

The literature on sorting algorithms is vast. We do not attempt to cite all the
relevant papers here. What we do mention are the most important papers on the
main algorithms that atsl uses, and surveys and textbooks that cite additional
works. Mergesort, radixsort, insertionsort and bubblesort appear to be folk al-
gorithms from the pre-computer era. Heapsort was invented by Williams [26].
Quicksort was invented by Hoare [10]. Several of the variants of quicksort that
we mention are due to Sedgewick [20].

A few monographs are devoted mostly or exclusively to sorting, includ-
ing Knuth’s classic monograph [13], Akl’s monograph on parallel sorting algo-
rithms [1], and Mahmoud’s monograph on probabilistic analysis of sorting algo-
rithms [17]. Most general textbooks on algorithms, such as [3, 12, 21], describe
all the basic sorting algorithms.

Architecture-specific design and optimization techniques for sorting algorithms
have been proposed by many authors. Many of these have focused on two funda-
mental architectural issues, parallelism and cache efficiency. Atsl produces only
sequential algorithms, so the parallelism issues are less relevant to us. LaMarca
and Ladner investigated cache-efficient variants of several sorting algorithms [14].
Wickremesinghe, Arge, Chase and Vitter proposed a variant of mergesort opti-
mized for caches and for processors with large register files [25]. Sanders and
Winkel proposed a cache-efficient samplesort.[19]. Atsl uses algorithms from
these three sources. Cache-oblivious algorithms exploit cache memories, but in
theory at least they do not need architecture-specific tuning. Cache-oblivious
sorting algorithms were first developed by Frigo, Leiserson, Prokop, and Ra-
machandran [9]. Brodal et al. [5, 6] and Youn [27] describe implementations of
cache-oblivious sorting algorithms. We have tried Youn’s implementation and
found it to be much slower than other sorting algorithms that are included in
atsl. These findings are consistent with Youn’s own findings.

Automatically-tuned libraries have already been mentioned in the Introduction.
Atlas [24] and PHiPAC [2] are automatically-tuned libraries for dense-matrix
kernels (e.g., matrix multiplication); Oski [23] generates sparse-matrix kernels;
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Fftw [8] and uhfft [18] are automatically-tuned FFT libraries. All of these
systems tune codes by automatically searching a certain space of potential algo-
rithms for efficient ones. Usually, the space is the same space that developers
have been searching manually when hand-tuning their codes. In general, all of
these systems bring decades of experience in hand-tuning into a problem-specific
automatic tuning and optimization system.

Li, Garzarán and Padua [15, 16] describe, xsort, an automatic-tuning system
for sorting. The main difference between atsl and their system is that xsort

measures the entropy of the input array at run-time and attempts to select an
algorithm that works well in that entropy range. The algorithm that atsl uses
depends on the size of the input array, but not on its contents. The two systems
also differ in the search algorithm that they use. The two systems were developed
concurrently and independently.

3. A Notation for Synthetic Sorting Algorithms

Atsl synthesizes efficient sorting algorithms using parametrization and using
two composition rules. We now explain the synthesis principles, which drive most
of the design of atsl. We also describe a notation for synthetic algorithm. The
rest of the paper uses the notation to describe atsl. The most important aspect
of the notation is that it is static: a name denotes an algorithm, not an execution
of an algorithm. This may seem obvious, but due to the recursive nature of many
sorting algorithms, and to the fact that one algorithm may call a different one,
developing an appropriate static notation is not trivial. Our notation is similar
to the ones presented by Li et al. [16], but in their papers the distinction between
the static notation and the dynamic execution is not clear. In particular, they
do not clearly define how a static name and an sorting code relate to each other.

The two composition rules are divide-and-conquer composition and size-
selection composition. In divide-and-conquer composition, one sorting algorithm
calls another to sort sub-sequences. For example, mergesort divides the input into
sub-sequences, recursively sorts each one, and merges the sorted runs. Mergesort
can invoke itself to sort the sub-sequences, but it can also call another, arbitrary,
sorting algorithm to sort them. We can compose mergesort with, say, insertion-
sort, by synthesizing a mergesort procedure that calls insertionsort to sort the
sub-sequences. We denote this composition by mergesort(insertionsort).
More generally, the notation r(f) denotes a divide-and-conquer algorithm r that
calls a sorting algorithm f to sort sub-sequences. Since atsl synthesizes code,
the names in the notation, such as mergesort, denote an actual implementation
of a sorting algorithm, not the abstract sorting method.

Divide-and-conquer composition is a recursive process. A divide-and-conquer
sorting code can call another divide-and-conquer code, which in turn calls a third
algorithm. For example, if a mergesort code calls a quicksort code which calls
an insertion sort, the notation is mergesort(quicksort(insertionsort)).
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Clearly, a code can call itself, as in mergesort(mergesort(insertionsort)).
However, if a code always calls itself, we do not denote this recursive call as
a composition, because the recursive call does not allow an algorithm-synthesis
system to compose a variety of algorithms.

Our notation denotes static sorting codes, not dynamic executions. In par-
ticular, mergesort(mergesort(insertionsort)) is a specific synthetic code.
On the other hand, a merge sort algorithm that always calls itself recursively is
denoted mergesort, not

mergesort(mergesort(· · · (mergesort) · · · ))
︸ ︷︷ ︸

�log2 n�+1 times

(this is wrong).

This is not a correct use of the notation because the �log2 n� + 1 invocations of
mergesort represent the dynamics of a specific execution, not a static com-
position of codes. With a larger n, the recursive invocation in this particular
code would be deeper, but we want the notation to denote the code, not the
input-dependent execution.

We use the term leaf algorithms to refer to sorting codes that do not call other
sorting codes.

Some divide-and-conquer algorithms sort two different kinds of sub-sequences.
Consider samplesort, for example. This algorithm selects a sample
ai1 , ai2 , . . . , aik of k input elements and sorts the sample into aπ1 ≤ aπ2 ≤ · · · ≤
aπk

. Now samplesort partitions all the input numbers into k + 1 disjoint sub-
sets S1, . . . , Sk+1, such that elements in Sj are at least aπj−1

and at most aπj

(using aπ0 = −∞ and aπk+1
= ∞). The subsets are now sorted and concatenated

to form the output. Samplesort can use the same sorting algorithm to sort
both the sample and the subsets, but it can also invoke two different algorithms
for the two kinds of sub-problems. We denote such compositions by r(f1, f2),
where f1 is the algorithm used for the first kind of sub-problem and f2 for the
second kind. For example, samplesort(insertionsort,mergesort) denotes
a samplesort procedure that calls insertionsort to sort the sample but calls
mergesort to sort the subsets of the input. (Examples like samplesort sug-
gest that the name divide-and-conquer is perhaps not appropriate; however, an
alternative term that we have considered, recursive composition, is also mislead-
ing because one sorting algorithm can call another to sort subsequences; this is
not a recursion.)

The second composition rule that we use is size selection. A size selector is
a sorting algorithm that sorts the input by invoking one of several other sorting
algorithms, one for each range of input sizes. We denote a size selector by a vector
of pairs [(n1, s1), (n2, s2), . . . , (nk, sk)]. The first entry in each pair is a positive
integer (except nk which is always ∞) and the second is a sorting algorithm. The
selector invokes s1 on inputs of size 0 ≤ n < n1, invokes s2 on inputs of size
n1 ≤ n < n2, and so on. When the thresholds n1, n2, . . . , nk−1 are clear from the
context, we drop them and denote the selector by [s1, s2, . . . , sk].
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We use the name caller to denote the caller of a sorting algorithm. This
notation is used mostly in size selectors. For example,

(3.1) mergesort([(31, insertionsort), (∞,caller)])

denotes a mergesort code that calls itself on sub-sequences of 31 elements or more,
but calls an insertionsort code on shorter sub-sequences. The name caller is
used here in the context of a size selector. Therefore, it denotes the caller of the
selector, which is mergesort. This is a different algorithm from

(3.2) mergesort([(31, insertionsort), (∞,mergesort
′)]) ,

in which one mergesort (named mergesort) calls an insertionsort on short sub-
sequences and another mergesort implementation (named mergesort

′) on long
sub-sequences. In particular, if we run the code denoted by (3.1) on an array
of size 1000, it will eventually invoke insertionsort, but if we run the code
denoted by (3.2) on an array of size 1000, it will partition the array and it will
call mergesort

′ on the two halves; but mergesort
′ will sort the halves itself.

Let us consider another example, to further illustrate the notation:

(3.3) [(31, insertionsort), (∞,mergesort(caller))] .

This is again different from (3.1). When invoked on an array of size 30, the
algorithm (3.1) partitions the input into sub-sequences of 15 elements each (it
is a mergesort variant), and calls a the size selector to sort the halves. The
size selector calls insertionsort to sort each half. On the other hand, on the
same input (3.3) calls insertionsort on the entire input, because the top-level
algorithm (the outermost algorithm in the expression) is the selector. On larger
inputs, it will invoke mergesort, which will invoke the size selector to sort
the sub-sequences. The caller notation allows us to assign a fixed-size name
to a recursive algorithm, in which the depth of the recursion may be unbounded.
Therefore, the caller notation is a critical element in the definition of the search
space of sorting algorithms.

There are other possible selectors, but atsl uses only size selectors. Li et
al. describe a system that uses entropy selectors, for example [16].

Many sorting algorithms have tuning parameters. To fully specify an al-
gorithm, these parameters must be specified. We give several examples. A
multiway-mergesort partitions the input into k sub-sequences, sorts them, and
merges the k sorted runs; k is a parameter. Samplesort selects a sample of k
input elements, partitions the input into mutually-monotonic subsets, sorts the
subsets, and concatenates them; k is a parameter. Radixsort sorts the input by
iterating over groups of k bits of the keys; the radix 2k is a parameter. Quicksort
selects a pivot to partition the input. If the pivot is the median of k random
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elements, then k is a parameter. Here are a few examples:

multiway-mergesortmulti=14

samplesortsample-size=7

radixsortradix=16

quicksortmedian-of=3 .

Some sorting algorithms solve sub-problems that are not sorting problems.
Consider quicksort, for example. It solves two kinds of non-sorting sub-problems.
One is the selection of a pivot, and the other is the separation of elements smaller
than the pivot from the rest. There are several ways to solve each sub-problem.
The pivot can be selected using a deterministic linear-time median-finding algo-
rithm, or it can be the median of a small random sample of the elements, or it
can simply be the first element. The partitioning can be done in at least two
different ways.

There are several ways to name concrete sorting codes of this type. We can
view each combination of sub-problem solvers as a different sorting algorithm. A
quicksort variant that invokes a deterministic median-finder and a Lomuto parti-
tion might be called quicksort-detmedian-lomuto. An alternative is to view
the concrete code as a result of a specialized composition process that composed
the top-level algorithm with specific algorithms to solve sub-problems. The no-
tation for this view might be quicksort(. . . ,detmedian, lomuto), where the
ellipsis denote some sorting algorithm that is called recursively. Finally, we can
view the final code as a parametrization of a generic algorithm, for which the
notation is quicksortpivot=detmedian,partition=lomuto.

There is no compelling reason to favor one of this viewpoint over the others.
We use the following guidelines. When the construction of the final code is
done by hand, we view each variant as a separate code and give them separate
names. This emphasizes that we do not inform atsl in any way that the codes
are somehow related. When the construction of the final code is done by a code
generator, we view the process as composition or parametrization (either notation
is reasonable), to emphasize that an automatic code generator is used. Since these
compositions are always specific to a particular sorting algorithm (sometimes to
a particular implementation), such a code generator is always algorithm-specific.
In contrast, the composition of sorting algorithms can be and is performed by a
generic code generator.

4. Generating a Sorting Algorithm from an Abstract

Specification

The notation that we developed in the previous chapter allows us to name a
wide variety of sorting algorithms. Atsl searches this name space for an effi-
cient algorithm. The search, and also the production of the output algorithm,
require the generation of algorithms that correspond to particular names. In this
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mergesortinsertionsort

n ≥ 31n < 31

[· · ·]

radixsortradix=16

Figure 4.1. The expression tree for
[(31, insertionsort), (∞,mergesort(radixsortradix=16))].

chapter we explain how atsl generates the code that corresponds to a name like
[(31, insertionsort), (∞,mergesort(radixsortradix=16))].

The code generation is performed bottom up on the expression tree of a name.
Consider the expression tree shown in Figure 4.1. The generation starts at the
leaves, insertionsort and radixsortradix=16. One leaf, insertionsort, is not
parametrized, so presumably it is a hard-coded implementation that requires no
generation. The other leaf is parametrized, so atsl generates the radixsort

variant with the given parameter. Now that the code for the leaves is available,
atsl can generate the composition of mergesort with the radixsort leaf.
This leaf was generated with a unique function name, say radixsort radix 16

(the actual names in atsl are different). The mergesort variant that atsl gener-
ates calls this particular function. Now that the composed mergesort is ready,
atsl generates the size selector, which ends the generation process for this spec-
ification.

This high-level description hides some important details that we describe next.

4.1. Parametrization and Composition using Macros. Atsl uses the C
macros and C++ templates to perform most of the parametrization and compo-
sition. We explain the use of C macros in detail. The use of C++ templates is
completely analogous. In C, algorithms are implemented as parametrized macros
that expand to C functions. Figure 4.2 shows an example of such a macro. Each
instantiation of this macro, say QUICKSORT MEDIANOF M F(3,insertionsort),
generates a particular parametrized composition of the code.

The instantiation of parameters and callee names at compile time serves two
purposes. First, it is more efficient at run-time than passing the parameters (and
function pointers) to a generic sorting function. Second, it allows the compiler
a much wider scope for optimization. In the example, the compiler can use
constant-folding to completely unroll the loop that select the pivots and the loops
that select the median of the sample (the median selection code is not shown in
Figure 4.2). The compiler can also perform inter-procedural optimizations on
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#define QUICKSORT MEDIANOF M F(M,F) \
void quicksort medianof ##M## ##F##(datatype* A, int n) { \

int pivots[ M ], i, j; \
datatype pivot; \
if (n <= 1) return; \
for (i=0; i<M; i++) pivots[i] = A[ random int(0,n-1) ]; \
... /* inline median finding */ \
... /* partitioning into A[0..j-1] and A[j..n-1] */ \
F(A , j ); \
F(A+j, n-j); \

}

Figure 4.2. A macro that generates quicksortmedian-of=m(f).

quicksort medianof 3 insertionsort and on insersionsort together, or it
might inline insertionsort.

4.2. Parametrization by Code Generation. Binding parameters at compile
time gives the compiler a wide scope for optimizations, but whether the com-
piler actually performs them or not depends on the particular compiler. In some
cases, researchers have shown that explicit production of optimized sorting code
is necessary. For example, Wickremesinghe et al. [25] found it effective to gen-
erate straight-line code for priority-queue operations with a fixed-size heap. The
straight-line code allowed them to use scalar variables for the elements of the
heap, rather than an array. The use of scalar variables allowed the compiler to
assign them to registers.

To support such cases, atsl supports specialized code generators for param-
etrized algorithms. We use this mechanism to generate Wickremesinghe-style
heaps for multiway mergesort. We also use this mechanism to generate radix-
sort algorithms for specific radixes.

Similar mechanisms are used in automatic code generators/tuners for other
problems. For example, hand optimization was common in matrix algorithms. A
code generator, atlas, generates similarly optimized source codes automatically.
Our experience with atlas has been that explicitly generating optimized source
code is helpful when the compiler’s optimizations are not aggressive enough, e.g.,
under gcc versions 2 and 3, but is not helpful with more aggressive optimizing
compilers, such as sgi’s [11]. Fftw, a code generator for fast Fourier trans-
forms, generates code that incorporates fft-specific optimizations, which exploit
symmetries in the fft algorithm.

4.3. Limitations I: Caller Equivalences. Atsl supports the caller nota-
tion only in specific contexts. General support for caller would require either
passing a function pointer to the caller, or generating caller-specific functions.
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We first describe where atsl support the caller notation and how, and then
describe how it might be supported in a general way.

Atsl supports the caller notation only in subexpressions of the form

[(t, f), (∞, r(caller)] .

Such an expression corresponds to a sorting routine that calls f on arrays smaller
than t and r on larger arrays, where r calls its caller (the binary size selector)
to sort sub-arrays. Both f and r might have additional parameters. To support
such expressions, for each possible r we create a parametrized algorithm r′ in
which the caller is eliminated. More specifically, r′threshold=t(f) is an algorithm
that sorts by calling f on inputs smaller than t; on larger inputs, it calls r′ =
r(r′threshold=t(f)), a variant of the recursive algorithm r in which the recursive call
is statically bound to r′, not to caller = [(t, f), (∞, r(caller)]. It is easy to
see that the two are equivalent,

[(t, f), (∞, r(caller)] ≡ r′threshold=t(f) .

The equivalence follows from the following inductive argument. On inputs of
size t̃ < t, both algorithm invoke f to sort the input. Suppose that the two
algorithms are equivalent on inputs of all sizes smaller than some t̃ ≥ t − 1. We
claim that the two are also equivalent on inputs of size t̃+1. Because t̃+1 ≥ t, the
algorithm [(t, f), (∞, r(caller)] calls r. The callee, r sorts the input by calling
[(t, f), (∞, r(caller)] on subsequences. Since the length of subsequences is at
most t̃, the behavior of [(t, f), (∞, r(caller)] on the subsequences is the same
as the behavior of r′threshold=t(f). On the other hand, the algorithm r′threshold=t(f)
sorts the length t̃ + 1 sequence by running r and calling itself on subsequences.
Hence, the two are equivalent.

In fact, in most cases atsl contains either r or r′, but not both. Most of the
composed algorithms in atsl are of the form r′threshold=t(f), but a few are simple
compositions.

Clearly, we could also support other forms of caller expressions via equiv-
alences to caller-free expressions. For example, we could include in atsl an
algorithm r′′threshold1=t1,threshold2=t2

(f1, f2) that corresponds to

[(t1, f1), (t2, f2), (∞, r(caller)]

for some r. But atsl cannot construct r′′ automatically, and more generally,
it cannot generate the code for an arbitrary expression that uses the caller

notation.
This is a limitation of atsl, but even with this limitation atsl can generate

codes that correspond to the most frequent use of caller-like idioms in hand-
coded algorithms.

There are two ways to implement the caller notation in a general way, shown
in Figure 4.3. One is to pass a function pointer to the caller to each sorting
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typedef void (*fn)();
typedef void (*sortfn)(datatype*,

int,
fn);

void zsort(datatype* A,
int n,
sortfn caller)

{
...
caller(A ,j );
caller(A+j,n-j);
...

}

void
zsort ss 31 f inf zsort caller

(datatype* A,
int n)

{
...
ss 31 f inf zsort caller(A,

j);
ss 31 f inf zsort caller(A+j,

n-j);
...

}

Figure 4.3. Two general ways to support the caller notation.
The two codes show the implementation of an imaginary sorting
algorithm, zsort, within the expression
[(31, f), (∞, zsort(caller))].

function. This would have some run-time cost and would prevent some interpro-
cedural compiler optimizations. The other way binds the caller at compile time.
Suppose that the caller is [(31, f), (∞, zsort(caller))] and that the function
that implements it should be named ss 31 f inf zsort caller. We could gener-
ate a version of zsort that calls the caller by name. That is, the version of zsort
that we generate invokes ss 31 f inf zsort caller to sort sub-arrays. We can
generate the caller after we generate this specialized version of zsort. All that
is required when we generate zsort is the full name of the caller. Clearly, the
specialized version of zsort must have a special name, and in general it cannot
be used in other sorting algorithms that use zsort(caller).

4.4. Limitations II: Tree Structures. Atsl only generates codes for expres-
sion trees with certain structures, shown in Figure 4.4. This limitation was put in
place mostly to structure and limit the size of the search space, not because the
code-generation mechanism itself is limited. We explain the limitation assuming
that all caller sub-expressions have already been transformed into caller-free
parametrized equivalents.

Admissible trees have depth 4 or less. The root (level 0) is always a size selector.
The thresholds of this selector are specified when atsl is configured.

The children of the root are either leaf algorithms or divide-and-conquer com-
positions. The algorithms that divide-and-conquer compositions call are either
leaf algorithms, or size selectors. Level-2 size selectors always call leaf algorithms.

Divide-and-conquer algorithms and leaf algorithms at any level can be param-
etrized.
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[· · ·]

d & c d & c

[· · ·]

leaf

leaf

leaf

leaf

· · ·

· · ·

Figure 4.4. Possible tree structures for the final algorithm that
atsl produces. The root is a size selector, and its children are
either leaf algorithms or divide-and-conquer algorithms (denoted
“d & c”). The divide-and-conquer algorithms can be composed
with either leaves or with size selectors that call leaves.

Many of the divide-and-conquer algorithms, which can only be present at level
1, are equivalents of caller expressions. Level-2 size selectors use the same
thresholds as the root, except that if they are called by a caller equivalent
r′threshold=t(f), no thresholds larger than t are used.

4.5. The Repertoire of Building Blocks. Tables 1 and 2 list the sorting al-
gorithms that atsl currently uses as building blocks. Table 1 lists leaf algorithm,
and Table 2 lists divide-and-conquer compositions. Many of these building blocks
are based on existing publicly-available codes.

4.6. The Generation Schedule. Atsl’s code-generation schedule is driven by
the search algorithm, which we describe below, not by large expression trees.
Code generation starts at leaf algorithms. Leaf algorithms that are not parame-
trized require no generation; they are hard coded. From atsl’s view point, these
algorithms are not compositions, but they may well be implemented using recur-
sion. For example, atsl uses recursive variants of quicksort as hard-coded leaf
components. The recursive call within such a component is always to a sorting
function within the same component, which might be the quick-sort caller or
an insertion sort. But atsl is oblivious to the internal implementation of such
components.

Leaf algorithms that are parametrized are the first algorithms that atsl gen-
erates. The possible values for each parameter are listed in a configuration file.

Next, atsl generates all the possible compositions of divide-and-conquer al-
gorithms with leaf algorithms. These compositions are then used for certain
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Type Source Variant name in the original source
quicksort 1 recursive
quicksort 1 pure-iterative
quicksort 1,* iterative
quicksort 2 Hoare
quicksort 2 Lom
quicksort 4 calls insersionsort on small sub-arrays
mergesort 1 recursive
mergesort 1 optimized-iterative
mergesort 2
heapsort 2
heapsort 3 Originally an internal subroutine
radixsort 3 LSDRadixSort
radixsort 3,* Automatically-generated versions of LSDRadixSort
insersionsort 2
insertionsort 4 Originally an internal subroutine
bubblesort 2 BubbleSort
bubblesort 2 BubbleSortBi
shellsort 2
selectionsort 2

List of sources for the implementations:
1. Implementations by LaMarca and Ladner [14].
2. Publicly-available code by Benedikt Meurer.
3. Publicly-available code by D. J. Bernstein, partially based on [22] and [7].
4. The STL C++ Library (on the build platform).
*. Parametrization by code generation.

Table 1. The leaf algorithms that atsl uses. The table shows
the algorithm type, its origin, and how the particular variant was
called in the original sources.

performance measurements, which are part of the search algorithm. Because
these compositions are only used for performance measurements within the search
algorithms, the composition is performed using function pointers to the leaf al-
gorithms, not using the macro-instantiation technique shown in Figure 4.2. This
composition method speeds up the build process. These compositions are tem-
porary and are only used as callers of the leaf algorithms whose performance
we measure; their own performance is not measured at all. Therefore, the so
the slight performance penalty of function pointers on the caller of the algorithm
being benchmarked is harmless.

The next generation stage builds all the candidate algorithms that are rooted
at level 1 of admissible trees. This includes divide-and-conquer compositions with
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Type Source Variant name in the original source & comments
quicksort 1 recursive
quicksort 1 iterative-base
quicksort 1 multipartition
quicksort 4
samplesort 5 SuperScalarSampleSort
mergesort 1 Multi-mergesort
mergesort 6,* N Passes; a (N+1)-level algorithm
mergesort — A multi-way mergesort; our implementation
radixsort 3 MSDRadixSort ; most-significant bits first
radixsort 3,* Automatically-generated versions of MSDRadixSort

List of sources for the implementations:
1. Implementations by LaMarca and Ladner [14].
2. Publicly-available code by Benedikt Meurer.
3. Publicly-available code by D. J. Bernstein, based on [22] and [7].
4. Microsoft’s STL C++ Library.
5. Implementation by Sanders and Winkel [19].
6. Implementation by Wickremesinghe et al [25].
*. Parametrization by code generation.

Table 2. The divide-and-conquer algorithms that atsl uses.

leaves, and divide-and-conquer compositions with size selectors that call leaves.
For each parametric variant of a divide-and-conquer algorithm, atsl builds two
compositions, one with a leaf and one with a size selector. The threshold in the
size selector is automatically tuned. There is no need to re-generate leaves at this
stage; they are all already generated (or they are hard-coded).

Finally, atsl constructs a single root size selector.

5. Exploring the Search Space

The final sorting code that atsl generates is a deep composition of many
sorting algorithms, some of them parametrized. This section explains how atsl

searches this huge design space of potential algorithms.

5.1. Factoring Out the Dependence on Input Distributions. Some sorting
algorithms benefit from specific input distributions. For example, insertionsort
worst-case running time is O(n2), but it runs in linear time if the input in sorted
or almost sorted. Mergesort, on the other hand, runs in Θ(n log n) time no
matter what the input is. Atsl searches the design space by direct running-time
measurements of sorting algorithm. Clearly, at least for some algorithms the
running-times depend on the inputs.

Our design goal has been to address this issue by avoiding algorithms that are
very slow on specific inputs (e.g., random, with repetitions, repetitions in the
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low or high bits) while favoring algorithms that benefit from regularities (e.g.,
repetitions). That is, we would like the worst-case behavior of the resulting
algorithm to be close to optimal. On the other hand, we are willing to accept
slightly sub-optimal worst-case behavior in return for significant speedups on
more structured inputs.

We achieve this design goal by generating inputs that mix several distributions
of permutations. In every input that atsl generates, every element in position i,
where i mod 4 = 0, is an independent uniform random sample from the integers
between 1 and some maximal value (231 − 1 for 32-bit signed integers, etc.).
Elements such that i mod 4 = 1 have their upper bits set to a fixed random value
(half the bits), but the lower bits are random and uniform. Elements such that
i mod 4 = 2 have their lower bits fixed (a quarter of the bits) and the upper bits
are random and uniform. Finally, elements such that i mod 4 = 3 can have only
two values; the two possible values are random and the choice between them is
random with probability 1/2.

This method acheives our design goal in that is is likely to expose algorithms
that perform poorly on random inputs and algorithms that perform well only
when many of the bits of the keys are random. On the other hands, algorithms
that benefit from repetitions are likely to be favored by atsl, because 12.5% of
the keys all have a single value and another 12.5% of the keys have a different
fixed value.

5.2. Running-Time Vectors. The object that we use to represent the perfor-
mance of a given sorting algorithm in a given context is a running-time vec-
tor. A running-time vector is a vector of normalized estimated running times
[t1, t2, . . . , tk] for that algorithm to sort arrays of certain sizes [n1, n2, . . . , nk].
The sizes are determined by the configuration of atsl. We currently use the
sizes

24, 25, . . . 210, 212, 214, 224, 225, . . . , 227 ,

along with four large non-power-of-2 sizes between 218 and 220; some of the powers
of 2 are a factor of 2 apart and some are a factor of 4 apart. The sizes do not
need to be powers of 2: any set of positive integer sizes can be used, except that
atsl ignores sizes for which the array size is larger than main memory.

For each size, a running-time vector stores an estimate running time per array
element. For example, a running-time vector (1.03×10−7, 2.32×10−7, . . .) means
that we expect the algorithm to take 24 × (1.03× 10−7) seconds to sort arrays of
size 16, 25 × (2.32 × 10−7) seconds to sort arrays of size 32, and so on. (In our
implementation, the units are not seconds, but this is irrelevant to the description
of the system.)

We allow ∞ in running-time vectors. An infinity means that the estimated
running time is too long to be relevant to atsl. The inclusion of infinities allows
us to avoid very long test runs, for example of Θ(n2) algorithms. When we
measure running times to create running-time vectors, we use four thresholds,
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c, nl, ns and tl to assign ∞’s. The parameter tl is the measured running time
of a fixed algorithm F (specifically, the one from the stl library) on arrays of
size nl, where nl is chosen to be larger than the processor’s caches. If during the
generation of a running-time vector we measure a per-key running time t on an
array of size n ≥ ns, and if the total running time T satisfies

T = tn > c
tl

log2 nl

n log2 n

then we assign ∞ to all the running-time-vectors for sizes larger than n. This
rule reflects the following assumptions:

• The running time per key of sorting algorithms is monotonic for all n ≥ ns.
The worst-case number of operations is monotonic for all the determin-
istic sorting algorithms that we are aware of, and the worst-case (over
the inputs) expected number of operations in randomized algorithms is
monotonic as well. Nonmonotoniciries can occur due to specific inputs
(e.g., a small random input versus a large but already sorted input), and
due to random choices that randomized algorithms make. However, we
prune an algorithm using this rule because of a nonmonotonicity when it
runs slowly on small inputs. Even if the same algorithm performs better
on some larger inputs, the prunning decision is reasonable: it prunes an
algorithm that is at least sometimes much slower than the fixed algorithm.

• The running time of the fixed algorithm F for n ≥ ns is at most
(tl/ log2 nl)n log2 n. This assumption is valid when the fixed algorithm
is a Θ(n log n) algorithm, such as mergesort or heapsort, and when an
array of size nl is significantly larger than the largest cache. At small ar-
ray sizes, there are fewer cache misses, so even if the number of machine
instructions does behave like δn log2 n for some δ, the the running time
grows faster than Θ(n log n) due to an increasing cache-miss rates. But
for large array sizes, the assumption is valid.

• Running times that are more than a factor of c larger than that of the
fixed algorithm are irrelevant. This assumption is valid because atsl can
always choose to use the fixed algorithm F rather than a much slower
competitor.

Under these assumptions, the pruning rule is correct. It is based on the trivial
observation that if the running-time of F at nl is TF,nl

= γnl log2 nl for some γ,
then γ = tl/ log2 nl.

In our implementation, F is the platform’s stl sorting algorithm, nl is such
that the array is 8 times larger than the level-2 cache, ns = 1024, and c = 5. The
choice of c is fairly arbitrary. Larger c’s lead to less pruning and a more accurate
estimation of running-time vectors, at the expense of more work in the search
algorithm.

To estimate running-times on small running times without relying on high-
resolution timers, we duplicate the input array several times. The duplication is



AN AUTOMATICALLY-TUNED SORTING LIBRARY 17

done so as to factor out cache effects. We allocate two arrays D and J that are
twice as large as the level-2 cache, to ensure that each call to the sorting code
sorts a subarray whose elements are not in the level-1 or in the level-2 cache. To
measure the running time of an algorithm on a small array A of size n, we place
copies of A in D, contiguously, until the remaining space is smaller than A. We
then read sequentially all the elements of J , to evict any elements of D from the
cache. The sequential access is based on the assumption that here that the cache
does not detect streaming; if it does, we could read J in an apparently random
order. Now we sort all the copies of A that we placed in D, measure the total
running time, and divide by the number of copies. This causes the copies of A
to be sorted with a mostly cold cache (except perhaps for a single partial cache
line that was read into the cache when the previous copy was sorted). The effect
of a cold cache is approximately the same on all sorting algorithms: they incur
compulsory cache misses to read the input into the cache.

5.3. Generating Context-Independent Running-Time Vectors for Leaf
Algorithms. The first phase in the exploration of the search space is straight-
forward. Atsl generates all the parametrizations of leaf algorithms, and then
generates a running-time vector for each one, by measuring directly its running
time on generated random inputs. As explained above, the estimates on small
inputs are measured by duplicating the input and reflect cold caches.

To make the estimates reliable, we average 15 runs per algorithm per size on
large sizes (214 elements and larger) and 50 runs on small sizes.

5.4. Generating Context-Dependent Running-Time Vectors for Leaf
Algorithms. Consider a caller-equivalent rtreshold=t(f) that calls a leaf f on
small sub-arrays. On certain input distributions and array sizes, the sub-arrays
that f sorts are highly biased, and the bias depends on r.

For example, consider inputs of the form (0,−1, 1,−1, 1,−1, 1, . . .). Let f be
insertionsort, let rq be quicksort variant that uses the exact median as a pivot,
and let rm be mergesort. Assume that both rq and rm call f on sub-arrays smaller
than some value n0. The sub-arrays that f receives from rq are likely to contain
only one value, so f will run on them in linear time. But the sub-arrays that f
receives from rm are likely to contain a random mixture of the 2 possible input
values, leading to quadratic running times for f .

The inputs that atsl currently uses do not appear to generate such strong
biases, but we have designed atsl so that future versions will allow the user to
plug in an input generator, to tailor the resulting sorting subroutine that atsl

produces to specific input distributions. As shown above, for some inputs, the
sub-arrays can be strongly biased.

Therefore, we measure each leaf algorithm in the context of each divide-and-
conquer algorithm. We generate all the divide-and-conquer variants (under all
possible parametrizations, including caller-equivalent thresholds). We run each
such variant r with each leaf f , and measure the running times for f in the context
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of the particular divide-and-conquer variant. We ignore the running time of the
composed algorithm now; we only use the composition to create a context for f .

When r generates inputs for f during its normal operation, the input sizes to f
are not necessarily the input sizes in our running-time vectors. To make running-
time vectors comparable, we assign all the per-key running measurements to
nominal sizes. For example, all running times on arrays with 1–24 elements will
be assigned to size 16, running times with 25–48 will be assigned to size 32, and
so on. This is why the running-time vectors store per-key times rather than total
times.

Also, in general r does not generate enough input sizes to estimate an entire
running-time vector for f . For example, recursive mergesort with threshold 256
might generate only sub-arrays of one size, if the total input size is a power of
256. Even with a random total input size, mergesort might only generate inputs
with size between 129 and 256. In this particular case, the performance of f
on other inputs is irrelevant, but in other cases there might be rare but possible
input sizes. To address this issue, we complete context-dependent running-time
vectors by copying missing estimates from the context-independent vector of f .

5.5. Generating Size Selectors. We now explain how atsl constructs size se-
lectors. The construction of a size selector depends on a candidate list. This
is a list of sorting algorithms a1, a2, . . . a�, each with an associated running-time
vector. We denote the running time vector associate with aj by taj . The size se-
lectors that atsl generates are always of the form [(n1, s1), (n2, s2), . . . , (nm, sm)],
where the sequence n1, n2, . . . , nm is a prefix of the sequence of sizes n1, n2, . . . , nk

that characterizes run-time vectors.
We construct a selector s from a candidate list by assigning to si the candidate

algorithm whose associated running-time vector at ni is minimal. That is, si = aj

where

j = arg min {ta1
i , ta2

i , . . . , ta�
i } .

After atsl estimates all the context-dependent running time vectors for a
divide-and-conquer variant r, it creates a size-selector s for r. That is, we con-
struct a size selector s that will perform nearly optimally in r. We denote the
resulting size selector by sr. (If r composes two or more sorting algorithms, as in
sample sort, we construct a size selector for each sorting-algorithm argument of
r.) In the construction of the size selector sr, the candidate list includes all the
leaf algorithms under all parametrizations, and the running time vectors associ-
ated with them are the context-dependent running time vectors, where the context
is r.

The last step on the synthesis of the final algorithm constructs the level-0 size
selector sT . Its candidate list include all the parametrized leaf algorithms and
two instantiations of each parametrized divide-and-conquer algorithm r. One
instance of a divide-and-conquer variant r is r(sr), where sr is the nearly-optimal
size selector that was constructed for r. The other variant is r(f), where f is a
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leaf algorithm whose r-dependent running-time vector has a small 1-norm (sum
of elements). We always select f for r from the leaves that populate sr.

Before we can construct sT , we need to estimate the running-time vectors for
each r(sr) and r(f) in the candidate list. So far, we only constructed running-time
vectors for leaf variants. We run these algorithms and measure their running times
to construct the running-times vectors. Now each algorithm in the candidate
list is associated with a (context-independent) running-time vector, so we can
construct the selector sT .

5.6. The Overall Search Algorithm. We now summarize the overall search
algorithm. We start by instantiating each leaf variant and measuring its per-
formance to construct a context-independent running-time vector for it. Then
we instantiate each divide-and-conquer variant r as a context, and measure
the performance of each leaf variant in that context. We fill missing values
in a context-dependent running-time vector with values from the corresponding
context-independent vector.

Once we have all the r-dependent vectors, we construct the size selector sr for
r, and we find a good leaf variant f for use in r without a size selector. We
measure the running times of r(sr) and r(f) and add them to the candidate list
of sT , the top-level selector. The final step is the construction of sT .

6. Software Engineering

6.1. Design Goals. This chapter highlights several software-engineering issues
in the design of atsl. The engineering goals that we tried to achieve in the
design are:

• Portability. We tried to ensure that atsl can run on a wide variety of
platforms. Portability is important for two reasons. First, it enhances
the practical value of the system. Second, it allows us to evaluate it
on multiple platforms. We viewed this second issue as critical, because
without evaluating atsl on multiple platforms it would not have been
possible to validate our claims regarding the value of automatic generation
of sorting algorithms.

• Ease of integration of new algorithms and implementations. Novel algo-
rithmic and implementation ideas for sorting algorithms are invented all
the time. It is important to keep atsl open ended so that new variants
can be incorporated into the library easily.

• The resulting sorting code should be callable from C. C-callable functions
can be called not only from C programs, but also from C++ programs,
Java programs, Fortran programs, and many other environments. There-
fore, ensuring that the resulting code is callable from C allows it to be
used in many programs. However, a C++ compiler is required in order
to build atsl itself and in order to compile the resulting code. Atsl uses
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variants that are implemented in both C and C++ (in principle, assem-
bler and Fortran variants should also be easy to incorporate), so calling
programs should be linked with both the C and C++ standard libraries.

6.2. Design. We now describe the overall design of atsl. The description fo-
cuses on the design of the code-generation and tuning phases. The final sorting
code that atsl produces consists of only building-block instantiations, with no
atsl code whatsoever. Therefore, the interesting parts of the design all belong
to the code-generation and tuning phases.

Atsl is implemented in C++ and its design is based on three kinds of objects.
To present these objects, we use a small set of building blocks,

• samplesortsample-size=p1(f1, f2),
• insertionsort, and
• radixsortradix=p2.

The expressions p1 and p2 denote numeric integer parameters; f1and f2 denote
sorting-algorithm parameters. The three kinds of atsl objects are:

Parameter-type objects: These objects represent the type of a parame-
ter. In the example, we have three types of parameters: the sample-size
type, which characterizes p1 in samplesort, the radix type, which is used
in radixsort, and the sorting-algorithm type, which characterize f1 and
f2. Numeric types, like radix, have a set of possible values. Multiple
algorithms can use a single parameter type. For example, the caller-
threshold type is used by most divide-and-conquer algorithms. These
objects essentially provide a single service that returns an iterator for the
possible values of this parameter.

Building-block objects: These represent our building blocks, such as
insertionsort and radixsortradix=p2. For parametric and composed al-
gorithms, the representation includes the types of their parameters. These
objects provide the following services:
Parameter enumeration. This service allows atsl to determine the num-
ber and types of parameters to this building block. For example, for
samplesort this service reports 3 parameters, of types sample-size,
sorting-algorithm, and sorting-algorithm.
Code generation. A building-block object can instantiate a parametric,
divide-and-conquer, or selector algorithm. The code-generation service
returns two items: the program text of the fully-instantiated algorithm,
say

samplesortsample-size=7(insertionsort, insertionsort) ,

and an object representing this instantiation. This object is described
below. There is no way to partially instantiate a building block, say to
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construct

samplesortsample-size=7(radixsortradix=p2, insertionsort) ,

where p2 is unbound.
Run-time instantiation and execution. The object can also execute a
fully-instantiated parametrization without generating and compiling code.
That is, atsl can request that samplesort be executed with parameters

p1 = 7

f1 = radixsortradix=16

f2 = insertionsort .

Obviously, the type of the arguments f1 and f2 is such that the name
of the corresponding sorting function can be determined. This service is
used in the computation of context-dependent running-time vectors (in
this case, for radixsortradix=16 and for insertionsort).

Fully-instantiated-algorithm objects: These represent fully-
instantiated algorithms, such as

samplesortsample-size=7(insertionsort, insertionsort) .

Note that a non-parametric building block like insertionsort is repre-
sented by both a building-block object and by a fully-instantiated object.
The objects provide these services:
Naming. The object can return a string with the name of the C-callable
sorting function that it represents. This is used by building-block objects
to generate code for compositions.
Execution. The object can run the C-callable function. Atsl invokes this
service when it computes the context-independent running-time vector for
the algorithm.

The core of atsl uses these objects to explore the search space and to find an
efficient algorithm. Atsl works bottom-up on the set of admissible trees. It
maintains two sets of sorting algorithms: a static set of building block objects,
and a growing set of fully-instantiated-algorithm objects. At each phase, atsl

enumerates the building blocks. For each building block, it iterates over all of its
parameter values. If some of the parameters are sorting-algorithms, it generates
their context-dependent running-time vectors (using the runtime instantiation
and execution service of the building block). It then decides on the composi-
tions that should be generated, and generates them for use as fully-instantiated
algorithms in the next higher level of the tree.

When atsl enumerates building blocks, the enumeration is restricted, in order
to construct only admissible trees. For example, at level 1, the enumeration
excludes size selectors, because we do not allow a size selector to call another size
selector.
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The enumeration of fully-instantiated algorithms for use as composition pa-
rameters is sometimes restricted, too. For example, the only fully-instantiated
algorithms that a divide-conquer algorithm is allowed to call are a size selector
and one of the leaves that the size selector calls.

6.3. Implementation. The implementation of atsl consists of static C++
code, automatically-generated C++ code, and scripts. The partitioning into
both C++ programs and scripts was driven by the need to invoke the compiler
to generate both sorting algorithms and the classes that represent them. To make
the system portable, the scripts are generated by a configuration program that
runs at the beginning of the build process.

A run of atsl is initiated by calling a small and simple script. The script
compiles and runs a configuration program whose role is to produce the scripts
that will run the rest of atsl. The output of the configuration program depends
on several parameters that it receives from the user, such as the command that
invokes the compiler and so on.

Because the design of atsl evolved during its development, its C++ class
hierarchy does not correspond exactly to the abstract design that we described
in Chapter 6.2. The differences are not fundamental and can be corrected by
refactoring the code.

The representation of building blocks is perhaps the most interesting aspect of
the implementation. We describe this aspect in detail, because the details show
how additional building blocks can be added to the system.

The representation of a building block usually consists of three parts. The main
part is the class whose single object will represent the building block. In our im-
plementation, each building block uses a separate class with a hand-written static
source code. Typically, the code generation service of this class uses either a C
macro or a C++ template. This macro or template forms the second part of the
implementation. Chapter 4 explained this technique. Using the example of Chap-
ter 4 and assuming that the macro is defined in the file quicksort medianof.h,
the code generation for a particular instantiation produces the code

#include "quicksort median.h"
QUICKSORT MEDIANOF M F(3,insertionsort)

(the string insertionsort is obtained from the fully-instantiated-algorithm ob-
ject that represents this algorithm). That is, the actual implementation of a
composed or parametrized algorithm r is a macro, and its parameters are macro
parameters. In a composed algorithm, the algorithms that it calls are also macro
parameters. This allows the compiler the greatest opportunity to optimize the
resulting codes, as opposed to passing parameters as function arguments. The
implementation of a composed-algorithm building block also includes a function
(as opposed to a macro) that retrieves the building-block’s parameters from global
variables. This function is called by the runtime-instantiation service. The third
part of the implementation is the definition of parameter types specific to this
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building block. Currently, all the parameter types are defined in one configuration
file.

Not all the building blocks are implemented using macros or templates. Some
of Atsl’s building-block objects use custom C++ code generators to generate
parametrized algorithms. At the other extreme are non-parametrized algorithms
whose code generators simply return static source code from a file.

To add a new building block to atsl, the developer implements a class repre-
senting the building block, including the code generator, and registers this class
in atsl’s static set of building blocks.

Atsl runs under Windows, Linux, and MacOS X, and has been tested with
GCC (on all platforms), Intel’s C++ compiler (under both Windows and Linux)
and Microsoft’s Visual C++ compiler (under Windows).

A run of atsl generates a sorting library for a particular data type and a
particular partial order on that data type. The ability to generate libraries for
sorting arrays of primitive data types (int, double, etc) is built into atsl. To
sort structures, the user must provide atsl with the declaration of the data type,
using a typedef statement, and with the name of field on which the structures
are sorted.

7. Experimental Results

We present results from runs of atsl on six different computers, three differ-
ent compilers (on a single computer), and on several input distributions. The
experiments attempt to answer several questions:

• Are atsl’s resulting algorithms consistently and significantly faster than
hand-coded algorithms?

• Do atsl’s resulting algorithms adapt effectively to the computer’s archi-
tecture?

• Do atsl’s resulting algorithms adapt to different optimizing compilers?
• Do atsl’s resulting algorithms perform well on input distributions other

than the one with which they were selected?

7.1. Experimental Platforms. We used the following computers for the ex-
periments:

3.2GHz Pentium 4: The computer has 2GB of ram, a processor with a
1MB level-2 cache, and runs Linux, kernel version 2.6.11. We used the
Intel C++ computer version 8.0 on this computer.

3.0GHz Pentium 4: The computer has 2GB of ram, a processor with a
1MB level-2 cache, and runs Linux, kernel version 2.6.11. We used GCC
version 3.3.5 on this computer.

0.5GHz Pentium 3: This computer has two cpu’s (we only used one)
with 512KB level-2 caches, 256MB of ram, and runs Linux, kernel version
2.6.11. We used GCC version 3.3.5 on this computer.
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3.2 GHz 3.0 GHz 1.6 GHz 0.7 GHz 0.5 GHz
Unsigned integer 13 16 9 24 27
Structure 18 11 7 7 15
Table 3. Atsl build times in hours on several platforms, denoted
by clock speed. See the text for further descriptions of the ma-
chines.

1.6GHz AMD Opteron: This computer has two cpu’s (we only used one)
with 1MB level-2 caches, 8GB of ram, and runs a 64-bit version of Linux,
kernel version 2.6.8. We used GCC version 3.3.5 on this computer.

0.7GHz PowerPC G4: This computer has 256MB of ram, 256KB level-2
cache, and runs MacOS X version 10.2.8. We used GCC version 3.1 on
this computer.

2.8GHz Pentium 4: This computer has 512MB of ram, a processor with
a 512KB level-2 cache, and runs Windows XP. On this computer, we used
three compilers, GCC version 3.2, Microsoft’s C++ compiler version 7,
and Intel’s C++ compiler version 8. We used this computer mostly to
compare atsl under different compilers.

This collection of test platforms contains several processor architectures, two by
Intel, one by AMD, and one by Motorola and IBM, and three different compilers.

7.2. Build Times. In our experiements, the running time of atsl itself ranges
from several hours to 24 hours. Running times of up to about 16 hours allow for
overnight builds, which are reasonable for the end user. Running time over 16
hours require either a weekend build or avoiding the use of the machine during
working hours. The two drawbacks of long running times are the effects of build
failures and the difficulty of debugging and developing atsl itself. For the end
user, the drawback is that the failure of an overnight build usually takes 27 hours
to detect and correct. A build might fail if the user supplies invalid configuration
parameters, such as compiler flags. Most build failures occur early in the build
and can be quickly corrected, but a late failure can waste significant time before
it is detected and corrected. For the atsl developer (us), the drawback is that
the effect of small changes in atsl on the performance of the resulting algorithms
usually takes at least 24 hours to evaluate. To fully assess the effect of modifica-
tions, the developer usually runs atsl on several platforms and datatypes, which
increases the evaluation time even further.

Table 3 describes some sample build times. The table shows some irregularities,
most of which we have not investigated. The differences between the 3.2 and
3.0 GHz Pentium 4 runs may be due to different compilers: gcc on the 3.0 GHz
machine, and Intel’s compiler on the 3.2 GHz machine.

7.3. Results. The first sets of results compare the performance of several hand-
coded algorithms to the performance of atsl’s generated algorithm. The results
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are shown in in Figures 7.1, 7.2, 7.3 and 7.4. In these graphs, the performance
of hand-coded algorithms is shown using their running-time vectors, but the
performance of atsl’s algorithm is shown on additional random sizes.

All the running times were measured on atsl-style inputs, described in Chap-
ter 5. This may seem like cheating, but the results still contain useful information.
First and most importantly, we also show experiments on other distributions later.
Second, any specific choice of input distributions may hide some algorithmic be-
haviors. Third, the results on atsl-style inputs does show whether the search
and synthesis whether or not the search algorithm is effective, ignoring the fact
that the performance of a particular algorithm in this space also depends on the
input distribution.

The most obvious fact that emerges from these graphs is that the performance
of the hand-coded algorithms varies greatly, even though most of them are care-
fully designed and implemented, and many are optimized to exploit data caches.

Another fact that emerges from the integer-sorting results is that on all the
machines, a LaMarca-Ladner O(n log n) algorithms is fastest among the hand-
coded variants on arrays of up to several hundred elements, and radix sort is
fastest on larger arrays.

The algorithms that atsl constructs follows this pattern: they use an
O(n log n) variant on small arrays and a radix sort variant on large arrays. They
are almost always faster than the hand-coded algorithms. Atsl’s algorithms are
usually not significantly faster thna all the hand-coded algorithm, but from some
of them. This statement is not as trivial as it may seem, considering that most
of the hand-coded algorithms were shown to be fast by their inventors or devel-
opers to be fast. The superiority of atsl’s algorithms over the hand-coded ones
is due to two facts: the fact that atsl measures the different codes in the cor-
rect context and selects the best, and the fact that atsl synthesizes algorithms
that are often more complex than the hand-coded ones. The second advantage
is especially significant on radix-sort variants.

The behavior of the algorithms when sorting structures is similar, except that
atsl does not use radixsort variants on floating-point keys. But we again see
the high-performance of the LaMarca-Ladner algorithms and we again see that
atsl’s algorithm beats them.

The next set of results compare the performance of atsl’s generated algorithm
on five different distributions, the one with which atsl generates running-time
vectors and four others. The other distributions were a random distribution,
ascending and descending inputs with the keys 0, 1, . . . , n, and inputs in which
elements were selected randomly and uniformly from a set {r1, r2} of two random
numbers. These results are shown in Figure 7.5 and 7.6.

When sorting integers, atsl’s algorithm performed well on all the input dis-
tributions except ascending and descending inputs. The poor performance of
atsl’s algorithm on these inputs is not due to their permutation, but due to the
fact that all the keys lie in a small interval. Such inputs are not handled well
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ATSL Resulting Algorithm

STL’s Sorting Algorithm

Arge’s R−Mergesort

Lamarca and Ladner’ Algorithms

Sanders and Winkel’s Samplesort

Least−Significant−Digit Radixsort

Figure 7.1. The performance of hand-coded sorting algorithms
versus atsl’s generated algorithm on 3 different computers (results
on additional computers are shown in Figure 7.2). The graphs on
the left show all the data points in the running-time vectors; the
graphs on the right only show the shorter running times.
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Figure 7.2. Performance of hand-coded algorithms versus atsl’s
algorithm. Continued from Figure 7.2.

by radixsort, which is usually used by atsl’s algorithm to sort large arrays of
integers.

When sorting structures the behavior of atsl’s algorithm is more consistent,
primarily because the floating-point keys caused atsl to exclude radixsort. The
performance of the algorithm on random inputs is slightly poorer than the perfor-
mance on atsl’s training distributions, which is expected, and the performance
on other distributions is better than predicted.

Figure 7.7 shows, quantitatively, that the algorithms that atsl produces on
different machines differ significantly from one another. We took the algorithm
that atsl produced on a 0.7 GHz G4 processor and measured its performance on
a 0.5 GHz Pentium 3 processor. We used the GCC compilers on both machines.
On atsl’s usual distribution, the native algorithm produced on the Pentium is
faster, sometimes by almost 35%. This is what we expect. If this was not the
case, then atsl failed to select a good algorithm on the Pentium; but it did not
fail. On distributions consisting of ascending and descending values, the G4 is
sometimes much faster than the native algorithm and sometimes much slower.
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Figure 7.3. Performance hand-coded and atsl’s algorithm on
structures containing a double and two ints; the double is the
sorting key; results on additional computers are shown in
Figure7.4).
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Figure 7.4. Performance of hand-coded algorithms versus atsl’s
algorithm. Continued from Figure 7.3.

The main implication of this is that the algorithms that atsl selected on the
Pentium and on the G4 have very different behaviors. This is a result of the
architectural adaptivity of atsl.

Figure 7.8 shows that atsl adapts to specific compilers, not only to specific
architectures. Running atsl on the same machine with 3 different compilers
produced results that are different not only quantitatively, but qualitatively. The
primary reason for this is the different optimizations that the compilers apply.
The existence or lack of a specific optimization can change the relative speed of
two sorting algorithms.

Atsl indeed generates different algorithms under different compilers. Under all
compilers, atsl used variants of most-significant-digit radixsort for intermediate
input sizes and variants of least-significant-digit radixsort for large sizes. The
specific variants and the specific input ranges, however, were different under
different compilers. On small array sizes, the differences between the algorithms
were even greater. Under Intel’s compiler and under gcc, atsl selected a version
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Combination of 4 Distributions

Two elements Distributed Uniformly

Ascending
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Uniform Distribution

Figure 7.5. The performance of atsl’s generated algorithm on
five distributions, the one with which it was selected and four other
distributions. Continued on Figure 7.6. The erratic behavior on
the upper right graph is probably due to an unexpected load on the
benchmark machine. The eratic oscilating behavior on the graphs
on the right side of the figure (and also in the graphs shown in
Figure 7.6) is explained in the text.
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Figure 7.6. The performance of atsl’s generated algorithm on
five distributions, continued from Figure 7.5

of quicksort for use on small input sizes. Under Microsoft’s compiler, atsl used
mergesort for the smallest arrays and samplesort for slightly larger ones.

8. Conclusions

We have presented atsl, a system for generating highly-tuned sorting subrou-
tines. The overall structure of atsl is similar to that of other automatic-tuning
systems, such as atlas [24], PHiPAC [2], fftw [8], and oski [23] (see also [4]).
Like these systems, atsl explores a large space of synthetic algorithms, generates
some and measures their performance, and uses the results of the measurements
to synthesize an efficient algorithm.

However, the performance of sorting algorithms is highly input-dependent, un-
like the performance of dense-matrix algorithms and of Fourier transforms. Our
approach has been to address that issue by using training inputs that represent
several important input distributions. However, our results indicate that in some
cases this approach is insufficient. The approach proposed by Li, Garzarán and
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running time divided by the running time of the Pentium’s native
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Figure 7.8. The performance of atsl’s generated algorithms un-
der three different compilers on a single machine, a 2.8 GHz Pen-
tium 4. The data type is unsigned integers and the data distribu-
tion is atsl usual distribution.

Padua [15, 16] is more robust in this respect. They have also proposed an au-
tomatic tuning system for sorting algorithms, called xsort, which computes an
entropy metric for each input. The algorithm that their resulting sorting subrou-
tine selects for a specific input depends on this metric.
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Our approach and the approach of Li, Garzarán and Padua are largely comple-
mentary. They have focused mostly on the input-dependence problem in sorting
algorithms and on using a genetic-search algorithm to synthesize an efficient algo-
rithm. We have focused mostly on the a systematic characterization of the search
space, described in Chapter 3. We have also spent a considerable amount of effort
on ensuring that atsl’s resulting algorithms are significantly faster than hand-
coded algorithms, and on the software-engineering aspects of atsl (in particular,
on simplifying the inclusion of new building blocks). We have also attempted to
include in atsl and in our benchmarking tests as many hand-coded algorithms
in order to strengthen the claim that automatically-generated sorting algorithms
can perform better than hand-coded and hand-tuned codes. Li, Garzarán and
Padua have not included such codes in their evaluations.

Li et al. have not provided us with a copy of their system, so we cannot directly
compare the performance of the algorithms that the two systems produce. How-
ever, from locating the platforms’ STL algorithm in their performance graphs it
seems that the performance of xsort-produced algorithms and atsl-produced
algorithms is similar; both beat the STL by a significant factor. Also, both
systems seem to select radixsort variants for large array sizes.

Most importantly, our results show that neither hand-tuning nor standard
compiler optimization are sufficient to obtain a high-performance sorting algo-
rithm. Sorting-specific automatic tuning and synthesis is also necessary. We
have included in our system and in our experimental evaluation most of the high-
performance hand-coded algorithms that have been produced in the last decade
or so. Our results show that none of them is as fast as an automatically-tuned
algorithm, often by a large margin. Our results are stronger in this respect than
the results of Li, Garzarán and Padua, who compared their system’s resulting
algorithm to commercial and compiler-provided algorithms, but not to research
codes produced by other groups.
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