
COMBINATORIAL PRECONDITIONERS FOR SCALAR
ELLIPTIC FINITE-ELEMENTS PROBLEMS

HAIM AVRON, DORON CHEN, GIL SHKLARSKI, AND SIVAN TOLEDO

Abstract. We present a new preconditioner for linear systems
arising from finite-elements discretizations of scalar elliptic par-
tial differential equations (pde’s). The solver splits the collec-
tion {Ke} of element matrices into a subset E(t) of matrices that
are approximable by diagonally-dominant matrices and a subset
of matrices that are not approximable. The approximable Ke’s
are approximated by diagonally-dominant matrices Le’s that are
scaled and assembled to form a global diagonally-dominant ma-
trix L =

∑
e∈E(t) αeLe. A combinatorial graph algorithm approxi-

mates L by another diagonally-dominant matrix M that is easier to
factor. The sparsification M is scaled and added to the inapprox-
imable elements; the sum γM +

∑
e�∈E(t) Ke is factored and used as

a preconditioner. When all the element matrices are approximable,
which is often the case, the preconditioner is provably efficient. Ex-
perimental results show that on problems in which some of the Ke’s
are ill conditioned, our new preconditioner is more effective than
an algebraic multigrid solver, than an incomplete-factorization pre-
conditioner, and than a direct solver.

1. Introduction

We present a new class of combinatorial preconditioners for matrices
that arise from finite-elements discretization of scalar elliptic partial
differential equations. Our algorithms construct the preconditioners in
several phases. First, we construct an approximation Le to each ele-
ment matrix Ke. These approximate element matrices are symmetric
and diagonally dominant. We then split the elements into two sets:
the set E(t) in which Le is a good approximation of Ke, and the rest.
(t is a parameter that determines how good we require approximations
to be.) We then scale and assemble the good element-by-element ap-
proximations to form L =

∑
e∈E(t) αeLe. Next, we use a combinatorial

graph algorithm to construct an easy-to-factor approximation M of L.
Finally, we compute a scaling factor γ for M and add γM to the inap-
proximable elements, to form γM +

∑
e �∈E(t) Ke. This is the matrix that

we use to precondition the finite-element stiffness matrix K =
∑

e Ke.
We factor it using a sparse Cholesky factorization algorithm.

Date: April 2007.
1

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 2

We now describe our approach in more details. Our algorithms apply
to finite-element discretizations of the following class of problems. Find
u : Ω −→ R satisfying

(1)
∇ · (θ(x)∇u) = −f on Ω

u = u0 on Γ1 ,
θ∂u/∂n = g on Γ2 .

The domain Ω is a bounded open set of Rd and Γ1 and Γ2 form a
partition of the boundary of Ω. The conductivity θ is a spatially varying
d-by-d symmetric positive definite matrix, f is a scalar forcing function,
u0 is a Dirichlet boundary condition and g is a Neumann boundary
condition.

We assume that the discretization of (1) leads to an algebraic system
of equations

Kx = b .

The matrix K ∈ Rn×n is called a stiffness matrix, and it is a sum of
element matrices, K =

∑
e∈E Ke. Each element matrix Ke corresponds

to a subset of Ω called a finite element. The elements are disjoint ex-
cept perhaps for their boundaries and their union is Ω. We assume
that each element matrix Ke is symmetric, positive definite or positive
semidefinite, and zero outside a small set of ne rows and columns. In
most cases ne is uniformly bounded by a small integer (in our experi-
ments ne is 4 or 10). We denote the set of nonzero rows and columns
of Ke by Ne.

For the problem (1), all the element matrices are singular with rank

ne − 1 and null vector
[
1 1 · · · 1

]T
. This is one of two key aspects

of our method: the method only works when element matrices are
either nonsingular or are singular with rank ne − 1 and null vector[
1 1 · · · 1

]T
.

Our algorithms start by constructing a symmetric diagonally-dominant
(sdd) approximation Le to each element matrix Ke. A row or a column
that is zero in Ke is also zero in Le, so the Le’s are also very sparse.
Our approximations are provably good: the spectral distance between
Ke and Le is within a n2

e/2 factor of the best possible for an sdd ap- corrected from
ne/

√
2.proximation of Ke. Moreover, a recent result by Boman, Hendrickson

and Vavasis [7] shows that under fairly general conditions on the dis-

cretization method, for each Ke there is some sdd matrix L̃e that is
within a constant spectral distance of Ke. Therefore, under the same
conditions our approximations are provably good. Section 2 presents
our element-approximation method.

The approximability of element matrices by sdd matrices is the sec-
ond key aspect of our method: the method requires that most (but
not necessarily all) of the Ke’s be approximable by sdd matrices. This
condition, together with the null-space condition on the Ke, are essen-
tially sufficient conditions for our method to be effective. When all the

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 3

Ke’s have the desired null space and they can all be well approximated
by sdd matrices, our solver is provably effective. When a few Ke’s
cannot be well approximated, the solver is usually effective, but the
theoretical analysis is weaker in such cases. More specifically, when
some Ke’s are inapproximable, the preconditioner may be expensive to
factor (but less expensive than K), but the convergence rate does not
deteriorate.

After it computes the element-by-element approximations, our solver
splits the elements into two sets. One set, denoted E(t), contains all the
elements in which the approximation is better than some parameter t,
and the other set contains the inapproximable elements. We now scale
each Le so that the sum L =

∑
e∈E(t) αeLe of scaled approximations

is spectrally close to K≤t =
∑

e∈E(t) Ke. This step is presented in
Section 3.

The matrix L is itself an sdd matrix. Over the last decade, several
provably-good combinatorial graph algorithms for constructing precon-
ditioners for sdd matrices have been developed [35, 18, 17, 5, 34, 15,
33, 24]. Some of them, as well as some combinatorial heuristics, have
been shown to be effective in practice [12, 21, 29, 30, 16, 28].

Our algorithms use one of these combinatorial algorithms to con-
struct another sdd matrix M that approximates L. The difference
between M and L is that M can be factored more quickly into sparse
triangular factors than L. We now find a scaling factor γ such that
γM +

∑
e �∈E(t) Ke is spectrally close to K. The construction of M is

explained in Section 4 and the choice of γ is explained in Section 5.
Finally, we factor the sum γM +

∑
e �∈E(t) Ke and use its factors as a

factored preconditioner in a preconditioned symmetric Krylov-subspace
solver such as Conjugate Gradients [14, 20], symmlq, or minres [26].
For most of the combinatorial algorithms that we can use to construct
M , it is possible to show that the preconditioner is spectrally close to
K. The spectral bounds give a bound on the number of iterations that
the Krylov-subspace algorithm performs.

Putting it all together, we obtain practical and provably-efficient al-
gorithms for solving a large class of scalar elliptic pdes. By provably-
efficient we mean that there is a theoretical bound on the total amount
of work performed by the solver. The bounds counts all the aspects
of the solution process, including constructing the Le’s and L, con-
structing M , factoring M , and performing the iterations. The costs
associated with the different phases of the solver are described in Sec-
tion 6.

Experimental results that explore the performance and behavior
of our solver are presented in Section 7. These results show that
the solver is highly reliable. In particular, we show that on some
problems other solvers, including an algebraic-multigrid solver and an

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 4

incomplete-Cholesky solver, either fail or are very slow; our solver han-
dles these problems without difficulty.

2. Nearly-Optimal Element-by-Element Approximations

In this section we show how to compute a nearly optimal sdd ap-
proximation Le to a given symmetric positive (semi)definite matrix Ke

that is either nonsingular or has a null space consisting only of the
constant vector.

2.1. Defining the Problem. Let S be a linear subspace of Rn (the
results of this section also apply to Cn, but we use Rn in order to keep
the discussion concrete). We denote by RS ⊆ Rn×n the set of symmetric
(semi)definite matrices whose null space is exactly S.

Definition 2.1. Given two matrices A and B in RS, a finite generalized
eigenvalue λ of (A, B) is a scalar satisfying Ax = λBx for some x �∈ S.
The generalized finite spectrum Λ(A, B) is the set of finite generalized
eigenvalues of (A, B), and the generalized condition number κ(A, B) is

κ(A, B) =
max Λ(A, B)

min Λ(A, B)
.

(This definition can be generalized to the case of different null spaces,
but this is irrelevant for this paper.) We informally refer to κ(A, B) as
the spectral distance between A and B. We also define the condition
number κ(A) = κ(A, P⊥S) of a single matrix A ∈ RS, where P⊥S is the
orthogonal projector onto the subspace orthogonal to S.

We refer to the following optimization problem as the optimal sym-
metric semidefinite approximation problem.

Problem 2.2. Let A be a symmetric positive (semi)definite matrix
with null space S and let B1, B2, . . . , Bm be rank-1 symmetric semi-
definite matrices. Find coefficients d1, d2, . . . , dm that minimize the
generalized condition number of A and

Bopt =

m∑
j=1

d2
jBj

under the constraint null(Bopt) = null(A), or decide that no such coef-

ficients exist. The generalized condition number κ(A, Bopt) is invariant
to scaling of Bopt, so we can assume without loss of generality that all
the Bj ’s have unit norm.

2.2. From Generalized Condition Numbers to Condition Num-
bers. The main tool that we use to find nearly optimal solutions to
Problem (2.2) is a reduction of the problem to the well studied problem
of scaling the columns of a matrix to minimize its spectral condition
number.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 5

A slightly different representation of the problem is useful for char-
acterizing the optimal solution. Let Bj = ZjZ

T
j , where Zj is a column

vector. Let Z be an n-by-m matrix whose columns are the Zj’s. Then
m∑

j=1

d2
jBj =

m∑
j=1

d2
jZjZ

T
j = ZDDTZT

where D is the m-by-m diagonal matrix with dj as its jth diagonal ele-
ment. This yields an equivalent formulation of the optimal symmetric
semidefinite approximation problem.

Problem 2.3. Given a symmetric positive (semi)definite n-by-n ma-
trix A with null space S and an n-by-m matrix Z, find an m-by-m
diagonal matrix D such that null(ZDDTZT) = S and that minimizes
the generalized condition number κ(A, ZDDT ZT), or report that no
such D exists.

We are interested in cases where range(Z) = range(A).

Lemma 2.4. If A is symmetric and range(Z) = range(A), then Prob-
lem (2.3) is feasible.

Proof. Let D be the n-by-n identity. Then range(ZDDTZT) = range(ZZT) =
range(Z) = range(A), so null(ZDDT ZT) = null(A) = S. �

If range(Z) � range(A), the problem may or may not be feasible.
For example, suppose that the first m− 1 columns of Z span range(A)
and that the mth column is linearly independent of the first m − 1.
Then clearly

Z

⎡
⎢⎢⎣

1
. . .

1
0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1
. . .

1
0

⎤
⎥⎥⎦

T

ZT

has the same null space as A, so this problem is feasible. On the other
hand, if

A =

[
1 1
1 1

]
=

[
1
1

] [
1 1

]
and Z =

[
1 0
0 1

]
,

then null(ZDDTZT) �= null(A) for every diagonal D.
The following lemma, which is a generalization of [9, Theorem 4.5],

is the key to the characterization of Bopt.

Lemma 2.5. Let A = UUT and B = V V T be two matrices in RS for
some S. We have

Λ (A, B) = Σ2
(
V +U

)
and

Λ (A, B) = Σ−2
(
U+V

)
.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 6

In these expressions, Σ(·) is the set of nonnzero singular values of the
matrix within the parentheses, Σ� denotes the same singular values to
the �th power, and V + denotes the Moore-Penrose pseudoinverse of V .

New proof.
Proof. Both U and V have n rows, so U+ and V + have n columns.
Therefore, the products V +U and U+V exist.

Since A and B have the same null space, U and V must have the
same range. Therefore, every column Ui of U is in the range of V ,
which implies that V (V +Ui) = Ui [4, Proposition 6.1.7]. Therefore,
V V +U = U . We denote W = V +U and obtain U = V W .

Let λ ∈ Λ(A, B), let x �∈ S satisfy Ax = λBx, and let y = V T x.
Because x �∈ S, Bx = V V T x �= 0, so y = V T x �= 0. We have

WW T y = V +UUT
(
V +
)T

V T x

= V +U
(
UT
(
V +
)T

V T
)

x

= V +U
(
V V +U

)T
x

= V +UUT x

= V +Ax

= V +λBx

= λV +V V T x

= λV T x

= λy .

We have used the indentity V V +U = U to transition from the third to
the fourth lines, and the identity V +V V T = V T , which holds for any
matrix V , to transition from line seven to eight.

This implies λ ∈ Λ(WW T) = Σ2(W) = Σ2(V +U).
Now let λ ∈ Σ2(V +U) = Λ(WW T), let y satisfy WW Ty = λy, and

let x =
(
V T
)+

y. The relation WW Ty = λy implies that y is in the
range of W , because λ �= 0 (the definition of Σ ensures this). We have
Wz = y for some z, so V +Uz = y. Since y is in the range of V +, it is

also in the range of V T . Therefore, V T x = V T
(
V T
)+

y = y. We now
expand Ax to obtain

Ax = UUT x

= UUT
(
V T
)+

y

= U
(
V +U

)T
y

= UW T y .

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 7

We now multiply both sides by V + to obtain

V +UUT x = V +UW T y

= WW Ty

= λy

= λV T x .

We multiply both sides by V and use the equality V V +U = U to get

V V +UUT x = λV V T x

UUT x = λV V T x

Ax = λBx .

so λ ∈ Λ(A, B).
The second result Λ (A, B) = Σ−2 (U+V) follows from replacing the

roles of A and B in the analysis above and from the equality Λ (A, B) =
Λ−1 (B, A). The reversal yields

Λ (A, B) = Λ−1 (B, A) =
(
Σ2
(
U+V

))−1
= Σ−2

(
U+V

)
.

�

This lemma shows that Problems (2.2) and (2.3) can be reduced to
the problem of scaling the columns of a single matrix to minimize its
spectral condition number. Let A = UUT and let Z satisfy range(Z) =
range(A). (If A is symmetric semidefinite but U is not given, we can
compute such a U from the Cholesky factorization of A or from its
eigendecomposition.) According to the lemma,

Λ(A, ZDDTZT) = Σ−2
(
U+ZD

)
.

Therefore, minimizing κ(A, ZDDTZT) is equivalent to minimizing the
spectral condition number κ(U+ZD) under the constraint range(ZD) =
range(Z).

The other set equality in Lemma 2.5 does not appear to be useful
for such a reduction. The equality

Λ(A, ZDDTZT) = Σ2
(
(ZD)+ U

)
,

but unfortunately, there does not appear to be a way to simplify
(ZD)+ U in a way that makes D appear as a row or column scaling.
(Note that in general, (ZD)+ �= D+Z+.)

The problem of scaling the columns of a matrix to minimize its spec-
tral condition number has been investigated extensively. Although ex-
act optimization algorithms do not exist, there is a simple approxima-
tion algorithm.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 8

2.3. Computing the Pseudoinverse of a Factor of an Element
Matrix. Before we can find the optimal scaling, we need to compute
U+ from a given element matrix Ke = UUT and to form U+Z.

We compute U+ in one of two ways. If the input to our solver
is an element matrix Ke with a known null space, we can compute
U+ from an eigendecomposition of Ke. Let Ke = QeΛeQ

T
e be the

reduced eigendecomposition of Ke (that is, Qe is n-by-rank(Ke) and
Λe is a rank(Ke)-by-rank(Ke) nonsingular diagonal matrix). We have

Ke = QeΛ
1/2
e

(
QeΛ

1/2
e

)T

so we can set U = QeΛ
1/2
e , so U+ = Λ

−1/2
e QT

e .

Many finite-elements discretization actually generate the element
matrices in a factored form. If that is the case, then some symmet-
ric factor F of Ke = FF T is given to our solver as input. In that
case, we compute a reduced singular-value decomposition svd of F ,
F = QeΣeR

T
e , where Σe is square, diagonal, and invertible, and Re is

square and unitary, both of order rank(F). Since

Ke = FF T = QeΣeR
T
e ReΣ

T
e QT

e = QeΣ
2
eQ

T
e

is an eigendecomposition of Ke, we can set U = QeΣe and we have
Ke = UUT . In this case U+ = Σ−1

e QT
e . This method is more accurate

when Ke is ill conditioned.
Note that in both cases we do not need to explicitly form U+; both

methods provide a factorization of U+ that we can use to apply it to
Z.

Once we form U+Z, our solver searches for a diagonal matrix D that
brings the condition number of U+ZD close to the minimal condition
number possible. This problem is better understood when U+Z is full
rank. Fortunately, in our case it always is.

Lemma 2.6. Let U be a full rank m-by-n matrix, m ≥ n, and let Z be
an m-by-� matrix with range(Z) = range(U). Then U+Z is full rank.

Proof. Since range(Z) = range(U), there exists an n-by-l matrix C such
that Z = UC. By definition, rank(Z) ≤ rank(C) ≤ n. Moreover, since
range(Z) = range(U) and U is full rank, we have that n = rank(Z).
Therefore, rank(C) = n.

It is sufficient to show that C = U+Z to conclude the proof of the
lemma. Since U is full rank and m ≥ n, the product U+U is the n-by-n
identity matrix. Therefore, U+Z = U+UC = C.

�
Without the assumption range(Z) = range(U), the matrix U+Z can

be rank deficient even if both U+and Z are full rank.

Example 2.7. Let

U =

⎡
⎣ 2 0
−1 −1
−1 1

⎤
⎦ , Z =

⎡
⎣1 1

1 −1
1 0

⎤
⎦ .

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 9

The columns of U are orthogonal, range(Z) �= range(U). This gives

U+ =

[
1/3 −1/6 −1/6
0 −1/2 1/2

]
and

U+Z =

[
0 1/2
0 1/2

]
,

which is clearly not full rank.

2.4. Nearly-Optimal Column Scaling. Given a matrix U+Z, we
wish to find a diagonal matrix D that minimizes the spectral condition
number of U+ZD, under the assumption range(Z) = range(U), and
under the constraint that range(ZD) = range(Z).

To keep the notation simple and consistent with the literature, in
this section we use A to denote U+Z and we use m and n to denote
the number of rows and columns in A = U+Z.

The key result that we need is due to van der Sluis [36], who showed

that choosing D̃ such that all the columns of AD̃ have unit 2-norm
brings AD̃ to within a factor of

√
n of the optimal scaling. Van der

Sluis, extending an earlier result of Bauer for square invertible matri-
ces [2], analyzed the full-rank case.

Given an m-by-n matrix A, m ≥ n, and a nonsingular diagonal D
van der Sluis defined

(2) κvdS(AD) =
‖AD‖2

minx �=0 ‖ADx‖2/‖x‖2

(his original definition is not specific to the 2-norm, but this is irrele-
vant for us). He, like Bauer, was interested in finding the a diagonal
matrix D that minimizes (2). This definition of the problem implicitly
assumes that A is full rank, otherwise κvdS(AD) = ∞ for any nonsin-
gular diagonal D. Also, if A is full rank than the minimizing D must
give a full-rank AD. If A has more columns than rows, we can use a
complementary result by van der Sluis, one that uses row scaling on a
matrix with more rows than columns. Van der Sluis result show that
if the rows of D̃A have unit 2-norm, then κvdS(D̃A) is within a factor
of

√
m of the minimum possible. This gives us the result that we need,

because κvdS(AD) = κvdS(DT AT). Shapiro later showed that van der

Sluis’s bound is loose by at most a factor of
√

2 [31].
As we have shown in Lemma 2.6, that matrix A = U+Z whose

columns we need to scale is full rank, so van der Sluis’s results apply
to it.

We note that further progress has been made in this area for square
invertible A’s, but it appears that this progress is not applicable to our
application when A = U+Z is rectangular (which is usually the case).
Braatz and Morari showed that for a square invertible A, the minimum
of κ(AD) over all positive diagonal matrices D can be found by solving

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 10

a related optimization problem, which is convex [11]. Their paper states
that this result also applies to the rectangular case [11, Remark 2.5];
what they mean by that comment is that the related optimization
problem minimizes ‖AD‖2‖D−1A+‖2 [10], whereas we need to minimize
κ(AD) = ‖AD‖2‖(AD)+‖2.

2.5. Nearly-Optimal Symmetric Diagonally-Dominant Approx-
imations. We now turn our attention to the matrices that arise as el-
ement matrices in finite-elements discretizations of (1). Such a matrix
Ke has null space that is spanned by the constant vector and by unit
vectors ej for every zero column j of Ke. The part of the null space
that is spanned by the unit vectors is irrelevant, so we assume that we
are dealing with a matrix A whose null space is spanned by constant

vector
[
1 1 · · · 1

]T
.

We wish to approximate a symmetric semidefinite matrix A with
this null space (or possibly a nonsingular matrix) by a symmetric
diagonally-dominant matrix B,

Bii ≥
n∑

j=1
j �=i

|Bij | .

To define a matrix Z such that the expression ZDDT ZT can generate
any symmetric diagonally-dominant matrix, we define the following
vectors.

Definition 2.8. Let 1 ≤ i, j ≤ n, i �= j. A length-n positive edge
vector, denoted 〈i,−j〉, is the vector

〈i,−j〉 =
i

j

⎡
⎢⎢⎢⎢⎢⎢⎣

...
+1
...

−1
...

⎤
⎥⎥⎥⎥⎥⎥⎦

, 〈i,−j〉k =

⎧⎨
⎩

+1 k = i
−1 k = j

0 otherwise.

A negative edge vector 〈i, j〉 is the vector

〈i, j〉 =
i

j

⎡
⎢⎢⎢⎢⎢⎢⎣

...
+1
...

+1
...

⎤
⎥⎥⎥⎥⎥⎥⎦

, 〈i, j〉k =

⎧⎨
⎩

+1 k = i
+1 k = j

0 otherwise.

A vertex vector 〈i〉 is the unit vector

〈i〉k =

{
+1 k = i

0 otherwise.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 11

A symmetric diagonally dominant matrix can always be expressed as
a sum of outer products of scaled edge and vertex vectors. Therefore,
we can conservatively define Z to be the matrix whose columns are
all the positive edge vectors, all the negative edge vectors, and all the
vertex vectors.

If A is singular and its null space is the constant vector, we can do
better. Chen and Toledo provided a combinatorial characterization of
the null space of sdd matrices [13].

Lemma 2.9. [Chen and Toledo] Let A be a symmetric diagonally-
dominant matrix whose null space is the constant vector. Then A is
a sum of outer products of scaled positive edge vectors. Furthermore,
the null space of a symmetric diagonally-dominant matrix with a posi-
tive off-diagonal element (corresponding to an outer product of a scaled

negative edge vector) cannot be span
[
1 1 · · · 1

]T
.

Therefore, if A is singular with this null space, we only need to
include in the column set Z the set of positive edge vectors. If A
is nonsingular, we also include in Z negative edge vectors and vertex
vectors.

We can also create even sparser Z’s; they will not allow us to express
every sdd B as B = ZDDTZT , but they will have the same null space
as A. To define these sparser Z’s, we need to view the edge vector
〈i,−j〉 as an edge that connects vertex i to vertex j in a graph whose
vertices are the integers 1 through n. The null space of ZZT is the
constant vector if an only if the columns of Z, viewed as edges of a
graph, represent a connected graph. Therefore, we can build an ap-
proximation B = ZDDTZT by selecting an arbitrary connected graph
on the vertices {1, . . . , n}. By [13, Lemma 4.2], if A is nonsingular, we
can include in Z the positive edge vectors of a connected graph plus
one arbitrary vertex vector.

If A is well conditioned (apart perhaps from one zero eigenvalue),
we can build a good approximation B = ZDDTZT even without the
column-scaling technique of Lemma 2.5. In particular, this avoids the
computation of the pseudo-inverse of a factor U of A = UUT . Clearly,
if A is nonsingular and well conditioned, then we can use I as an
approximation: the generalized condition number κ(A, I) is κ(A). If A
has rank n − 1 and the constant vector is its null vector, than

BC(ne) =
1

ne

⎡
⎢⎢⎢⎢⎣
ne − 1 −1 −1 · · · −1
−1 ne − 1 −1 · · · −1
−1 −1 ne − 1 · · · −1
...

...
...

. . .
...

−1 −1 · · · · · · ne − 1

⎤
⎥⎥⎥⎥⎦

yields

(3) κ(A, BC(ne)) = σ1(A)/σn−1(A) ,

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 12

which we assumed is low (we denote the singular values by σj in non
increasing order). The matrix BC(ne) is the Laplacian of the complete
graph, and it is clearly sdd. The identity (3) follows from the fact that
BC(ne)is an orthogonal projection onto range(A). The following lemma
summarizes this discussion.

Lemma 2.10. Let A be a symmetric positive (semi)definite matrix. If

A is nonsingular, or if the null space of A is span
[
1 1 · · · 1

]T
, then

there is an sdd matrix B such that κ(A, B) ≤ κ(A).

This result may seem trivial (it is), but it is nonetheless important.
The global stiffness matrix K =

∑
e Ke is often ill conditioned, but the

individual element matrices Ke are usually well conditioned. Since we
build the approximation L =

∑
e Le element by element, this lemma is

often applicable: When Ke is well conditioned, we can set Le to be an
extension of BC(ne) into an n-by-n matrix. The rows and columns of
the scaled BC(ne) are mapped to rows and columns Ne of Le and the
rest of Le is zero.

For well-conditioned A’s, we can also trade the approximation quality
for a sparser approximation than BC(ne). The matrix

BS(ne) =
1

ne

⎡
⎢⎢⎢⎢⎣
ne − 1 −1 −1 · · · −1
−1 1 0 · · · 0
−1 1 · · · 0
...

...
. . .

...
−1 0 · · · −1

⎤
⎥⎥⎥⎥⎦

gives
(4)

κ(A, BS(ne)) ≤ κ(A, BC(ne))κ(BC(ne), BS(ne)) = κ(A)κ(BS(ne)) =
neσ1(A)

σn−1(A)
.

For small ne, this may be a reasonable tradeoff. The bound (4) follows
from the observation that the eigenvalues of BS(ne) are exactly 0, 1,
and ne.

When A is ill conditioned, there may or may not be an sdd matrix
B that approximates it well. The following two examples demonstrate
both cases.

Example 2.11. Let

A =
1

2ε

⎡
⎣1 + ε2 −ε2 −1

−ε2 ε2 0
−1 0 1

⎤
⎦

for some small ε > 0. This matrix has rank 2 and null vector
[
1 1 1

]T
,

and it its condition number is proportional to 1/ε2. Since A diagonally-
dominant, there is clearly an sdd matrix B (namely, A itself) such
that κ(A, B) = 1. This matrix is the element matrix for a linear

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 13

triangular element with nodes at (0, 0), (0, ε), and (1, 0) and a constant
θ = 1. The ill conditioning is caused by the high aspect ratio of the
triangle, but this ill conditioned matrix is still diagonally dominant.
Small perturbations of the triangle will yield element matrices that are
not diagonally dominant but are close to a diagonally dominant one.

Example 2.12. Our example of a matrix that cannot be approximated
well by an sdd matrix is the element matrix for an isosceles triangle
with two tiny angles and one that is almost π, with nodes at (0, 0),
(1, 0), and (1/2, ε) for some small ε > 0. The element matrix is

A =
1

2ε

⎡
⎢⎢⎢⎢⎣

1
4

+ ε2 1
4
− ε2 −1

2

1
4
− ε2 1

4
+ ε2 −1

2

−1
2

−1
2

1

⎤
⎥⎥⎥⎥⎦

This matrix has rank 2 and null vector
[
1 1 1

]T
. We now show that

for any sdd matrix B with the same null space, κ(A, B) ≥ ε−2/4.

Let v =
[
1 −1 0

]T
and u =

[
1 1 −2

]T
; both are orthogonal to[

1 1 1
]T

. We have vTAv = 2ε and uTAu = 4.5ε−1. Therefore,

κ(A, B) = max
x⊥null(A)

xT Ax

xT Bx
× max

x⊥null(A)

xT Bx

xT Ax

≥ uTAu

uTBu
× vT Bv

vT Av

=
4.5

2ε2
× vTBv

uTBu
.

We denote the entries of B by

B =

⎡
⎣b12 + b13 −b12 −b13

−b12 b12 + b23 −b23

−b13 −b23 b13 + b23

⎤
⎦

where the bij ’s are non-negative. Furthermore, at least two of the bij ’s
must be positive, otherwise B will have rank 1 or 0, not rank 2. In
particular, b13 + b23 > 0. This gives

vT Bv

uT Bu
=

4b12 + b13 + b23

9b13 + 9b23
=

4b12

9b13 + 9b23
+

1

9
≥ 1

9
.

Therefore, κ(A, B) > ε−2/4, which can be arbitrarily large.

2.6. A Heuristic for Symmetric Diagonally-Dominant Approx-
imations. In Section 2.5 we have shown how to find a nearly-optimal
sdd approximation B to a symmetric positive (semi)definite matrix A

whose null space is spanned by
[
1 · · · 1

]T
. In this section we show

a simple heuristic. We have found experimentally that it often works
well. On the other hand, we can show that in some cases it produces

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 14

approximations that are arbitrarily far from the optimal one. Thus,
this section has two related goals: to describe a simple heuristic that
often works well, but to point out that it cannot always replace the
method of Section 2.5.

Definition 2.13. Let A be a symmetric positive (semi)definite matrix.
We define A+ to be the sdd matrix defined by

(A+)ij =

⎧⎪⎨
⎪⎩

aij i �= j and aij < 0

0 i �= j and aij ≥ 0∑
k �=j − (A+)ik i = j .

Clearly, A+ is sdd.

If the null space of A is spanned by
[
1 · · · 1

]T
, the matrix − (A − A+)

is also sdd. It turns out that in many cases, κ(A, A+) is small, making
A+ a good approximation for A. In particular, it is possible to show
that κ(A, A+) ≤ nκ(A)/4 (we omit the proof), so if A is well condi-
tioned and small, then A+ is always a fairly good approximation. The
matrix A+ is also sparser than A, which is also helpful.

But when A is ill conditioned, A+can be an arbitrarily bad approxi-
mation even though A is approximable by some other sdd matrix.

Example 2.14. Let 0 < ε � 1, and let M ≥ 4
ε
,

A =

⎡
⎢⎢⎣

1 + M −1 0 −M
−1 1 + M −M 0
0 −M M 0

−M 0 0 M

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 − ε −1 + ε
0 0 −1 + ε 1 − ε

⎤
⎥⎥⎦ .

This matrix is symmetric semidefinite with rank 3 and null vector[
1 1 1 1

]T
. We show that for small ε, A is ill conditioned, with

condition number larger than 8ε−2. Let

q1 =
1

2

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ , q2 =

1

2

⎡
⎢⎢⎣

1
1
−1
−1

⎤
⎥⎥⎦ , q3 =

1

2

⎡
⎢⎢⎣

1
−1
1
−1

⎤
⎥⎥⎦ , and q4 =

1

2

⎡
⎢⎢⎣

1
−1
−1
1

⎤
⎥⎥⎦

be an orthonormal basis for R4. We have

qT
1 Aq1 = 0

qT
2 Aq2 = 2M

qT
3 Aq3 = 2M + ε

qT
4 Aq4 = ε .

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 15

Therefore, κ(A) ≥ 2M/ε ≥ 8ε−2. We show that the matrix A+ is a
poor approximation of A.

qT
1 A+q1 = 0

qT
2 A+q2 = 2M

qT
3 A+q3 = 2M + 1

qT
4 A+q4 = 1 .

Therefore,

κ(A, A+) >

(
1 − 1 − ε

2M + 1

)
ε−1 ≈ ε−1 .

On the other hand, the sdd matrix

B =

⎡
⎢⎢⎣
ε + M −ε 0 −M
−ε ε + M −M 0
0 −M ε + M −ε

−M 0 −ε ε + M

⎤
⎥⎥⎦

is a good approximation of A, with κ(A, B) < 9. This bound follows
from a simple path-embedding arguments [3], which shows that 3A−B
and 3B − A are positive semidefinite. The quantitative parts of these
arguments rest on the inequalities

1

2M
+

1

2M
+

1

3 − ε
≤ 1

3 − 4ε

and

1

2M
+

1

2M
+

1

1 + 2ε
<

1

1 − 3ε
,

which hold for small ε.

3. Scaling and Assembling Element-by-Element

Approximations

Given a set of approximations {Le} to a set of element matrices
{Ke}, our solver scales the Le’s so that their assembly L =

∑
e αeLe is

a good approximation of K =
∑

e Ke. We can scale them in one of two
equivalent ways. The next lemma shows that under these scalings, if
even Le is a good approximation of Ke, then L is a good approxima-
tion of K. Both scaling rules require the computation of one extreme
eigenvalue for each pair (Ke, Le).

Lemma 3.1. Let {Ke}e∈E and {Le}e∈E be sets of symmetric positive
(semi)definite matrices with null(Ke) = null(Le). Let αe = min Λ(Ke, Le)

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 16

and let βe = max Λ(Ke, Le). Then

κ

(∑
e∈E

Ke,
∑
e∈E

αeLe

)
≤ max κ (Ke, Le)

κ

(∑
e∈E

Ke,
∑
e∈E

βeLe

)
≤ max κ (Ke, Le)

Proof. Scaling Le by αe transforms the smallest generalized eigenvalue
of Λ(Ke, αeLe) to 1, since

Λ(Ke, αeLe) =
1

αe
Λ(Ke, Le) .

Scaling Le clearly does not change the generalized condition number,
so max Λ(Ke, αeLe) = κ(Ke, Le).

By the splitting lemma [3],

min Λ

(∑
e∈E

Ke,
∑
e∈E

αeLe

)
≥ min {min Λ(Ke, αeLe)}e∈E

= min {1}e∈E

= 1 .

Also by the splitting lemma,

max Λ

(∑
e∈E

Ke,
∑
e∈E

αeLe

)
≤ max {max Λ(Ke, αeLe)}e∈E

= max {κ (Ke, Le)}e∈E .

Combining these two inequalities gives the result. The proof for scaling
by βe is the same. �

If we use inexact estimates α̃e for the minimum of Λ(Ke, Le), the
bound becomes

κ

(∑
e∈E

Ke,
∑
e∈E

α̃eLe

)
≤ maxe {(αe/α̃e) κ (Ke, Le)}

mine (αe/α̃e)
,

and similarly for estimates of βe. This shows that κ
(∑

e∈E Ke,
∑

e∈E α̃eLe

)
depends on how much the estimates vary. In particular, if the relative
estimation errors are close to 1, scaling by the estimates is almost as
good as scaling by the exact eigenvalues.

4. Combinatorial Sparsification of the Assembled SDD

Approximation

Once we obtain an sdd approximation L =
∑

e αeLe of K, we can
use a combinatorial graph algorithm to construct an easier-to-factor
sdd approximation M of L. Because M is spectrally close to L and L
is spectrally close to K, M is also spectrally close to K. By applying [9,

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 17

Proposition 3.6] to both ends of the generalized spectra, we obtain the
following lemma.

Lemma 4.1. Let K, L, and M be symmetric (semi)definite matrices
with the same dimensions and the same null space. Then

κ(K, M) ≤ κ(K, L)κ(L, M) .

There are several algorithms that can build M from L. All of them
view an exactly (but not strictly) sdd matrix L as a weighted undi-
rected graph GL, to which they build an approximation graph GM .
The approximation GM is then interpreted as an sdd matrix M . If L
is strictly diagonal dominant, the approximation starts from an exactly
sdd matrix L − D, where D is diagonal with nonnegative elements.
From L−D the algorithm builds an approximation M̃ ; If M̃ is a good
approximation to L − D, then M̃ + D is a good approximation to L.

Lemma 4.2. Let A and B be symmetric positive (semi)definite ma-
trices with the same null space S, and let C be a positive symmetric
(semi)definite with a null space that is a subspace, possibly empty, of
S. Then

Λ(A + C, B + C) ⊆ [min Λ(A, B) ∪ {1}, max Λ(A, B) ∪ {1}] .

Proof. The result is a simple application of the splitting lemma [3],
since

max Λ(A + C, B + C) ≤ max {max Λ(A, B), maxΛ(C, C)}
= max {max Λ(A, B), 1}
= max Λ(A, B) ∪ {1} ,

and similarly for the smallest generalized eigenvalue. �
This lemma is helpful, since most of the algorithms that construct

approximations of sdd matrices provide theoretical bounds on Λ(L −
D, M̃) that have 1 as either an upper bound or a lower bound. When

this is the case, adding D to L−D and to M̃ preserves the theoretical
condition-number bound.

The earliest algorithm for this subproblem is Vaiyda’s algorithm [35,
3, 12]. This algorithm finds a maximum spanning tree in GM and
augments it with suitable edges. The quantity of extra edges that are
added to the tree is a parameter in this algorithm. When few or no
edges are added, κ(L, M) is high (but bounded by nm/2, where m is
the number of off-diagonal elements in L), but L is cheap to factor (can
be factored in O(n) operations when no edges are added to the tree).
When many edges are added, κ(L, M) shrinks but the cost of factoring
L rises. When GM is planar or nearly planar then the algorithm is
very effective, both theoretically and experimentally. For more general
classes of graphs, even with a bounded degree, the algorithm is less
effective.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 18

A heuristic for adding edges to the maximum spanning tree was
proposed by Franngioni and Gentile [16]. They designed their algo-
rithm for sdd linear systems that arise in the interior-point solution of
network-flow problems. There are no theoretical convergence bounds
for this algorithm.

Several algorithms are based on so-called low-stretch spanning trees.
Boman and Hendrickson realized that a low-stretch spanning tree GM

is of GL leads to a better convergence-rate bound than maximum span-
ning trees [8]. Elkin et al. showed simpler and lower-stretch construc-
tions for low-stretch trees [15]. Spielman and Teng proposed algorithms
that create denser graphs GM (which are still based on low-stretch
trees) [34, 33]. The algorithms of Spielman and Teng lead to nearly-
linear work bound for solving Lx = b.

Another class of algorithms construct rooted balanced trees with
more than n vertices; the leaves of these trees are the vertices of GL

(the rows/columns of L). These trees were first invented by Grem-
ban and Miller [18, 17], and a more general construction was recently
proposed by Maggs et al. [23]. Because these trees are balanced, the
iterative solver parallelizes essentially perfectly even though it solves
two triangular linear systems per iteration.

5. Dealing with Inapproximable Elements

When some of the element matrices cannot be approximated well
by an sdd matrix, we split the global stiffness matrix K into K =
K≤t+K>t, where K≤t =

∑
e∈E(t) Ke is a sum of the element matrices for

which we found an sdd approximation Le that satisfies κ(Ke, Le) ≤ t
for some threshold t > 0, and K>t =

∑
e �∈E(t) Ke is a sum of element

matrices for which our approximation Le gives κ(Ke, Le) > t.
We then scale the approximations in E(t) and assemble them to form

L≤t =
∑

e∈E(t) αeKe. We now apply one of the combinatorial graph
algorithms discussed in Section 4 to construct an approximation M≤t

to L≤t. Once we have M≤t, we add it to K>t to obtain a preconditioner
M1 = M≤t + K>t.

This construction gives a bound on κ(K, M1), but it is a heuristic in
the sense that M1 may be expensive to factor. The analysis of κ(K, M1)
is essentially the same as the analysis of strictly-dominant matrices in
Section 4: by Lemma 4.2, a theoretical bound Λ(K≤t, M≤t) ⊆ [α, β]
implies Λ(K, M1) ⊆ [min{α, 1}, max{β, 1}].

The scaling technique of Lemma 3.1 ensures that either α, β ≤ 1
or 1 ≤ α, β. But the interval [α, β] may be quite far from 1. If the
interval is far from 1, κ(K, M1) can be large. To avoid this danger,
we scale M≤t before adding it to K>t; that is, we use a preconditioner
Mγ = γM≤t + K>t. We choose γ as follows. We find some vector v
that is orthogonal to null(M≤t) and compute its generalized Raleigh

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 19

quotient

γ =
vTK≤tv

vT M≤tv
.

The null space of M≤t is determined by the connected components
of its graph, so it is easy to quickly find such a v (we use a random
v in this subspace). This definition ensures that γ ∈ [α, β]. Since
Λ(K≤t, γM≤t) ⊆ [α/γ, β/γ], we have and 1 ∈ [α/γ, β/γ].

Lemma 5.1. Under this definition of Mγ, κ(K, Mγ) ≤ β/α, where the
interval [α, β] bounds Λ(K≤t, M≤t). In particular, if we take α and β
to be the extremal generalized eigenvalues of (K≤t, M≤t), we obtain

κ(K, Mγ) ≤ κ(K≤t, M≤t) .

We expect that this overall heuristic will be effective when E \ E(t)
contains only few elements. If only a few elements cannot be approx-
imated, then K>t is very sparse, so the sparsity pattern of Mγ =
γM≤t + K>t is similar to that of M≤t. Since M≤t was constructed
so as to ensure that its sparsity pattern allow it to be factored without
much fill, we can expect the same to hold for Mγ . If E \E(t) contains
many elements, there is little reason to hope that the triangular factor
of Mγ will be particularly sparse.

6. Asymptotic Complexity Issues

In this section we explain the asymptotic complexity of the different
parts of our solver. We do not give a single asymptotic expression that
bounds the work that the solver performs, but comment on the cost
and asymptotics of each phase of the solver. The cost of some of the
phases is hard to fully analyze, especially when E(t) � E. The next
section presents experimental results that complement the discussion
here.

The first action of the solver is to approximate each element matrix
Ke by an sdd matrix αeLe. For a given element type, this phase scales
linearly with the number of elements and it parallelizes perfectly. The
per-element cost of this phase depends on the approximation method
and on the number ne of degrees of freedom per element. Asymptoti-
cally, all the approximation methods require n3

e operations per element,
but the uniform-clique is the fastest method. This phase also gives us
κ(Ke, αeLe) which we use to decide which elements belong to E(t) and
which do not.

The next phase of the solver assembles the scaled sdd approxima-
tions in E(t). The cost of this step is bounded by the cost to assemble
K =

∑
e Ke, which most finite-elements solvers (including ours), per-

form. The assemblies of K and L performs O(
∑

e n2
e) operations: fewer

than the first phase, but harder to parallelize.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 20

The cost and the asymptotic complexity of the sparsification of L
depends on the algorithm that is used. For Vaidya’s sparsification
algorithm, which our code uses, the amount of work is O(n log n +∑

e n2
e). For the algorithm of Spielman and Teng [34, 33], the work is

O(m1.31) where m =
∑

e n2
e.

Next, the algorithm assembles the element matrices Ke that are not
in E(t) into M≤t. The cost of this phase is also dominated by the cost
of assembling K.

The cost of computing the Cholesky factorization of M is hard to
characterize theoretically, because the cost depends on the nonzero
pattern of M in a complex way. The nonzero pattern of M depends on
how many and which elements are not in E(t), and on how much we
sparsified L≤t. The number of operations in a phase of the solver is not
the only determinant of running time, but also the computational rate.
The Cholesky factorization of M usually achieves high computational
rates.

The cost of the iterative solver depends on the number of itera-
tions and on the per-iteration cost. The amount of work per iteration
is proportional to the number of nonzeros in K plus the number of
nonzeros in the Cholesky factor of M . The sparsification algorithms of
Vaidya and Spielman and Teng control the number of iterations, and
if E(t) = E than they also control the density of the Cholesky factor.

7. Experimental Results

This section presents experimental results that explore the effective-
ness of our solver.

7.1. Setup. Our solver currently runs under Matlab [25], but it is
implemented almost entirely in C. The C code is called from Matlab

using Matlab’s cmex interface. The element-by-element approxima-
tions are computed by C code that calls lapack [1]. The assembly
of the element-by-element approximations (and possibly the inapprox-
imable elements) is also done in C. The construction of Vaidya’s pre-
conditioners for sdd matrices is done by C code [12]. The Cholesky fac-
torization of the preconditioner is computed by Matlab’s sparse chol
function, which in Matlab 7.2 calls cholmod 1.0 by Tim Davis. We
always order matrices using metis version 4.0 [22] prior to factoring
them. The iterative Krylov-space solver that we use is a preconditioned
Conjugate Gradients written in C and based on Matlab’s pcg.; within
this iterative solver, both matrix-vector multiplications and solution of
triangular linear systems are performed by C code.

In most experiments we compare our solver to an algebraic multigrid
solver, BoomerAMG [19]. We use the version of BoomerAMG that is
packaged as part of hypre 1.2. We compiled it using gcc version 3.3.5,
with options -O (this option is hypre’s default compilation option).

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 21

Table 1. Notation for the test problems.

The Domain Ω
C A 3-dimensional cube
B A 3-dimensional box with aspect ratio 1-by-1-by-10000
CH A 1-by-1-by-1 cube with a 1-by-0.1-by-0.79 hole in the

middle
SC A 10-by-10-by-10 cube containing a spherical shell of

inner radius 3 and thickness 0.1.
The Mesh (the parameter indicates the number n of mesh points)
G 3-dimensional, generated by tetgen

D 3-dimensional, generated by distmesh

The Conductivity θ(x)
U uniform and isotropic, θ = I everywhere
J jump between subdomains but uniform and isotropic

within subdomain (e.g., θ = 104I in the spherical shell
of domain SC and Θ = I elsewhere); the parameter
indicates the magnitude of the jump

A anisotropic within a subdomain (e.g. the spherical shell
in SC) and θ = I elsewhere; θ is always 1 in the x and y
directions and the parameter indicates the conductivity
in the z direction.

The element type
L Linear tetrahedral element, 4-by-4 element matrix
Q Quadratic tetrahedral element, 10-by-10 element matrix

In some experiments we compare our solver to solvers that are based
on incomplete Cholesky preconditioners. To compute these precon-
ditioners, we use Matlab’s built-in cholinc routine. Here too, the
matrices are preordered using metis.

Since many of our test problems are ill conditioned, we iterate until
the relative residual is at most 10−14, close to εmachine, in order to
achieve acceptable accuracy.

We use two mesh generators to partition the three-dimensional prob-
lem domains into finite elements. We usually use tetgen version 1.4. [32].
In a few experiments we distmesh [27], which can generate both two-
and three-dimensional meshes.

Running times were measured on a 1.6 GHz AMD Opteron 242 com-
puter with 8 GB of main memory, running Linux 2.6. This computer
has 2 processors, but our solver only uses one. We used a 64-bit version
of Matlab 7.2. This version of Matlab uses the vendor’s blas, a
library called acml. The measured running times are wall-clock times
that were measured using the ftime Linux system call.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 22

7.2. Test Problems. We evaluated our solver on several three-dimensional
problems. We used both trilinear and quadratic tetrahedral elements.
Table 1 summarizes the problems that we used in the experiments.
The boundary conditions are always pure Neumann ∂u/∂n = 0, and
we removed the singularity by fixing the solution at a fixed unknown
(algebraically, we remove the row and column of K corresponding to
that unknown). We generate the right-hand side b of the linear system
Kx = b by generating a random solution vector x and multiplying it
by K to form b.

In all the experiments reported below, our solver produced accept-
able forward errors. The computed solution x̂ always satisfies

‖x̂ − x‖2

‖x‖2
≤ 10−4 .

7.3. Choosing the Parameter t. We begin with simple problems
that are designed to help us choose t, the approximation threshold. The
behavior of our solver depends on two parameters, t and the aggressive-
ness of the combinatorial sparsification algorithm. These parameters
interact in complex ways, because both influence the sparsity of the
Cholesky factor of M and the number of iterations in the Krylov-space
solver. It is hard to visualize and understand the performance of a
solver in a two-dimensional (or higher) parameter space. Therefore, we
begin with experiments whose goal is to establish a reasonable value
for t, a value that we use in all of the subsequent experiments.

Figure 1 shows the results of these experiment, which were carried
out on two meshes, one generated by distmesh and the other by tet-

gen. The Ke are trilinear, and their approximations Le are nearly-
optimal cliques. The graphs on the left show the distributions of κ(Ke)
and κ(Ke, Le). With distmesh, we see that the elements belong to two
main groups, a large group of elements with generalized condition num-
bers smaller than about 100, and a small set of so-called slivers with
much higher condition numbers, ranging from 200 to 108. It appears
that for the non-slivers, κ(Ke, Le) is smaller than κ(Ke) by roughly a
constant factor. For the slivers, κ(Ke, Le) is close to κ(Ke). With tet-

gen, there are no highly ill-conditioned elements, and the distributions
of κ(Ke) and κ(Ke, Le) are smoother.

The graphs on the right show the number of iterations that the Con-
jugate Gradients algorithm performs for several values of t and various
levels of sparsification. In all the graphs in the paper whose horizontal
axis is fill in the Cholesky factor, the horizontal axis ranges from 0 to
the number of nonzeros in the Cholesky factor of K. When t is small,
K>t is relatively dense, so the sparsification algorithm cannot be very
effective. Even when we instruct Vaidya’s algorithm to sparsify L≤t as
much as possible, the Cholesky factor of M remains fairly similar to
the Cholesky factor of K. On the other hand, a small t leads to faster

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 23

10
0

10
5

10
100

0.2

0.4

0.6

0.8

1

(Generalized) Condition Number

P
er

ce
nt

CH_D8954_U_L

κ(K

e
)

κ(K
e
,L

e
)

0 2 4 6 8 10
x 10

5

10
1

10
2

10
3

10
4

NNZ in the Cholesky factor

Ite
ra

tio
ns

CH_D8954_U_L

t = 101

t = 102

t = 103

t = 104

t = 1015

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

(Generalized) Condition Number

P
er

ce
nt

CH_G32867_U_L

κ(K

e
)

κ(K
e
,L

e
)

0 2 4 6 8
x 10

6

10
1

10
2

10
3

10
4

NNZ in the Cholesky factor

Ite
ra

tio
ns

CH_G32867_U_L

t = 101

t = 102

t = 103

t = 104

t = 1015

Figure 1. The distribution of element condition num-
bers and approximation qualities (left graphs) and the
number of iterations for several values of t and several
sparsification levels (right graphs). The top row shows
results on a mesh generated by distmesh, and the bot-
tom row on a mesh generated by tetgen.

convergence. With a large t we can construct M ’s with very sparse fac-
tors, but convergence is very slow. A value of t near 1000 gives a good
balance between high iteration counts caused by using Le’s with fairly
high κ(Ke, Le) and the inability to construct a sparse preconditioner
caused by a dense K>t. We use t = 1000 in the remaining experiments.

7.4. Baseline Tests. The next set of experiments shows the perfor-
mance of our solver relative to other solvers on the same problems
and the same meshes, for a few relatively easy problems. The graphs
in Figure 2 compare the running time of our solver to that of an in-
complete Cholesky preconditioner, BoomerAMG, and a state-of-the-art
direct solver, cholmod. In these graphs the vertical axis represents
wall-clock time for all the phases of the solution and the horizontal
axis represents the number of nonzeros in the triangular factors of the
preconditioner. The rightmost (largest) horizontal coordinate in the
graphs always corresponds to the number of nonzeros in a complete
sparse Cholesky factor of the coefficient matrix. When the complete

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 24

0 2 4 6 8 10
x 10

5

0

10

20

30

40

50

NNZ in the Cholesky factor

T
im

e
(s

ec
)

CH_D8954_U_L

Direct
AMG
NOC+Vaidya
cholinc

0 2 4 6 8
x 10

6

0

10

20

30

40

50

NNZ in the Cholesky factor

T
im

e
(s

ec
)

CH_G32867_U_L

Direct
AMG
NOC+Vaidya
cholinc

Figure 2. Running times for our solver, for incomplete
Cholesky, for BoomerAMG, and for a direct solver on
simple 3-dimensional problems. The graph on the left
uses a mesh generated by distmesh, and the one on
the right a mesh generated by tetgen. See the first
paragraph of Section 7.4 for a complete explanation of
the graphs.

factorization runs out of space, we still use this scaling of the hori-
zontal axis, and we estimate the running time of the complete fac-
torization based on the assumptions that it runs at 109 floating-point
operations per second. The direct solver and BoomerAMG only give
us one data point for each problem; their running times are represented
in the graphs by horizontal lines. We ran each preconditioned solver
with several values of the parameter that controls the sparsity of the
factor (drop tolerance in incomplete Cholesky and the sparsification
parameter in Vaidya’s preconditioner). Therefore, for each precondi-
tioned solver we have several data points that represented by markers
connected by lines. Missing markers and broken lines indicate failures
to converge within a reasonable amount of time. Most of the remaining
graphs in this section share the same design.

The graphs in Figure 2 compare the running time of the solvers on
easy problems with a relatively simple domain and uniform coefficients.
The mesh produced by tetgen leads to a linear system that is easy
for all the iterative solvers. With a good drop-tolerance parameter,
incomplete Cholesky is the fastest, with little fill. Our solver is slower
than all the rest, even with the best sparsity parameter. The mesh pro-
duced by distmesh causes problems to BoomerAMG, but incomplete
Cholesky is faster than our solver.

Although the performance of incomplete Cholesky appears to be
good in the experiments reported in Figure 2, it sometimes performs
poorly even on fairly simple problems. Figure 3 shows that on a high-
aspect-ratio 3-dimensional structure with uniform coefficients, incom-
plete Cholesky performs poorly: the sparser the preconditioner, the

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 25

0 1 2 3
x 10

6

0

200

400

600

800

1000

1200

NNZ in the Cholesky factor

T
im

e
(s

ec
)

B_G196053_U_L

Direct
AMG
NOC+Vaidya
cholinc

0 0.5 1 1.5 2 2.5
x 10

8

0

200

400

600

800

1000

NNZ in the Cholesky factor

T
im

e
(s

ec
)

C_G326017_U_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

Figure 3. Experimental results on two additional prob-
lems with uniform coefficients; these problems are much
larger than those analyzed in Figure 2.

0 0.5 1 1.5 2 2.5
x 10

8

0

200

400

600

800

1000

1200

1400

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_A1e1_Q

(1)
(1)+..+(3)
(1)+..+(5)
(1)+..+(7)

Notation for phases of the solver:
(1) Approximate Ke by Le

(2) Assembly L≤t =
∑

E(t) Le

(3) Sparsify L≤t to obtain M≤t

(4) Assembly of M = M≤t + K>t

(5) Order, permute, and factor M

(6) Assembly of K =
∑

E Ke

(7) Permute K and iterate

Figure 4. A breakdown of the running time of our
solver, on a particular problem. The graph shows the
time consumed by the different phases of the solver. As-
sembly phases are not separately shown because their
running time is negligible.

slower the solver. Our solver, on the other hand, performs reasonably
well even when its factor is much sparser than the complete factor. On
the high-aspect-ratio problem, as well as on any problem of small to
moderate size, the direct solver performs well. But as the problem size
grows the direct solver becomes slow and tends to run out of memory.
The rightmost graph in Figure 3 shows a typical example.

Figure 4 shows a breakdown of the running time of our solver for one
particular problem. The data shows that as the preconditioner gets
sparse, the time to factor the preconditioner decreases. The running
time of the iterative part of the solver also initially decreases, because
the preconditioner gets sparser. This more than offsets the growth in
the number of iterations. But when the preconditioner becomes very
sparse, it becomes less effective, and the number of iterations rises
quickly.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 26

10
0

10
1

10
2

10
3

10
40

0.2

0.4

0.6

0.8

1

(Generalized) Condition Number

P
er

ce
nt

SC_G395700_J1e4_Q

κ(K

e
)

κ(K
e
,L

e
)

0 0.5 1 1.5 2 2.5
x 10

8

0

200

400

600

800

1000

1200

1400

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_J1e4_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

10
0

10
1

10
2

10
3

10
40

0.2

0.4

0.6

0.8

1

(Generalized) Condition Number

P
er

ce
nt

SC_G395700_J1e8_Q

κ(K

e
)

κ(K
e
,L

e
)

0 0.5 1 1.5 2 2.5
x 10

8

0

200

400

600

800

1000

1200

1400

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_J1e8_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

Figure 5. Running times and element conditioning for
problems with jumping coefficients.

7.5. Well-Conditioned Elements and Jumping Coefficients. The
next set of experiments explores problems with a large jump in the con-
ductivity θ. We instructed the mesh generators to align the jump with
element boundaries, so within each element, there is no jump. This
leads to a large κ(K), but the conditioning of individual element ma-
trices is determined by their geometry, not by θ. The results, shown in
Figure 5, show that the jump in θ does not influence any of the four
solvers in a significant way.

7.6. Ill-Conditioned Elements: Anisotropy. Some of the experi-
ments shown in Section 7.3 included ill-conditioned elements. The ill-
conditioning of those elements resulted from their geometrical shape.
Other mesh generators may be able to avoid such element shapes. In-
deed, tetgen did not produce such elements, only distmesh did. But
in problems that contain anisotropic materials in complex geometries,
ill-conditioned elements are hard to avoid.

Figure 6 compares the performance of our solver with that of other
solvers on a problem in which the conductivity θ is anisotropic in one
part of the domain. The results clearly show that anisotropy leads to
ill-conditioned element matrices. As the anisotropy increases, Boomer-
AMG becomes slower and incomplete Cholesky becomes less reliable.
The anisotropy does not have a significant influence on our solver.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 27

10
0

10
50

0.2

0.4

0.6

0.8

1

(Generalized) Condition Number

P
er

ce
nt

SC_G395700_A1e1_Q

κ(K

e
)

κ(K
e
,L

e
)

0 0.5 1 1.5 2 2.5
x 10

8

0

1000

2000

3000

4000

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_A1e1_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

10
0

10
2

10
4

10
60

0.2

0.4

0.6

0.8

1

(Generalized) Condition Number

P
er

ce
nt

SC_G395700_A1e2_Q

κ(K

e
)

κ(K
e
,L

e
)

0 0.5 1 1.5 2 2.5
x 10

8

0

1000

2000

3000

4000

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_A1e2_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

10
0

10
2

10
4

10
6

10
80

0.2

0.4

0.6

0.8

1

(Generalized) Condition Number

P
er

ce
nt

SC_G395700_A1e3_Q

κ(K

e
)

κ(K
e
,L

e
)

0 0.5 1 1.5 2 2.5
x 10

8

0

1000

2000

3000

4000

5000

6000

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_A1e3_Q

Estimated Direct
AMG
NOC+Vaidya
cholinc

Figure 6. The behavior of our solver and other solvers
on a solid 3-dimensional problem that contains a thin
spherical shell with anisotropic material. The mesh was
generated by tetgen. In the top row, the anisotropy is
10, in the middle row 102, and on the bottom row it is
103.

In experiments not reported here, our solver behaved well even with
anisotropy of 108. The incomplete-factorization solver becomes not
only slow, but also erratic, as the graphs in Figure 7 show. The con-
vergence of our preconditioner is always steady, monotonically decreas-
ing, and the convergence rate is monotonic in the density of the pre-
conditioner. The convergence of incomplete Cholesky is erratic, not
always monotonic, sometimes very slow. Furthermore, sometimes one

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 28

0 500 1000 1500 2000 2500 3000
10

−15

10
−10

10
−5

10
0

Time (sec)

R
el

at
iv

e
R

es
id

ua
l

SC_G395700_A1e2_Q

NOC+Vaidya, NNZ = 1.1e6
NOC+Vaidya, NNZ = 1.4e6
NOC+Vaidya, NNZ = 6.9e6
NOC+Vaidya, NNZ = 47.0e6
NOC+Vaidya, NNZ = 202.1e6
AMG

0 500 1000 1500 2000 2500 3000
10

−15

10
−10

10
−5

10
0

Time (sec)

R
el

at
iv

e
R

es
id

ua
l

SC_G395700_A1e2_Q

Cholinc, NNZ = 0.4e6
Cholinc, NNZ = 1.4e6
Cholinc, NNZ = 6.1e6
Cholinc, NNZ = 16.8e6
Cholinc, NNZ = 41.9e6
AMG

Figure 7. The relative norm of the residual as a func-
tion of the running time (and implicitly, of the iteration
count) on one anisotropic problem, for our solver (left)
and for incomplete Cholesky (right). The horizontal co-
ordinate in which individual plots start indicates the time
to construct and factor the preconditioner.

incomplete factor leads to much faster convergence than a much denser
incomplete factor.

These results show that the ability of our solver to detect highly-
ill-conditioned elements (it actually detects inapproximable elements,
but the sets largely coincide) and to treat them separately allows it to
solve problems that other iterative solvers cannot. When there are few
such elements, as there are here because the anisotropic shell is thin,
these elements do not significantly increase the density of the factor of
M . In problems in which most of the elements are inapproximable by
sdd matrices, M would be similar to K and the characteristics of our
solver would be similar to the characteristics of a direct solver.

This is perhaps the most important insight about our solver. As
problems get harder (in the sense that more elements become inap-
proximable), its behavior becomes closer to that of a direct solver. As
problems get harder we lose the ability to effectively sparsify the pre-
conditioner prior to to factoring it. But unlike other solvers, our solver
does not exhibit slow or failed convergence on these difficult problems.

7.7. Comparisons of Different Element-by-Element Approxi-
mations. We now explore additional heuristics for approximating Ke.
The approximation methods that we compare are:

Nearly Optimal Clique (NOC): Le = ZDDT Z, where the columns
of Z is the full set of edge vectors and D scales the columns of
U+Z to unit 2-norm. This method gives the strongest theo-
retical bound on κ(Ke, Le): it is at most ne times larger than
the best possible for an sdd approximation of Ke. Here and
in the next four methods, we set the scaling factor αe to be
max Λ(Ke, Le).

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 29

Nearly Optimal Star (NOS): Le = ZDDTZ, where the columns
of Z are edge vectors that form a star, 〈1,−2〉 , 〈1,−3〉 , . . . , 〈1,−ne〉
and D scales the columns of U+Z to unit 2-norm. Sparser than
the first but usually a worse approximation.

Uniform Clique (UC): Le is the extension of the ne-by-ne ma-
trix BC(ne) to an n-by-n matrix. Computing Le is cheap, but
the approximation is only guaranteed to be good when A is very
well conditioned. The low cost of this method stems from the
facts that (1) BC(ne) is a fixed matrix, and (2) αn = max Λ(Ke),
so we do not need to estimate an extreme generalized eigenvalue,
only a single-matrix eigenvalue.

Uniform Star (US): Le is the extension of the ne-by-ne matrix
BS(ne) to an n-by-n matrix. Sparser than the uniform clique,
but more expensive, since we compute an extreme generalized
eigenvalue to set αe.

Positive Part (PP): Le = (Ke)+, defined in Section 2.6.
Boman et al. (BHV): αeLe is the Boman-Hendrickson-Vavasis

approximation of Ke [7]. In their method, Le is a uniform star,
and the scaling factor αe is computed from quantities associated
with the finite-element discretization that produces Ke.

The results are shown in Figure 8. When element matrices are fairly
well conditioned (bottom graphs), different approximation methods ex-
hibit similar qualitative behaviors. But when there are ill-conditioned
elements, naive approximation methods perform poorly. The results
also show that the nearly-optimal approximation (which we used in all
the other experiments) performs well relative to other approximation
methods, but is usually not the best.

7.8. Running Times for Growing Problem Sizes. The results in
Figure 9 present the growth in running time of our solver as the problem
size grows. For very dense and very sparse preconditioners, the growth
is highly nonlinear. This is consistent with the theory of sparse direct
solvers on one side and with the theory of Vaidya’s preconditioners
on the other. For intermediate levels of fill, running times grow more
slowly, but they still seem to grow superlinearly.

8. Conclusions and Open Problems

We have presented the first practical support preconditioner for lin-
ear systems arising from partial differential equations. Finding such
preconditioners has been an important research problem for more than
a decade. Vaidya’s initial discovery of combinatorial preconditioners for
symmetric diagonally-dominant linear systems in the early 1990’s [35]
motivated additional research on the topic. Researchers quickly discov-
ered, however, that the fact that combinatorial graph preconditioners
are applicable only to sdd linear systems is severely limiting. Although

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 30

10
−2

10
0

10
2

10
4

10
60

0.2

0.4

0.6

0.8

1

(Generalized) Condition Number

P
er

ce
nt

SC_G93202_A1e2_Q

US
UC
NOS
NOC
PP
Theortical Bound

0 0.5 1 1.5 2 2.5
x 10

7

0

50

100

150

200

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G93202_A1e2_Q

US
UC
NOS
NOC
PP

10
−2

10
0

10
2

10
4

10
60

0.2

0.4

0.6

0.8

1

(Generalized) Condition Number

P
er

ce
nt

SC_G395700_J1e4_Q

US
UC
NOS
NOC
PP
BHV
Theortical Bound

0 0.5 1 1.5 2 2.5
x 10

8

0

200

400

600

800

1000

1200

1400

NNZ in the Cholesky factor

T
im

e
(s

ec
)

SC_G395700_J1e4_Q

US
UC
NOS
NOC
PP
BHV

Figure 8. Different element-approximation methods.
The method of Boman et al. is only applicable to well-
conditioned elements, so it is not included in the graphs
in the top row.

some finite-differences discretizations of pde’s do lead to sdd linear sys-
tems, most finite-elements and many finite-differences discretizations
lead to linear systems that are not diagonally-dominant. Generalizing
combinatorial graph preconditioners to a wider class of linear systems
has been a subject of intense research. Until 2004, the attempts to
expand the applicability of combinatorial graph preconditioners led to
several discoveries, but these discoveries did not lead to useful pre-
conditioners. Examples of such discoveries include the combinatorial
characterization of the so-called H-matrices and their null space [6, 13].
Finally, the discovery in 2004 that element matrices in finite-elements
discretizations of scalar elliptic pde’s are often approximable by sdd

matrices [7] led to the practical solver that this paper presents.
In the development of our solver we have used many insights gained

during the decade-long quest to find practical combinatorial precondi-
tioners. For example, our characterization of generalized eigenvalues
in Lemma 2.5 is a generalization of an earlier extremal result [9, The-
orem 4.5]; we have repeatedly used the splitting lemma [17, 3] (e.g., in
Lemma 4.2 and Section 5); we have used path arguments and support
arguments [17, 3] to analyze the approximation in Example 2.14; and

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 31

0 5 10 15
x 10

4

0

50

100

150

200

250

300

350

n

T
im

e
(s

ec
)

scaling − Vaidya

Goal = 0.00
Goal = 0.40
Goal = 0.60
Goal = 0.80
Goal = 0.95
Goal = 1.00

0 5 10 15
x 10

4

0

20

40

60

80

100

120

n

T
im

e
(s

ec
)

scaling − all (best)

Direct
AMG
Vaidya, Goal = 0.60
Cholinc, Droptol = 0.10

Figure 9. Solution times as a function of mesh size, on
the same physical problem (a cube with uniform coeffi-
cients, discretized using trilinear elements). The graph
on the left compares the running times of our solver with
different levels of fill, and the graph on the left compares
our solver (with the best-case fill level) with Boomer-
AMG and the direct solver. The fill in our solver is con-
trolled by a parameter called goal in these graphs. A
goal of 1 does not sparsify the approximation M≤t, and
a goal of 0 sparsifies it as much as possible, resulting in
a tree or forest graph structure for L≤t.

we have used a result about the null space sdd matrices to show that
we do not need negative edge vectors as columns of Z in Section 2.5.

Two main technical contributions allowed us to develop this solver.
The first is the splitting K = K≤t+K>t and the realization that we can
often construct effective preconditioners by approximating and sparsi-
fying K≤t but leaving K>t as is. The time and space usage of such
preconditioners depend, of course, on the nonzero structure of K>t,
but they are always reliable. This splitting of K clearly shows that
combinatorial preconditioners are fundamentally different from other
classes of solvers, such as incomplete-Cholesky, sparse approximate in-
verses, multigrid and domain decomposition preconditioners. There is
no obvious way to use our splitting K = K≤t + K>t with these other
classes of solvers. The new nearly-optimal methods to algebraically
approximate element matrices by sdd matrices constitute the second
major contribution of this paper. These new methods generate better
approximations and are more general than the approximation technique
of Boman, Hendrickson, and Vavasis [7].

This paper raises several interesting questions and challenges for
further research. We mention three. One challenge is to extend the
optimal-scaling method of Braatz and Morari [11] to rank-deficient and
rectangular matrices. It is not even clear whether van der Sluis’s nearly-
optimal scaling for rectangular matrices [36] is also nearly-optimal for

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 32

rank-deficient matrices. Another interesting question is to find a reli-
able and cheap-to-compute estimate of the spectral distance between a
given symmetric positive (semi)definite matrix A and the closest sdd

matrix to A. We have shown that κ(A) is an upper bound on that
distance, but we have also shown that this bound can be arbitrarily
loose. The third and probably most important challenge is to find bet-
ter ways to exploit the splitting K = K≤t +K>t. There may be several
ways to exploit it. For example, it is probably possible to build bet-
ter preconditioners by sparsifying L≤t with the objective to reduce fill
in the Cholesky factor of M≤t + K>t; the algorithm that we used for
the sparsification phase ignores K>t and only tries to reduce fill in the
factor of M≤t.

Acknowledgement. This research was supported by an IBM Faculty
Partnership Award, by grant 848/04 from the Israel Science Foun-
dation (founded by the Israel Academy of Sciences and Humanities),
and by grant 2002261 from the United-States-Israel Binational Science
Foundation.

Sivan Toledo’s work on this problem started a decade ago, in 1996,
when he was working with John Gilbert under DARPA contract DABT63-
95-C-0087, “Portable parallel preconditioning”. The contributions and
support of John and DARPA are gratefully acknowledged.

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LA-
PACK User’s Guide. SIAM, Philadelphia, PA, 3nd edition, 1999. Also available
online from http://www.netlib.org.

[2] F. L. Bauer. Optimally scaled matrices. Numerische Mathematik, 5:73–87,
1963.

[3] Marshall Bern, John R. Gilbert, Bruce Hendrickson, Nhat Nguyen, and Sivan
Toledo. Support-graph preconditioners. SIAM Journal on Matrix Analysis and
Applications, 27:930–951, 2006.

[4] Denis S. Bernstein. Matrix Mathematics: Theory, Facts, and Formulas with
Applications to Linear Systems Theory. Princeton University Press, 2005.

[5] Erik G. Boman, Doron Chen, Bruce Hendrickson, and Sivan Toledo.
Maximum-weight-basis preconditioners. Numerical Linear Algebra with Ap-
plications, 11:695–721, 2004.

[6] Erik G. Boman, Doron Chen, Ojas Parekh, and Sivan Toledo. On the factor-
width and symmetric H-matrices. Numerical Linear Algebra with Applications,
2005. To appear.

[7] Erik G. Boman, Bruce Henderickson, and Stephen Vavasis. Solving elliptic
finite element systems in near-linear time with support preconditioners. Sub-
mitted for publication, 2004.

[8] Erik G. Boman and Bruce Hendrickson. On spanning tree preconditioners.
Unpublished manuscript, Sandia National Laboratories, 2001.

[9] Erik G. Boman and Bruce Hendrickson. Support theory for preconditioning.
SIAM Journal on Matrix Analysis and Applications, 25(3):694–717, 2004.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 33

[10] Richard D. Braatz. Response to Chen and Toledo on “minimizing the Eu-
clidean condition number”. Private communication, September 2005.

[11] Richard D. Braatz and Manfred Morari. Minimizing the Euclidean condition
number. SIAM Journal on Control and Optimization, 32:1763–1768, 1994.

[12] Doron Chen and Sivan Toledo. Vaidya’s preconditioners: Implementation and
experimental study. Electronic Transactions on Numerical Analysis, 16:30–49,
2003.

[13] Doron Chen and Sivan Toledo. Combinatorial characterization of the null
spaces of symmetric H-matrices. Linear Algebra and its Applications, 392:71–
90, 2004.

[14] Paul Concus, Gene H. Golub, and Dianne P. O’Leary. A generalized conju-
gate gradient method for the numerical solution of elliptic partial differential
equations. In James R. Bunch and Donald J. Rose, editors, Sparse Matrix
Computations, pages 309–332. Academic Press, New York, 1976.

[15] Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng. Lower-
stretch spanning trees. In Proceedings of the 37th annual ACM symposium on
Theory of computing (STOC), pages 494–503, Baltimore, MD, 2005. ACM
Press.

[16] A. Frangioni and C. Gentile. New preconditioners for KKT systems of network
flow problems. SIAM Journal on Optimization, 14:894–913, 2004.

[17] Keith D. Gremban. Combinatorial Preconditioners for Sparse, Symmetric,
Diagonally Dominant Linear Systems. PhD thesis, School of Computer Sci-
ence, Carnegie Mellon University, October 1996. Available as Technical Report
CMU-CS-96-123.

[18] Keith D. Gremban, Gary L. Miller, and Marco Zagha. Performance evalua-
tion of a new parallel preconditioner. In Proceedings of the 9th International
Parallel Processing Symposium, pages 65–69. IEEE Computer Society, 1995.
A longer version is available as Technical Report CMU-CS-94-205, Carnegie-
Mellon University.

[19] Van Emden Henson and Ulrike Meier Yang. BoomerAMG: a parallel algebraic
multigrid solver and preconditioner. Applied Numerical Mathematics, 41:155–
177, 2002.

[20] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards, 49:409–436,
1952.

[21] Joaquim J. Júdice, João Patricio, Luis F. Portugal, Mauricio G. C. Resende,
and Geraldo Veiga. A study of preconditioners for network interior point meth-
ods. Computational Optimization and Applications, 24:5–35, 2003.

[22] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing, 20:359–
392, 1998.

[23] Bruce M. Maggs, Gary L. Miller, Ojas Parekh, R. Ravi, and Shan Leung Maver-
ick Woo. Solving symmetric diagonally-dominant systems by preconditioning.
Unpublished manuscript available online at http://www.cs.cmu.edu/~bmm,
2002.

[24] Bruce M. Maggs, Gary L. Miller, Ojas Parekh, R. Ravi, and Shan Leung Mav-
erick Woo. Finding effective support-tree preconditioners. In FOCS ’03: Pro-
ceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science, pages 416–427, Cambridge, Massachusetts, October 2003. IEEE Com-
puter Society.

[25] The MathWorks. Matlab version 7.2. software package, January 2006.

COMBINATORIAL PRECONDITIONERS FOR FINITE ELEMENTS 34

[26] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM Journal on Numerical Analysis, 12:617–629, 1975.

[27] Per-Olof Persson and Gilbert Strang. A simple mesh generator in MATLAB.
SIAM Review, 46:329–345, 2004.

[28] L. Portugal, F. Bastos, J. Júdice, J. Paixao, and T. Terlaky. An investigation of
interior-point algorithms for the linear transportation problem. SIAM Journal
on Scientific Computing, 17:1202–1223, 1996.

[29] L. F. Portugal, M. G. C. Resende, G. Veiga, and J. J. Júdice. A truncated
primal-infeasible dual-feasible interior point network flow method. Networks,
35:91–108, 2000.

[30] M. Resense and G. Veiga. An efficient implementation of the network interior-
point method. In D. Johnson and C. McGeoch, editors, Network Flows and
Matching: the First DIMACS Implementation Challenge, volume 12 of DI-
MACS Series in Discrete Mathematics and Computer Science. AMS.

[31] A. Shapiro. Upper bounds for nearly optimal diagonal scaling of matrices.
Linear and Multilinear Algebra, 29:145–147, 1991.

[32] Hang Si. TetGen, A Quality Tetrahedral Mesh Generator and Three-
Dimensional Delaunay Triangulator: Users’s Manual for Version 1.4, January
2006. available online from http://tetgen.berlios.de.

[33] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems. Manu-
script; available at http://www.arxiv.org/abs/cs.DS/0310051, March 2003.

[34] Daniel A. Spielman and Shang-Hua Teng. Solving sparse, symmetric,
diagonally-dominant linear systems in time 0(m1.31). In Proceedings of the
44th Annual IEEE Symposium on Foundations of Computer Science, pages
416–427, October 2003.

[35] Pravin M. Vaidya. Solving linear equations with symmetric diagonally domi-
nant matrices by constructing good preconditioners. Unpublished manuscript.
A talk based on this manuscript was presented at the IMA Workshop on Graph
Theory and Sparse Matrix Computations, Minneapolis, October 1991.

[36] A. van der Sluis. Condition numbers and equilibration of matrices. Numerische
Mathematik, 14:14–23, 1969.

