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Abstract

We study the e¤ects of partial cross ownership (PCO) among rival �rms on their incentives

to innovate. PCO in our model gives rise to a price e¤ect which encourages investment by

softening price competition, but also to a cannibalization e¤ect which discourages investment

because each �rm internalizes part of the negative externality of its investment on the rival�s

pro�t. We show that overall, PCO may bene�t or harm consumers depending on the size of the

PCO stakes and their degree of symmetry, the relative cost of the innovation and its size, and

whether it is drastic or not.
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1 Introduction

Many industries feature a complex web of partial cross ownership (PCO) among rival �rms. Ex-

amples include the Japanese and the U.S. automobile industries (Alley, 1997 and Ono et al. 2004),

the Dutch Financial Sector (Dietzenbacher, Smid, and Volkerink, 2000), the Nordic power market

(Amundsen and Bergman, 2002), and the global steel industry (Gilo, Moshe, and Spiegel, 2006).

Nitta (2008) reports that cross-shareholding, i.e., situations in which two public companies mutu-

ally own each other�s shares, accounted for 13% � 15% of the shares of public �rms listed in the

Tokyo, Osaka, and Nagoya stock exchanges during the 1990�s, and remained above 8:5% by 2006.1

While horizontal mergers are subject to substantial antitrust scrutiny, passive investments

in rival �rms were either granted a de facto exemption from antitrust liability, or have gone unchal-

lenged by antitrust agencies in recent cases (Gilo, 2000). Rock and Rubinfeld (2018) argue that the

DOJ and the FTC generally have not challenged partial equity acquisitions of less than 20% with

no evidence of control. This lenient approach is due to the courts�interpretation of the exemption

for stock acquisitions �solely for investment�included in Section 7 of the Clayton Act and the fact

that acquisitions of PCO stakes do not involve a conspiracy in restraint of trade and hence cannot

be condemned under Section 1 of the Sherman Act (Rock and Rubinfeld, 2018).

Recently though, the European Commission has began to question the lenient approach

towards passive investments (e.g., European Commission, 2013) and stated that �signi�cant harm to

competition and consumers can occur not only from acquisitions of control, but also from structural

links.�2 Indeed, the literature has shown that PCO among rival �rms can soften competition in

the Cournot model (Reynolds and Snapp, 1986; Bolle and Güth, 1992; Flath 1991 and 1992;

1A related, but distinct, phenomenon is common ownership: cases where the same set of shareholders own several

competing �rms. Common ownership has attracted a lot of attention recently and there is a lively debate about its

competitive implications. See for instance, Azar, Schmalz, and Tecu (2018), Antón et al (2022), Backus, Conlon, and

Sinkinson (2021a, 2021b), Banal-Estañol, Seldeslachts, and Vives, (2020). While common and cross ownership are in

general not the same (see the discussion below), they are isomorphic in our duopoly setting. However, for the sake

of concretness, we will refer to links bewteen �rms as cross ownership.
2The commission also mentioned common shareholding theory of harm in two recent merger reviews (Dow/DuPont

in 2017 and Bayer/Monsanto in 2018), albeit it did not formally rely on this theory of harm in its �nal decsions. See

Burnside and Kidane (2020). Interestingly, the commission approved the two mergers subject to divestitures of major

businsses and assets, including R&D organisations, and argued in its Dow/DuPont decision that �the presence of

signi�cant common shareholding is likely to negatively a¤ect the bene�ts of innovation competition for �rms subject

to this common shareholding.�See European Commission case M.7932 �Dow/DuPont, Paragraph 2352 and case M.

8084 - Bayer/Monsanto.
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Reitman, 1994; and Dietzenbacher, Smid, and Volkerink, 2000) or the Bertrand model (Shelegia

and Spiegel, 2012), and can also facilitate collusion in a repeated Cournot model (Malueg, 1992) or

the Bertrand model (Gilo, Moshe, and Spiegel, 2006).3 Moreover, partial cross ownership (with and

without control) among upstream and downstream �rms can also lead to upstream and downstream

foreclosure (e.g., Baumol and Ordover, 1994; Rei¤en, 1998; Greenlee and Raskovich, 2006; Spiegel,

2013;, Hunold and Stahl, 2016; and Levy, Spiegel, and Gilo, 2018). The picture that emerges from

existing literature is that PCO has adverse unilateral and coordinated competitive e¤ects. This

picture has received some empirical support (e.g., Dietzenbacher, Smid, and Volkerink, 2000; Brito,

Ribeiro, and Vasconcelos, 2014; Nain and Wang, 2018; and Heim et al., 2022).

In this paper we show that PCO can also have a bright side: under certain conditions, PCO

may promote innovation and bene�t consumers. Speci�cally, we consider a Bertrand duopoly in

which �rms hold PCO stakes in each other and choose how much to invest before setting prices.

Investments in our model can be in either process or product innovation and they either succeed or

fail. A �rm earns a positive pro�t only if its investment succeeds and the rival�s investment fails.

Otherwise, the �rm earns a pro�t of 0 due to Bertrand competition. Importantly, the PCO stakes

that �rms hold in each other need not be identical. We are interested in �nding how an increase in

the stake that one �rm holds in the rival a¤ects investments and prices and ultimately consumer

surplus, which is the most common welfare standard used by antitrust agencies.4

We show that the PCO stakes soften price competition when one �rm innovates successfully

and the other fails.5 The resulting e¤ect, which we term the price e¤ect of PCO, encourages �rms

to invest in an attempt to be the sole innovator. At the same time, when a �rm fails to innovate but

the rival does, the �rm still makes a pro�t due to its stake in the rival. Since investment cannibalizes

the rival�s pro�t, PCO weakens the incentive to invest. We term this the cannibalization e¤ect of

PCO. We then explore how the two con�icting e¤ects play out in equilibrium and explore the

implications for consumers�welfare. In particular, we assume that �rm i�s stake in �rm j, �i, is

possibly larger than �rm j�s stake in �rm i, �j , and establish su¢ cient conditions for an increase in

3Malueg (1992) shows that PCO can also hinder collusion in a repeated Cournot model, but when it does, �rms

should have no incentives to acquire ownership stakes in one another in the �rst place.
4For instance, it is used in the U.S., the EU, and the UK (see OECD, 2012, p. 26-27).
5The reason is that in our Bertrand setting, the equilibrium price equals marginal cost, which is 0 if both �rms

succeed to innovate or c if both �rms fail. Absent PCO, if only �rm i succeeds, it continues to charge c (�rm j�s

marginal cost) and (by a tie-breaking rule) serves the entire market. However, when �rm j holds a stake in �rm i, it

is better o¤ allowing �rm i to serve the entire market (at 0 cost) and sharing �rm i�s pro�ts than undercutting �rm

i and serving the market itself (at a cost of c). As a result, �rm i can raise its price in equilibrium above c.
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�i (which expands the gap between �i and �j and makes the PCO structure more asymmetric) to

harm consumers, and a su¢ cient condition for an increase in �j (which makes the PCO structure

more symmetric) to bene�t consumers.

We then consider the case where �rms face a unit demand function and explore the e¤ect of

PCO on consumers in more detail. Absent PCO, the innovation in our model is non-drastic: a sole

innovator cannot act as an unconstrained monopolist. However, due to the price e¤ect of PCO,

large enough PCO stakes make the innovation drastic. That is, whether the innovation is drastic

or not depends directly on the size of the PCO stakes.

When the PCO stakes are relatively small so the innovation is non-drastic, an increase in

�i unambiguously harms consumers. By contrast, an increase in �j bene�ts consumers when the

relative cost of innovation (the marginal cost of innovation divided by the size of the innovation) is

low, but harms consumers otherwise. We also show that an increase in �j bene�ts consumers for a

larger set of parameters as the PCO structure becomes more asymmetric (the gap between �i and

�j expands).

When the PCO stakes are su¢ ciently large to make the innovation drastic, a sole innovator

already charges the monopoly price, so a further increase in the PCO stakes does not lead to a price

e¤ect. An increase in �i or �j can bene�t consumers in this case if the relative cost of innovation

(the marginal cost of innovation divided by the willingness of consumers to pay) is su¢ ciently high

or the size of the innovation (relative to the willingness to pay) is su¢ ciently small. When the

size of the innovation is large, an increase in �j can still bene�t consumers if the relative cost of

innovation is small. By contrast, when the size of the innovation is large, an increase in �i harms

consumers and an increase in �j also harms consumers if in addition the relative cost of innovation

is high (but not too high). We also show that in the neighborhood of a symmetric PCO structure,

an increase in �i or �j harms consumers when the relative cost of innovation is small.

Our analysis highlights the fact that PCO may bene�t consumers by promoting innovation.

The reason for this is that PCO softens price competition when only one �rm innovates, which

in turn boosts the incentive to invest and become the sole innovator. One may then wonder how

PCO performs relative to other arrangements which are intended to boost investments by softening

competition, like outright collusion in the product market (semicollusion), a research joint venture

(RJV), or a full merger. We show that compared to a semicollusion, symmetric PCO with a

su¢ ciently high stakes boosts investment and bene�ts consumers. Symmetric PCO also boosts

investments more than a full merger, provided that the PCO stakes are not too large, and bene�ts
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consumers. Compared with an RJV, symmetric PCO leads to a higher investment, and at least

in the unit demand case, it bene�ts consumers more than RJV if the relative cost of innovation is

su¢ ciently small.

The rest of the paper is organized as follows. In Section 2 we review related literature and

in Section 3 we present the model and characterize the equilibrium absent PCO. In Section 4 we

characterize the equilibrium with PCO and study the welfare implications of PCO in Section 5. In

Section 6 we consider the unit demand case in order to shed more light on the welfare implications

of PCO. In Section 7 we compare PCO with semicollusion, RJV�s, and full mergers. In Section 8

we conclude. All proofs are in the Appendix.

2 Related literature

Our paper is related to the small literature that studies the e¤ects of overlapping ownership (both

cross and common ownership) on innovation. Ideally, papers in this literature should allow for

a general ownership structure, a general R&D process, and a general model of product market

competition. Given the di¢ culty of deriving results with a very general model, papers in this

literature have made progress by simplifying some of these aspects.

López and Vives (2019) consider a fairly general n-�rm Cournot oligopoly model, but assume

a deterministic cost-reducing R&D process and a symmetric overlapping ownership structure. They

show that if demand is not too convex, an increase in the symmetric level of overlapping ownership

increases investments and output when R&D spillovers are su¢ ciently high, increases investments

and decreases output when R&D spillovers are intermediate, and decreases investments and output

when R&D spillovers are low.6

Stenbacka and Van Moer (2022) consider a duopoly model with a stochastic product R&D

process, but like López and Vives (2019) they also assume that the overlapping ownership structure

is symmetric. They show that an increase in the symmetric levels of overlapping ownership can

improve welfare even without R&D spillovers because it softens competition and therefore boosts

the marginal bene�t from investment. By contrast, the marginal bene�t from investment in process

innovation is proportional to output, so when competition is softer, �rms have a weaker incentive

to invest.
6These results are robust to a Bertrand model with di¤erentiated products in which R&D levels are chosen before

output levels. Also see Vives (2020) for an overview of the results.
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Bayona and López (2018) consider a Hotelling duopoly model with possibly asymmetric

common ownership, but consider a deterministic quality-enhancing R&D process.7 They show

that if the controlling shareholder of �rm i holds a larger stake in �rm j than the controlling

shareholder of �rm j holds in �rm i, then �rm i invests less and may also set a higher price

than �rm j.8 Moreover, they show that common ownership may lead to higher or lower consumer

and total surplus when only one controlling shareholder holds a stake in the rival, but symmetric

common ownership always decreases consumer and total surplus.9

Antón et al. (2021) consider an n-�rm Cournot oligopoly model with di¤erentiated prod-

ucts and linear demand functions with possibly asymmetric common ownership, but consider a

deterministic cost-reducing R&D process. They show that an increase in the weight that �rm i

assigns to �rm j�s pro�t increases �rm i�s R&D investment if and only if technological spillovers are

su¢ ciently large relative to the degree of product di¤erentiation. They provide empirical support

for this result using data on publicly listed U.S. corporations.10

Our paper di¤ers from the above papers in that we consider a Bertrand duopoly, but allow

the ownership stakes to be asymmetric and consider a stochastic R&D process which could be

viewed as either process or product innovation. In other words, we consider a fairly simple model

of product market competition (under PCO, the Bertrand model is less simple than one may think),

but consider a general ownership structure and an R&D process. Our modeling choice is motivated

by the following consideration. First, models with symmetric ownership structure can, by design,

only examine the competitive implications of an increase in the weights that all �rms assign to the

7Although they allow common ownership to be asymmetric, they only study the welfare implications of either

symmetric common ownership or common ownership in only one of the two �rms.
8Speci�cally, they assume that investments deterministically increase the base utility that consumers receive and

show that �rm i sets a higher price than �rm j if and only if the ratio of the marginal e¤ect of investment on quality

and the transportation cost is su¢ ciently low.
9Li and Zhang (2021) study a related model with Hotelling duopoly, where �rms �rst choose locations (possibly

outside the Hoetlling line) and then compete by setting prices. They show that an increase in the symmetric

overlapping ownership level harms consumers because it induces �rms to move further apart (outside the Hotelling

line) and set higher prices. While there are no investments in quality in their model, the choice of locations outside

the Hotelling line increases transportation costs and is akin to a decrease in quality.
10Speci�cally, they �nd that an increase in common ownership is associated with a decrease in citation-weighted

patents when products are su¢ ciently close substitutes, but an increase in citation-weighted patents when technology

spillovers are relatively large. Lewellen and Lowry (2021) use mergers of �nancial institutions outside the 2008-2009

period and �nd that although these mergers cause substantial and lasting increases in common ownership, there is

no evidence that they a¤ect �rms�R&D spendings.
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pro�ts of all other �rms by the exact same amount. By contrast, we can study the competitive

implications of an increase in the stake that one �rm holds in a rival, holding �xed the rival�s PCO

stake. This comparative statics exercise is policy relevant because, in practice, antitrust agencies

evaluate acquisitions of ownership stakes one at a time.11 Moreover, we show that the welfare e¤ects

of PCO depend, among other things, on how symmetric or asymmetric the PCO structure is. For

example, when consumers have a unit demand function and the PCO stakes are symmetric and

su¢ ciently low to ensure that the innovation is non drastic, an increase in a symmetric PCO stake

always harms consumers, whereas an increase in the stake of only one �rm can enhance welfare if

the relative cost of innovation is su¢ ciently small.

Second, we consider a stochastic R&D process, which can either succeed or fail, rather

than a deterministic R&D process as in López and Vives (2019), Bayona and López (2018), and

Antón et al. (2021). This distinction is important because a deterministic R&D process leads to

lower costs (or higher quality) and unambiguously bene�ts consumers. By contrast, an increase in

R&D investments in our model is a double-edge sword from consumers�point of view: although it

increases the likelihood that both �rms innovate, which bene�ts consumers, it may also increase

the likelihood that only one �rm innovates, which harms consumers due to the price e¤ect of PCO.

Our paper is also related to the literature that studies the e¤ects of horizontal mergers on

investments in innovation, (e.g., Federico, Langus, and Valletti, 2018; Jullien and Lefouili, 2018;

and Motta and Tarantino, 2021). PCO can be viewed as a �partial merger,�in which �rms remain

independent entities but still internalize part of their externality on rivals.

3 Model

Two �rms produce a homogeneous good at a constant marginal cost, c > 0; and face a downward

sloping demand, Q(p). The strategic interaction between the two �rms evolves in two stages.

In stage 1, each �rm i decides how much to invest in an innovation which either succeeds with

probability �i or fails with probability 1 � �i. If the innovation succeeds, marginal cost drops

to 0, and if it fails, marginal cost remains c > 0. The parameter c then re�ects the size of the

innovation.12 We assume that �i is a choice variable for the �rm and for the sake of concreteness,

11Rock and Rubinfeld (2018) provide examples from the U.S. Interestingly, all of these examples involve cross

ownership rather than common ownership.
12Alternatively, we can normalize marginal cost to 0 and assume that if innovation succeeds, the willingness of

consumers to pay shifts up by a constant c. That is, the innovation in our framework can be viewed as either process
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refer to it as ��rm i�s investment level.�13 The cost of investment is k�
2
i
2 , where k > 0 is the slope

of the marginal cost of investment.

In stage 2, the �rms observe each other�s marginal costs and simultaneously choose prices.

Consumers buy from the lowest price �rm; if both �rms charge the same price, consumers buy from

the more e¢ cient �rm.14 If both �rms are equally e¢ cient, consumers randomize between them.

We now make a few assumptions about the Q (p), c, and k.

A1 � (p) = pQ (p) (the pro�t of a monopoly when marginal cost is 0 and price is p) is concave in p

A2 "0 (p) � 0, where " (p) � �pQ0(p)
Q(p) is the elasticity of demand

A3 c < pm < 2c, where pm � argmaxp � (p) is the monopoly price when marginal cost is 0

A4 k > �m � pmQ (pm)

Assumptions A1 and A2 ensure that the demand function behaves �nicely.�Assumption

A3 implies that absent PCO, the innovation is non-drastic in the sense that a �rm cannot act as

an unconstrained monopolist when it innovates and the rival fails, but with PCO, the innovation

becomes drastic for su¢ ciently large PCO stakes.15 Assumption A4 ensures that the equilibrium

choices of �i and �j are below 1 (recall that �i and �j are probabilities).

Although we use a Bertrand setting to model competition in stage 2, our qualitative results

should continue to hold under a more general setting. For instance, Aoki and Spiegel (2009) consider

a similar model with stochastic R&D process, but assume that in stage 2, the pro�t of each �rm is

�yy if both �rms innovate, �nn if both �rms fail, �yn if the �rm innovates and the rival fails, and

�ny if the �rm fails but the rival innovates.16 They show that qualitative results in the Bertrand

model, in which �yn > 0 = �ny = �yy = �nn, continue to hold in the more general model, so long

or product innovation. While the two formulations are isomorphic, we will use the process innovation interpretation

for the sake of concretness.
13Strictly speaking though, �i is the probability that �rm i innovates successfully.
14The latter assumption is standard (see e.g., Deneckere and Kovenock, 1996). If consumers are also strategic

players, this is actually a result rather than an assumption, because if consumers buy from the less e¢ cient �rm when

prices are the same, the more e¢ cient �rm can undercut the less e¢ cient �rm slightly. Hence, a Nash equilibrium

exists only if consumers buy from the most e¢ cient �rm when both �rms charge the same price.
15For example, when demand is linear and given by Q = A � p, the monopoly price is A=2, so Assumption A3

implies that 2c < A < 4c:
16Jullien and Lefouili (2018) and Stenbacka and Van Moer (2022) consider a similar setting, where �ny = �nn = 0.
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as �yn + �ny > �yy + �nn. We chose to work with the Bertrand setting because in general, PCO

a¤ects all stage 2 pro�ts, �yn, �ny, �yy, and �nn, so the model becomes too complex to analyze,

especially since we focus on asymmetric PCO structure and cannot invoke symmetry to simplify

the analysis. The Bertrand setting has the advantage that only �yn and �ny are a¤ected by cross

ownership, while �yy and �nn remain equal to 0.

We end this section with a characterization of the equilibrium in the no PCO benchmark.

When both �rms innovate, their marginal cost is 0 and they charge a price of 0 in stage 2. When

both �rms fail to innovate, their marginal cost is c, and in equilibrium they charge c in stage 2. In

both cases, the two �rms earn 0 in stage 2. Given that the innovation is non-drastic, when �rm i

innovates and �rm j fails, �rm i serves the entire market at a price c.17 The resulting equilibrium

pro�t of �rm i in stage 2 is � (c) = cQ (c), while �rm j�s pro�t in stage 2 is 0. Hence, the expected

pro�t of �rm i in stage 1 is

�i(1� �j)� (c)�
k�2i
2
: (1)

In equilibrium, both �rms choose

�� =
� (c)

k + � (c)
:

Given Assumption A4, k > �m > � (c), so the equilibrium is unique and stable.18

4 Equilibrium with PCO

Now suppose that �rm i holds a partial cross ownership (PCO) stake, �i in �rm j and �rm j holds

a stake �j in �rm i, where �j � �i < 1
2 . These stakes are passive and give each �rm a share in its

rival�s pro�t, but no control over the rival�s decisions. Using �i and �j to denote the standalone

pro�ts of the two �rms, their overall values, including their stakes in their rival, are de�ned by the

following system:

Vi = �i + �iVj ; Vj = �j + �jVi:

Solving the system, yields

Vi =
�i + �i�j
1� �i�j

; Vj =
�j + �j�i
1� �i�j

:

17 If the innovation were drastic, �rm i would choose the monopoly price, pm.
18To see why, note that �rm i�s best-response function is �i =

(1��j)�(c)
k

and its slope in the (�i, �j) space is above

1 in absolute value, while �rm j�s best-response function is �j =
(1��ij)�(c)

k
and its slope in the (�i, �j) space is

below 1 in absolute value. Consequently, the best-response function of �rm i crosses the best-response function of

�rm j once and from above in the interior of the (�i, �j) space.
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Note that each �rm assigns a larger weight to its own standalone pro�t than to the rival�s standalone

pro�t. Also note that although Vi and Vj sum up to more than �i + �j , the share of �real�

shareholders (not �rms) in these values is (1� �j)Vi + (1� �i)Vj = �i +�j .

The decisions of each �rm i are made by its controlling shareholder, whose ownership stake

is �i, where �i + �j � 1; the remaining stake, 1 � �i � �j is held by dispersed shareholders. We

assume that the controlling shareholder of each �rm does not hold a stake in the rival �rm, so his

objective is to maximize �iVi.
19 Since �i is a constant, there is no loss of generality in assuming

that the controller�s objective is to simply maximize Vi.

As in the standard Bertrand model, when both �rms innovate in stage 1 or both fail,

competition drives their standalone pro�ts in stage 2 to 0. To see why, suppose that in stage 2

�rm i charges a price p. If �rm j undercuts p, its value is Vj =
pQ(p)
1��i�j if both �rms innovate and

Vj =
(p�c)Q(p)
1��i�j if both �rms fail to innovate. If �rm j sets a price above p, �rm i serves the entire

market, so Vj =
�jpQ(p)
1��i�j if both �rms innovate and Vj =

�j(p�c)Q(p)
1��i�j if both �rms fail. Since �j < 1

2 ,

undercutting p is more pro�table for �rm j, so the usual Bertrand equilibrium prevails.

Things are more involved when �rm i innovates in stage 1 and its marginal cost drops to 0,

while �rm j fails and its marginal cost remains c. Then, when �rm i charges a price p, �rm j can

either undercut p slightly, in which case Vj =
(p�c)Q(p)
1��i�j , or can let �rm i serve the entire market at

p, in which case Vj =
�jpQ(p)
1��i�j . Firm j will not undercut �rm i if

(p� c)Q (p)
1� �i�j

� �jpQ (p)

1� �i�j
; =) p � c

1� �j
:

By assumption, when both �rm charge the same price, consumers buy from the more e¢ cient �rm;

hence �rm i can charge c
1��j and serve the entire market. However, if

c
1��j > p

m, where pm is the

monopoly price when marginal cost is 0, the innovation becomes drastic and �rm i is better o¤

charging pm. By Assumption A3, this can happen however only when �j > 0. The threshold of �j
19When �rm i�s controlling shareholder holds a stake �ij in �rm j, we also have common ownership: the share-

holder�s objective then is to maximize �iVi + �ijVj =
�
�i + �j�ij

� �
�i +

�i�i+�ij
�i+�j�ij

�j
�
. Although the weight as-

signed to �rm j�s pro�t now exceeds �i, concenptually nothing changes, which is why we set �ij = �ji = 0:

Moreover, under pure common ownership (when �i = 0), the objective of �rm i�s controlling shareholder becomes

�iVi + �ijVj = �i

�
�i +

�ij
�i
�j
�
, which is again equivalent to the objective function that we consider, with

�ij
�i

replacing �i. While common and cross ownership are essentially equivalent in our duopoly setting, the equivalence

may no longer hold if there are more than two �rms and the ownership stakes are asymmetric. Then, as Gilo, Moshe,

and Spiegel (2006) show, an increase in �rm 1�s stake in �rm 2, say, may a¤ect the e¤ective weight that �rm 3 assigns

to the pro�ts of �rms 1 or 2. This cannot arise under common ownership.
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above which the innovation becomes drastic is then �j =
pm�c
pm . In what follows we will denote this

threshold by �; that is, the innovation is drastic for �rm i if �j � � � pm�c
pm .20

Proposition 1 in Shelegia and Spiegel (2012) implies that when �rm i has a lower cost than

�rm j, there are multiple Nash equilibria in stage 2 of the game. In these equilibria, �rm i serves

the entire market and the two �rms charge the same price p 2 [0; p (�j)], where

p (�j) �

8<: c
1��j ; �j < �;

pm; �j � �:
(2)

The associated stage 2 pro�t of �rm i as a function of �rm j�s stake, �j , is

� (�j) � � (p (�j)) =

8<:
c

1��jQ
�

c
1��j

�
; �j < �;

�m; �j � �:
(3)

Of the above Nash equilibria, the only equilibrium in which �rm j does not play a weakly

dominated strategy is the one where both �rms charge p (�j) and �rm i serves the entire market.21

In what follows, we will restrict attention to this equilibrium.

A few comments are now in order. First, p0 (�j) � 0 and �0 (�j) � 0: when �rm i is the sole

innovator, it charges the same or a higher price as �j increases, and its associated pro�t in stage

2 is weakly higher. Intuitively, as �j increases, �rm j is more willing to let �rm i serve the entire

market and share its pro�t than undercut �rm i and serve the market itself at a higher cost. This

allows �rm i to raise its price without being undercut by �rm j. When �rm j does not hold a stake

in �rm i, i.e., �j = 0, then p (0) = c and � (0) = 0, exactly as in the traditional Bertrand model.

Second, the threshold PCO level above which the innovation becomes drastic, � � pm�c
pm ,

re�ects the size of the innovation, c, relative to the monopoly price, pm, with higher values of c

being associated with lower values of �. That is, � is inversely related to the size of the innovation;

by Assumption A3, � ! 0 as c ! pm, in which case the innovation is largest, and � ! 1=2 as

pm ! 2c, in which case the innovation is smallest. Since � < 1=2, PCO levels that are su¢ ciently

close to 1=2 make the innovation drastic.

20Although pm�c
pm

looks like a price-cost margin, in fact it is not because pm is the monopoly price when marginal

cost is 0.
21To see why, consider an equilibrium such that pi = pj = p� 2 [0; p (�j)). While �rm j makes no sales in

equilibrium (recall that by assumption, when �rms charge the same price, consumers buy from the more e¢ cient

�rm, which here is i as its cost is 0 while �rm j�s cost is c), its strategy is weakly dominated by charging p (�j)

since any upward deviation by �rm i from p� leaves �rm j with a stage 2 pro�t of (p� � c)Q (p�); this pro�t is below

�jp
�Q (p�), which is �rm j�s pro�t when it charges p (�j) since p� < p (�j). Hence, a trembling hand argument will

elliminate all such equilibria.
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Third, �j � �i implies that p (�j) � p (�i); since p (�i) � pm, it follows from Assumption

A1 that � (�i) � � (�j). Moreover, �0 (�i) � 0 and �0 (�j) � 0: �rm i�s pro�t increases with the

stake that �rm j holds in �rm i and conversely for �rm j.

We summarize these observations in the next lemma.

Lemma 1: The equilibrium in stage 2 is as follows:

(i) When both �rms innovate in stage 1 or both fail, the equilibrium price in stage 2 is equal to

their marginal cost and their equilibrium pro�ts in stage 2 are 0.

(ii) When �rm i innovates in stage 1, while �rm j fails, the unique equilibrium in stage 2 in which

�rms do not play weakly dominated strategies is such that both �rms charge p (�j) and �rm

i serves the entire market and earns � (�j). Both p (�j) and � (�j) are (weakly) increasing

with �j. Since �i � �j , p (�i) � p (�j) and � (�i) � � (�j).

Moving to stage 1 in which �rms make investment decisions, note that with probability

�i (1� �j), �rm i innovates and �rm j fails, so �rm i�s stage 2 pro�t is � (�j); with probability

�j (1� �i), �rm j innovates and �rm i fails, so �rm j�s stage 2 pro�t is � (�j). The expected value

of �rm i when it chooses �i in stage 1 is therefore

Vi =

�iz }| {
�i (1� �j)� (�j)�

k�2i
2
+ �i

�jz }| { 
�j(1� �i)� (�i)�

k�2j
2

!
1� �i�j

:

The resulting best-response function of �rm i against �rm j is given by

BRi (�j) =

8<: 0 �j >
�(�j)

�(�j)+�i�(�i)
;

(1� �j) �(�j)k � �j �i�(�i)k �j � �(�j)
�(�j)+�i�(�i)

:
(4)

The best-response function of �rm j against �rm i is analogous.

Notice that BR0i (�j) � 0 and BR0j (�i) � 0, implying that the choices of �i and �j are

strategic substitutes: �rm i invests less when �rm j invests more. Intuitively, �rm j�s investment

lowers �rm i�s chance to be the sole innovator, which is the only situation in which �rm i makes

money in period 2. Hence, a larger �j weakens �rm i�s incentive to invest. When �j >
�(�j)

�(�j)+�i�(�i)
,

the marginal bene�t of �rm i from investing is below the associated cost, so �rm i does not invest.

Also notice that by Lemma 1, �0 (�j) � 0 and �0j (�i) � 0, so BRi (�j) is increasing with

�j and decreasing with �i. Consequently, PCO has two opposing e¤ects on the incentive to invest,

12



which we will refer to as the �price e¤ect�and the �cannibalization e¤ect.�The price e¤ect of PCO,

given by (1� �j) �(�j)k , re�ects the extra pro�t that �rm i makes in the event that it innovates and

�rm j fails. An increase in �j boosts this term because a higher �j allows �rm i to set a higher

price in this event; hence �rm i�s marginal bene�t of investment is higher. Interestingly, the price

e¤ect is independent of �i because, as (2) shows, the price that �rm i charges when it innovates

and �rm j fails depends on �j but not on �i. The cannibalization e¤ect of PCO, given by �j
�i�(�i)

k ,

arises because �rm i gets a share �i of �rm j�s pro�t, and therefore internalizes the negative e¤ect

that an increase in �i has on �rm j�s chance to be a sole innovator and earn a pro�t of � (�i).

A (subgame perfect) Nash equilibrium in stage 1 is a pair (��i ; �
�
j ), de�ned by the inter-

section of BRi (�j) and BRj (�i) in the (�i; �j) space. The following assumption ensures that the

equilibrium in stage 1 is unique, interior, and stable (see the Appendix for a proof):

A5 k is su¢ ciently large: k > k � � (�i)
�
1 + �i

�(�i)
�(�j)

�
for all 0 � �j � �i < 1=2

Assumption A5 is stronger than Assumption A4. To see why, note that since � (�i) is

(weakly) increasing with �i and � (�j) is (weakly) increasing with �j , k increases with �i and

decreases with �j and hence is maximized at �i = 1=2 and �j = 0, where its value is k =

� (1=2)
�
1 + �(1=2)

2�(0)

�
> � (1=2) = �m, where the last equality follows from equation (3) and because

� < 1=2 by Assumption A3.

The equilibrium in stage 1 is illustrated in Figure 1. Assumption A5 ensure that BRi (�j)

crosses BRj (�i) in the interior of (�i; �j) space once and from above.22 In the Appendix we also

show that Assumption A5 ensures that the slope of BRi (�j) in the (�i; �j) space exceeds 1 in

absolute value, whereas the slope of BRj (�i) is below 1.

22When Assumption A5 fails, there are potentially two more equilibria: in one of them only �rm i invests and

in the other only �rm j invests. Assumption A5 eliminates these equilibria and allows us to focus on the interior

equilibrium in which both �rms invest.
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Figure 1: the best response functions in stage 1 and the Nash equilibrium

Given (4), the equilibrium investment levels are

��i =
� (�j) k � � (�i) (� (�j) + �i� (�i))

k2 � (� (�j) + �i� (�i)) (� (�i) + �j� (�j))
; (5)

and

��j =
� (�i) k � � (�j) (� (�i) + �j� (�j))

k2 � (� (�j) + �i� (�i)) (� (�i) + �j� (�j))
: (6)

Lemma 2: The equilibrium investment levels chosen in stage 1 are given by (5) and (6), and have

the following properties:

(i) 0 < ��i � ��j , where ��i < 1=2 and ��j < 1;

(ii) as k ! k, ��i ! 0 and ��j !
�(�j)

�(�j)+�i�(�i)
> 0 if �j < �i and ��i = ��j ! 1

2(1+�) if

�j = �i = �, and as k !1, ��i ! 0 and ��j ! 0.

Proof: See the Appendix.

Lemma 2 states that given Assumption A5, the investment levels of both �rms are strictly

positive, and �rm i, which holds the larger PCO stake, invests less than �rm j. Firm i�s investment

level, ��i , is bounded from above by 1=2 (when k ! k and �j = �i = 0), while �rm j�s investment

level, ��j , is bounded from above by 1 (when k ! k, �j = 0 and �i ! 0). Both ��i and �
�
j tend to

0 as the slope of the marginal cost of investment, k, tends to 1. At the other extreme, as k ! k,
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��i = �
�
j ! 1=2 if �j = �i = 0, and ��i ! 0 and ��j ! 1 if �j = 0, and �i ! 0. This latter result

highlights the stark di¤erence between symmetric and asymmetric PCO structures. Starting from

no PCO�s, even a small PCO by �rm i in �rm j has a large e¤ect on the equilibrium investment

levels. To see the logic for this, note from Figure 1 that as k ! k, the vertical intercept of BRj (�i),
�(�i)
k , tends to �(�j)

�(�j)+�i�(�i)
, which is also the vertical intercept of BRi (�j); hence ��i ! 0. When

�i ! 0, �(�j)
�(�j)+�i�(�i)

! 1, so ��j ! 1. However, when �j = �i = �, the equilibrium is symmetric

and ��i = �
�
j =

�(�)
k+�(�)(1+�) ; when � = 0 and k ! k, this value tends to 1=2.

We now study the comparative statics of ��i and �
�
j with respect to the PCO stakes.

Proposition 1: The PCO stake a¤ect the equilibrium investment levels as follows:

(i) an increase in �i lowers ��i and increases �
�
j , and an increase in �j lowers �

�
j and increases

��i :
@��i
@�i

< 0 <
@��j
@�i

and
@��j
@�j

< 0 <
@��i
@�j
; since 0 � �j � �i <

1
2 , �

�
i is largest under a

symmetric PCO structure where �i = �j and lowest under a maximally asymmetric PCO

structure where �i ! 1
2 and �j = 0, whereas ��j is largest under a maximally asymmetric

PCO structure and lowest under a symmetric PCO structure;

(ii) in the neighborhood of a symmetric PCO structure, where �i = �j = � < �, ��i + �
�
j is

increasing with �i;

(iii) when �i � �j � �, ��i + ��j is decreasing with �i and with �j.

The e¤ect of changes in �i and �j on the equilibrium investment levels is illustrated in Figure

2. An increase in �i induces �rm i to cut ��i due to the cannibalization e¤ect; hence BRi (�j) rotates

counterclockwise around its horizontal intercept,�(�j)k . At the same time, an increase in �i induces

�rm j to raise ��j due to the price e¤ect, so BRj (�i) shifts outward. The new equilibrium, NE1

then lies northwest of the original equilibrium NE0. Hence, at the new equilibrium, ��i is lower

and ��j is higher than in the original equilibrium. In particular, starting from a symmetric PCO

structure where �i = �j , an increase in �i lowers ��i and raises �
�
j , so eventually, �

�
i < ��j .

23 In

other words, �rm i, which holds a bigger PCO stake in the rival, invests less than �rm j. This result

is consistent with Proposition 1 in Bayona and López (2018), albeit in their model, investments are

deterministic rather than stochastic as in our model.
23Holding BRj (�i) �xed, the counterclockwise rotation of BRi (�j) around

�(�i)
k

leads to a lower ��i and a higher

��j . The upward shift in BRj (�i) reinforces this e¤ect.
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Figure 2: The e¤ect of an increase in � on the Nash equilibrium

While Proposition 1(i) shows that an increase in �i lowers ��i and increases �
�
j , the fact

that both BRi (�j) and BRj (�i) are a¤ected makes it hard to tell whether the change in ��i is

bigger than the change in ��j or vice versa. Proposition 1(ii) shows that, starting from a symmetric

PCO structure where �i = �j = �, a small increase in �i increases ��j more than it decreases

��i . By contrast, Proposition 1(iii) shows that when �i are �j su¢ ciently high to ensure that

� (�i) = � (�j) = �m, a small increase in �i decreases ��i more than it increases �
�
j . The reason

for this is that when � (�i) = � (�j) = �m, an increase �i does not lead to a price e¤ect, so only

BRi (�j) rotates counterclockwise around its horizontal intercept, while BRj (�i) stays intact. The

new equilibrium then, lies on BRj (�i); since the slope of BRj (�i) is less than 1 in absolute value,

��i decreases by more than �
�
j increases.

In the next proposition, we examine how ��i and �
�
j are a¤ected by changes in k, which is the

slope of the marginal cost of investment; c, which re�ects the innovation size; and �m, which is the

monopoly pro�t that a sole innovator earns when the innovation drastic (i.e., when �i � �j � �).

Proposition 2: The equilibrium investment levels are a¤ected by k, c, and �m, as follows,

(i) ��i is �rst increasing and then decreasing with k if �j < �i and is decreasing with k for all

k > k if �i = �j, while ��j is decreasing with k for all k > k;
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(ii) when �j � �i < �, ��i + ��j is increasing with c, i.e., either ��i , or ��j , or both, increase with

c;

(iii) when �i � �j � �, ��i and ��j are independent of c and depend on �m only through k=�m,

so the e¤ect of �m is the opposite of the e¤ect of k.

Proof: See the Appendix.

Proposition 2(i) shows that, as one might expect, an increase in the slope of the marginal

cost of investment, k, induces �rm j to cut ��j . Surprisingly, however, this is not necessarily true

for ��i : when k is low, an increase in k actually induces �rm i to invest more. This counterintuitive

result arises because of the strategic interaction between the two �rms. An increase in k raises the

marginal cost of investment and induces �rm j to invest less. Since ��j decreases, �rm i is more

likely to become a sole innovator, so its marginal bene�t of investment increases. Although the

marginal cost of �rm i increases as well, when �j < �i and k ! k, ��i ! 0, so the increase in �rm

i�s marginal cost, k��i , is lower than the increase in the marginal bene�t, so �rm i invests more. By

continuity, this is also true when k is not too far from k. But as k increases further, the increase

in k��i eventually outweighs the associated increase in �rm i�s marginal bene�t, so ��i begins to

decrease with k.24 As k !1, ��i , as well as ��j , drop to 0.

The e¤ect of k on the equilibrium levels of investment can also be seen from Figure 1. So

long as �j < �i, the best-response functions, BRi (�j) and BRj (�i), intersect (almost) on the

vertical axis when k tends to its lower bound k, so ��i ! 0 and ��j � 0. As k increases, BRi (�j)

rotates clockwise around its vertical intercept, while BRj (�i) rotates counterclockwise around its

horizontal intercept, so now BRi (�j) and BRj (�i) intersect at the interior of the (�i; �j) space,

implying that ��i becomes positive, whereas �
�
j falls. As k ! 1, BRi (�j) and BRj (�i) intersect

at the origin, so ��i = �
�
j = 0. Overall then, �

�
i is �rst increasing with k and then decreases with k,

whereas ��i is decreasing with k throughout. When �j = �i, BRi (�j) and BRj (�i) intersect on a

450 line, but as k increases, they shift inward, so their intersection moves closer to the origin.

Proposition 2(ii)-(iii) show that the comparative statics of ��i and �
�
j with respect to c depend

on the size of the PCO stakes. When �j � �i < � (the innovation is non drastic), an increase in

c (though it cannot increase by too much because by Assumption A3, p
m

2 < c < pm) implies that

24For �rm j, the increase in marginal cost, k��j , when k increases, always outweighs the increase in marginal bene�t

because, unlike ��i , �
�
j is never very small.
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the innovation confers a larger advantage on the innovating �rm when the rival fails. This has two

implications. First, an increase in c magni�es the price e¤ect of PCO because �rm i can charge a

higher price as a sole innovator and therefore earn a higher pro�t. This e¤ect encourages investment

and is stronger when �j is higher (the price e¤ect is then stronger) and when �j is lower (�rm i is

more likely to be a sole innovator). Second, an increase in c also magni�es the cannibalization e¤ect

of PCO, because then �rm j also earns a higher pro�t as a sole innovator, so �rm i�s innovation

imposes a larger negative externality on �rm j�s pro�t. Firm i internalizes part of this negative

externality due to its stake in �rm j and hence it invests less when �i is larger and when ��j is larger

(�rm j is more likely to innovate). While in general, we cannot tell the net e¤ect on ��i and �
�
j

separately, Proposition 2(ii) shows that an increase in c shifts both BRi (�j) and BRj (�i) outward,

so they intersect further away from the origin, implying that ��i + �
�
j increases. Proposition 2(iii)

shows by contrast that when the innovation drastic (i.e., �i � �j � �), an increase in c does not

a¤ect ��i and �
�
j because in this range, the equilibrium price of a sole innovator is independent of

c and equals pm.

Proposition 2(iii) also shows that when the innovation is drastic (i.e., �i � �j � �), �m

a¤ects ��i and �
�
j only through k=�

m, and hence has the opposite e¤ect of k.25 In particular, ��i is

�rst increasing with �m and then decreasing with �m. That is, when �m is small, an increase in �m

induces �rm 1 to lower its investment. As before, this counterintuitive result occurs because the

increase in �m encourages �rm j to invest more, thus lowering the marginal bene�t of �rm i from

investment. As �m becomes larger, both �rms raise their investment levels when �m increases.

5 Welfare analysis

In this section we examine the e¤ect of PCO on consumer surplus, which as mentioned earlier, is

the most common welfare standard in antitrust enforcement. To this end, recall that in equilibrium,

consumers pay 0 if both �rms innovate, c if both �rms fail to innovate, p (�j) if only �rm i innovates,

and p (�i) if only �rm j innovates. Therefore, expected consumer surplus, as a function of the PCO

stakes, �i and �j , is given by

CS (�i; �j) = ��i�
�
jS (0) + �

�
i

�
1� ��j

�
S (p (�j)) + �

�
j (1� ��i )S (p (�i)) (7)

+(1� ��i )
�
1� ��j

�
S (c) ;

25The only caveat is that by Assumption A5, k > k � �m + (�m)2

2cQ(c)
, so holding k constant, �m cannot increase by

too much. Also, naturally, �m > cQ (c), so �m cannot be too low.
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where ��i and �
�
j are given by (5) and (6) and S (p) =

R1
p Q(x)dx. Since �i � �j � 0, (2) implies

that S (0) > S (c) � S (p (�j)) � S (p (�i)), with strict inequalities when �i > �j > 0.

PCO a¤ects expected consumer surplus both directly through the equilibrium prices, p (�i)

and p (�j), when only one �rm innovates, and indirectly through the equilibrium investment levels

��i and �
�
j . Straightforward di¤erentiation reveals that

@CS (�i; �j)

@�i
=
@CS (�i; �j)

@�i

@��i
@�i|{z}
(�)

+
@CS (�i; �j)

@�j

@��j
@�i|{z}
(+)

+ ��j (1� ��i )S0 (p (�i)) p0 (�i) ; (8)

where, evaluated at ��i and �
�
j ,

@CS (�i; �j)

@�i
= ��j (S (0)� S (p (�i)))| {z }

(+)

�
�
1� ��j

�
(S (c)� S (p (�j)))| {z }

(+)

; (9)

and
@CS (�i; �j)

@�j
= ��i (S (0)� S (p (�j)))| {z }

(+)

� (1� ��i ) (S (c)� S (p (�i)))| {z }
(+)

: (10)

The �rst term in (8) is the e¤ect of �i on the probability that �rm i innovates. Since @��i
@�i

< 0 by

Proposition 1, the sign of this term is equal to the sign of �@CS(�i;�j)
@�i

. The second term in (8) is the

e¤ect of �i on the probability that �rm j innovates. By Proposition 1,
@��j
@�i

> 0, so the sign of this

term is equal to the sign of @CS(�i;�j)@�j
. The third term in (8) re�ects the price e¤ect of PCO. Note

that S0 (p (�i)) = �Q (p (�i)) < 0, and note from (2) that p0 (�i) < 0 when �i < � and p0 (�i) = 0

when �i � �. Hence the price e¤ect is negative and harms consumers when �i < �, because then

an increase in �i raises p (�i), which is the equilibrium price that �rm j charges when it serves the

entire market. When �i � �, �rm j already charges pm when it serves the entire market, so there

is no price e¤ect when �i increases further.

Equations (9) and (10) show that an increase in ��i and �
�
j is a double-edge sword from the

perspective of consumers: although it increases the likelihood that both �rms innovate, in which

case the equilibrium price drops to 0, it may also raise the likelihood that only one �rm innovates,

which is the worst situation from consumers�point of view because then the price is p (�j) or p (�i)

instead of 0 or c. Hence, from the perspective of consumers, innovation may either be insu¢ cient

or excessive. In particular, an increase in ��i boosts consumer surplus when �
�
j is su¢ ciently large

because then both �rms are more likely to innovate, and likewise, an increase in ��j boosts consumer

surplus when ��i is su¢ ciently large. Recalling from Lemma 2 that ��j is particularly large under

maximal asymmetry in the PCO structure, whereas ��i is particularly large when the PCO structure
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is symmetric, @CS(�i;�j)@�i
is more likely to be positive when the PCO structure is asymmetric and

negative when the PCO structure is symmetric, and conversely for @CS(�i;�j)@�j
.

Noting that the price e¤ect of PCO, captured by the third term in (2), is nonpositive, we

can now establish su¢ cient conditions for an increase in �i to harm consumers:

Proposition 3: Given the equilibrium investment levels, @CS(�i;�j)@�i
� @CS(�i;�j)

@�j
. The following

conditions are su¢ cient for @CS(�i;�j)
@�i

� 0:

(i) @CS(�i;�j)
@�i

� 0 � @CS(�i;�j)
@�j

;

(ii) @CS(�i;�j)
@�i

� 0 and ��i + ��j is increasing with �i;

(iii) @CS(�i;�j)
@�j

� 0 and ��i + ��j is decreasing with �i;

Moreover, @CS(�i;�j)@�i
< 0 if p0 (�i) < 0, or at least one inequality in (i)-(iii) is strict.

Proof: See the Appendix.

Proposition 3 shows that an increase in ��i (the smaller investment) bene�ts consumers more,

or harms them less, than an increase in ��j (the larger investment). Perhaps more importantly,

Proposition 3 provides three su¢ cient conditions for an increase in �i to harm consumers. By

implication then, an increase in �i can bene�t consumers only if the three conditions fail. To

see the logic behind the three conditions, recall that following an increase in �i, ��i falls and �
�
j

increases. Condition (i) requires that both changes harm consumers. Condition (ii) requires that

the increase in ��j outweighs the decrease in �
�
i and

@CS(�i;�j)
@�i

� 0. By (9), the latter condition

is more likely to hold when ��j is relatively small. Intuitively, by part (i),
@CS(�i;�j)

@�i
� 0 implies

that @CS(�i;�j)@�j
� 0, so the increase in ��j harms consumers. Although the decrease in ��i bene�ts

consumers, the harm exceeds the bene�t, so overall consumers are worse o¤. Conversely, condition

(iii) requires that the decrease in ��i outweighs the increase in �
�
j and

@CS(�i;�j)
@�j

� 0, which by (10)

holds when ��i is relatively high. By part (i),
@CS(�i;�j)

@�j
� 0 implies that @CS(�i;�j)

@�i
� 0, so the

decrease in ��i harms consumers and outweighs the associated bene�t due to the increase in �
�
j .

The next corollary reports two special cases where the su¢ cient conditions in Proposition

3 become tighter.

Corollary 1: Given the equilibrium investment levels,
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(i) in the neighborhood of a symmetric PCO structure, @CS(�i;�j)@�i
� 0 is su¢ cient for @CS(�i;�j)

@�i
�

0, with strict inequality when @CS(�i;�j)
@�i

< 0;

(ii) when �i � �j � �, @CS(�i;�j)@�j
� 0 is su¢ cient for @CS(�i;�j)

@�i
� 0, with strict inequality when

@CS(�i;�j)
@�j

> 0.

Proof: See the Appendix.

Corollary 1 shows two cases where an increase in �i surely harms consumers. In the �rst

case, @CS(�i;�j)@�i
� 0 implies @CS(�i;�j)@�j

� 0, and in the neighborhood of symmetric PCO structure,

the negative e¤ect due to the increase of ��j outweighs the bene�cial e¤ect of the decrease in �
�
i . In

the second case, @CS(�i;�j)@�j
� 0 implies that @CS(�i;�j)@�i

� 0, and the when the innovation is drastic,

the negative e¤ect due to the decrease in ��i outweighs the bene�t due to the increase in �
�
j .

So far we provided su¢ cient conditions for an increase in �i to harm consumers. In the

next proposition we can provide a su¢ cient condition for an increase in �j to bene�t consumers.

Proposition 4: Suppose that the PCO stakes are su¢ ciently large to make the innovation dras-

tic, i.e., �i � �j � �. Given the equilibrium investment levels, @CS(�i;�j)
@�i

� 0 is su¢ cient for
@CS(�i;�j)

@�j
� 0, with strict inequality if @CS(�i;�j)

@�i
< 0.

Proof: See the Appendix.

6 The unit demand case

To shed more light on the welfare e¤ects of PCO in our model, we will now consider the case where

�rms face a unit demand function with willingness to pay B.26 Since the monopoly price in this

case is pm = B, Assumption A3 requires that c < B < 2c. The equilibrium price of �rm i, p (�j),

is still given by (2), with pm = B. The equilibrium price of �rm j, p (�i), is analogous. With a

unit demand function, p (�j) and p (�i) are also the standalone pro�ts of �rms i and j.

In what follows we denote by z � k=c the ratio of the slope of marginal cost of investment,

k, and the innovation size, c, and will refer to z as the �relative cost of innovation.�Note that now,

26With a unit demand function, the market size is �xed. This property also holds in spatial models of competition

(e.g., Hotelling or the circular city model) under the common assumption that the market is covered. Indeed this

assumption is made in Bayona and López (2018) and Li and Zhang (2021).
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the threshold of the PCO levels above which the innovation becomes drastic is � � pm�c
pm = B�c

B .

The assumption that c < B < 2c implies that 0 < � < 1=2. We will now consider two cases:

the case where �j � �i < �, in which the PCO stakes are relatively small so the innovation is

non-drastic, and the case where �i � �j � �, in which the PCO stakes are su¢ ciently large to

make the innovation drastic.27

6.1 Non-drastic innovation: �j � �i < �

The equilibrium prices in this case are p (�j) = c
1��j and p (�i) =

c
1��i . Hence, an increase in

PCO a¤ects consumers both directly through the equilibrium prices, as well as indirectly through

the equilibrium investment levels. With a unit demand function, the standalone pro�ts in stage

2 are � (�j) = c
1��j and � (�i) =

c
1��i . Assumption A5 then requires that k > k =

c(1��i�j)
(1��i)2

;

using z � k=c, the inequality can be written as z > z � 1��i�j
(1��i)2

, where z is the lower bound on

the relative cost of innovation. Note that z increases with �i and decreases with �j and hence is

highest when �i ! 1=2 and �j = 0, where its value is 4 and is lowest when �i = �j = 0, where its

value is 1.

Substituting � (�j) = c
1��j and � (�i) =

c
1��i in (5) and (6), and using the de�nitions of z

and z , the equilibrium investment levels become

��i =
(1� �j) (z � z)

z2 (1� �j)2 � z2 (1� �i)2
; ��j =

(1� �i)
�
z(1��j)2

(1��i)2
� z
�

z2 (1� �j)2 � z2 (1� �i)2
: (11)

The equilibrium investment levels depend only on the PCO stakes, �i and �j , and on the relative

cost of innovation, z. In Lemma 2 we already established that 0 < ��i � ��j , �
�
i < 1=2, ��j < 1,

@��i
@�i

< 0 <
@��j
@�i

and @��i
@�j

> 0 >
@��j
@�j
. In the next lemma we establish additional properties of ��i and

��j in the unit demand case when �j � �i < �.

Lemma 3: Suppose �j � �i < �. Then,

(i) as z ! z, ��i ! 0 and ��j ! 1��i
1��i�j if �j < �i and �

�
i = �

�
j ! 1

2(1+�) if �j = �i = �, and as

z !1, ��i ! 0 and ��j ! 0;

(ii) ��i + �
�
j is increasing with �i and with �j;

27There is also an intermediate case where �j < � � �i: This case is a hybrid of the two cases that we consider

and we therefore do not study it.
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(iii) ��i is �rst increasing and then decreasing with z if �j < �i and is decreasing with z for all

z > z if �i = �j, while ��j is decreasing with z for all z > z.

Proof: See the Appendix.

There are two notable di¤erences between Lemma 3 and Propositions 1 and 2. First, in

Proposition 1 we can compare the e¤ects of �i and �j on ��i + �
�
j only in the neighborhood of

a symmetric PCO structure or when �i � �j � �. In Lemma 3 by contrast, we can make the

comparison for all 0 � �j � �i < �. Second, noting that c is inversely related to z, part (iii) of

Lemma 3 shows how ��i and �
�
j respond to changes in c. Hence, while in Proposition 2 we are

only able to show that ��i + �
�
j is increasing with c, here we can also show how c a¤ects �

�
i and

��j separately. In particular, �
�
j always increases with c, while �

�
i is U-shaped in c. As in the case

of an increase in k, the latter is driven by two con�icting e¤ects. Holding ��j �xed, an increase

in c raises �rm i�s pro�t from being a sole innovator and hence encourages investment. But since

��j increases, there is a countervailing e¤ect as �rm i has a lower chance to be the sole innovator.

The second negative e¤ect dominates when c is low, while the �rst positive e¤ect dominates when

c is high. Firm j also faces the same two e¤ects, but the �rst positive e¤ect dominates the second

negative e¤ect for all c.28

As in Lemma 2, we get a stark di¤erence between symmetric and asymmetric PCO struc-

tures. In particular, when z ! z, ��i = �
�
j ! 1=2 if �j = �i = 0, whereas ��i ! 0 and ��j ! 1 if

�j = 0 and �i ! 0. That is, even a small asymmetry in the PCO structure can have a large e¤ect

on the equilibrium investment levels.

Consumer surplus in the unit demand case is given by B � p; recalling that p = 0 when

both �rms innovate, p = c when both �rms fail, p = c
1��j when only �rm i innovates, and p = c

1��i

when only �rm j innovates, expected consumer surplus is therefore

CS (�i; �j) = B � (1� ��i )
�
1� ��j

�
c� ��i

�
1� ��j

� c

1� �j
� ��j (1� ��i )

c

1� �i
: (12)

We now prove the following result:

28Obviously, the second e¤ect cannot be negative and dominate the �rst positive e¤ect for both �rms. To see why

suppose by way of negation that is is. Then both ��i and �
�
j are decreasing with c. But in order for the second e¤ect

to be negative for both �rms, ��i and �
�
j must be increasing with c, a contradiction. The reason the second e¤ect is

negative and dominates the �rst positive e¤ect for �rm i and not for �rm j is that in equilibrium ��i � ��j , which

implies that the second negative e¤ect is stronger for �rm i than it is for �rm j.
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Proposition 5: Suppose �j � �i < �. Then,

(i) @CS(�i;�j)
@�i

< 0 for all z > z;

(ii) @CS(�i;�j)
@�j

� 0 for z su¢ ciently close to z, with strict inequality for �j < �i, and @CS(�i;�j)
@�j

< 0

for z su¢ ciently large;

(iii) in the neighborhood of a symmetric PCO structure, @CS(�i;�j)
@�j

< 0 for all z > z with

limz!z
@CS(�i;�j)

@�j
= 0.

Proof: See the Appendix.

Part (i) of Proposition 5 shows that when the PCO stakes are below � so the innovation

is non-drastic, an increase in �i, which increases the asymmetry in the PCO structure (the gap

between �i and �j expands), unambiguously harms consumers. Part (ii) shows that an increase in

�j , which leads to a greater symmetry in the PCO structure, bene�ts consumers when the relative

cost of innovation, z, is small, but harms consumers when z is large. How small z should be such

that an increase in �j still bene�ts consumers, depends on the PCO structure. In particular, part

(iii) of the proposition shows that in the neighborhood of a symmetric PCO structure, an increase in

�j never bene�ts consumers. But when the PCO structure becomes more asymmetric, an increase

in �j bene�ts consumers for a larger set of values of z.29

Proposition 5 implies that when innovations are non drastic, antitrust agencies that pursue

a consumer welfare standard, should not allow the �rm with the larger PCO stake to increase its

stake, but may allow the rival to increase its stake, provided that the relative cost of innovation,

z, is low. In particular, for high levels of z, consumer surplus decreases as �j increases towards �i

(which is by assumption higher than �j), so antitrust authorities that pursue a consumer welfare

standard should oppose acquisitions of PCO by both �rms. For low levels of z, consumer surplus

�rst increases as �j increases (by part ii), but then decreases as �j gets closer to �i (by part iii).30

29For instance, if �j = 0, the largest z for which
@CS(�i;�j)

@�j
� 0 is 1:96 if �i = 0:1, 2:99 if �i = 0:2, 5:06 if

�i = 0:33, and 10:24 as �i ! 1=2:
30To illustrate, let B ! 2 and c = 1 (in which case � ! 1=2). If z = 1:7 and �i = 0:1, then consumer surplus

increases with �j , so long as �j < 0:05, and it then decreases as �j approaches 0:1.
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Hence, antitrust authorities that pursue a consumer welfare standard should encourage the �rm

with the low PCO stake to increase its stake, but not all the way up to �i.

To see the relationship between Proposition 5 and the su¢ cient conditions in Proposition

3, recall from part (ii) of Lemma 3 that ��i + �
�
j increases with �i. Hence, by Proposition 3(ii),

@CS(�i;�j)
@��i

� 0 is su¢ cient for @CS(�i;�j)@�i
� 0. Di¤erentiating (12) yields

@CS (�i; �j)

@��i
=

(1� �i�j) c
(1� �i) (1� �j)

�
��j �

�j (1� �i)
1� �i�j

�
� 0; , ��j �

�j (1� �i)
1� �i�j

:

Recalling from Lemma 3 that ��j is increasing with �i and decreasing with �j and with z, and noting

that �j(1��i)
1��i�j is decreasing with �i and increasing with �j , the above condition is more likely to

hold when �j is large and �i and z are small. In particular, when �i = �j = �, ��j =
1

1+�+z(1��)

and �j(1��i)
1��i�j = �

1+� , so the condition holds when � �
1
z�1 . When � <

1
z�1 , the su¢ cient condition

fails, despite the fact that by Proposition 5, @CS(�i;�j)@�i
< 0. The reason for this is that the su¢ cient

condition does not take into account the price e¤ect of PCO: the fact that an increase in �i leads

to a higher price which harms consumers when �rm j is the sole innovator.

Finally, as mentioned in Section 2, several existing papers have studied symmetric models

and examined what happens when all �rms assign a higher weight to the pro�ts of all other �rms

by the exact same amount. For instance López and Vives (2019) conclude that an increase in PCO

harms consumers unless there are large enough R&D spillovers. Indeed, in our model (which does

not have R&D spillovers), if we evaluate (12) at �j = �i = � < � and di¤erentiate CS (�; �) with

respect to �, we get

@CS (�; �)

@�
=
�2c

�
1 + (z (1� �) + �)

�
z
�
1� �2

�
+ �2

��
(1� �)2 (z (1� �) + 1 + �)3

< 0:

That is, an increase in the stake that both �rms hold in each other, �, unambiguously harms

consumers. Proposition 5 shows however that when the PCO structure is not symmetric, an

increase in �j , holding �i �xed, bene�ts consumers if z is su¢ ciently small. In other words, not

every increase in PCO necessarily harms consumers absent R&D spillovers.

6.2 Drastic innovation: �i � �j � �

Here the PCO stake are su¢ ciently large to make the innovation drastic. Note in particular that

this case can arise only when both �rms hold stakes in one another. When �i � �j � �, the

equilibrium prices are p (�j) = p (�j) = pm = B, implying that an increase in PCO only a¤ects

the equilibrium investment levels, but does not have a price e¤ect. With a unit demand function,
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� (�i) = � (�i) = B. Assumption A5 then requires that k > k � (1 + �i)B, or using m � k=B, it

requires that m > 1 + �i. Notice that m is the analog of z in the monopoly case and re�ects the

relative cost of innovation when it is drastic.

Substituting � (�i) = � (�i) = B in (5) and (6), the equilibrium investment levels become

��i =
m� (1 + �i)

m2 � (1 + �i) (1 + �j)
; ��j =

m� (1 + �j)
m2 � (1 + �i) (1 + �j)

: (13)

��i and �
�
j depend only on the PCO stakes, �i and �j , and on relative cost of innovation, m.31 It

is easy to verify that, as in Lemma 2, 0 < ��i � ��j , �
�
i < 1=2, and ��j < 1 and @��i

@�i
< 0 <

@��j
@�i
,

@��i
@�j

> 0 >
@��j
@�j
. In the next lemma we establish additional properties of ��i and �

�
j .

Lemma 4: Suppose �i � �j � �. Then,

(i) as m! 1 + �i, ��i ! 0 and ��j ! 1
1+�i

if �j < �i and ��i = �
�
j ! 1

2(1+�) if �j = �i = �, and

as m!1, ��i ! 0 and ��j ! 0;

(ii) ��i + �
�
j is decreasing with �i and with �j;

(iii) ��i is �rst increasing with m for m < bm and then decreasing with m for m > bm, wherebm � 1 + �i +
p
(�i � �j) (1 + �i), if �j < �i and is decreasing with m for all m > 1 + �i if

�i = �j , while ��j is decreasing with m for all m > 1 + �i:

Proof: See the Appendix.

Lemma 4(i) is consistent with Lemmas 2 and 3. Lemma 4(ii) is the opposite Lemma 3(ii):

when the PCO stakes are su¢ ciently large to make the innovation drastic, an increase in �i has a

larger e¤ect on ��i than on �
�
j and vice versa for an increase in �j . That is, an increase in the PCO

of a �rm has a bigger e¤ect on its own investment level than on the rival�s investment level.

Lemma 4(iii) shows that ��j is decreasing with the relative cost of innovation, m, and hence

is bounded from above by 1
1+�i

, which is the value of ��j as m ! 1 + �i; as �i ! 0, ��j ! 1.

Note again the stark di¤erence between symmetric and asymmetric PCO structures. In particular,

if m ! 1 + �i, then ��i = ��j ! 1=2 if �j = �i = 0, but ��i ! 0 and ��j ! 1 if �j = 0 and

�i ! 0. Lemma 4(iii) also shows that so long as �j < �i, ��i is an inverse U-shaped function of m.

The cuto¤ bm above which ��i is decreasing with m is increasing with �i and decreasing with �j .

31That is, the parameters k and B a¤ect the equilibrium only through the ratio m � k=B.
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That is, the set of values of m for which �rm i increases its equilibrium investment is expands as

the PCO structure become more asymmetric, and is particularly large under maximal asymmetry

where �j ! � and �i ! 1=2. By contrast, when the PCO structure is symmetric, i.e., �i = �j = �,bm = 1+ � < m, where the last inequality follows from Assumption A5, so ��i is decreasing with m

for all feasible values of m.

Turning to consumer surplus, expected consumer surplus is given by

CS (�i; �j) = �
�
i�
�
jB + (1� ��i )

�
1� ��j

�
(B � c) = B

�
��i�

�
j + (1� ��i )

�
1� ��j

�
�
�
: (14)

Equation (14) re�ects the fact that with probability ��i�
�
j , both �rms innovate, so p = 0 and

consumer surplus is B; with probability ��i
�
1� ��j

�
+��j (1� ��i ), only one �rm innovates, so p = B

and consumer surplus is 0; and with probability (1� ��i )
�
1� ��j

�
, both �rms do not innovate, so

p = c and consumer surplus is B�c: In the next proposition we examine how CS (�i; �j) is a¤ected

by �i and �j .

Proposition 6: Suppose �i � �j � �. Then,

(i) @CS(�i;�j)
@�i

> 0 and @CS(�i;�j)
@�j

> 0 when m is su¢ ciently large, or when � ! 1=2;

(ii) @CS(�i;�j)
@�i

< 0 and @CS(�i;�j)
@�j

> 0 when m is not too much above its lower bound, 1 + �i;

(iii) when � ! 0 and m is such that �m ! 0, @CS(�i;�j)@�i
< 0 and @CS(�i;�j)

@�j
> 0 as m < bm and

@CS(�i;�j)
@�j

< 0 as m > bm; as � increases, it is more likely that @CS(�i;�j)
@�j

> 0;

(iv) in the neighborhood of a symmetric PCO structure, where �i = �j = � � �, @CS(�i;�j)@�i
=

@CS(�i;�j)
@�j

> 0 if m > 1
� � � and @CS(�i;�j)

@�i
=

@CS(�i;�j)
@�j

< 0 if m < 1
� � �.

Parts (i)-(iii) of Proposition 6 show that when the PCO stakes are su¢ ciently large to

make the innovation drastic, a further increase in �i bene�ts consumers when the relative cost of

innovation,m, is su¢ ciently large, or the inverse size of innovation, �, is large, and harms consumers

when m or � are small. Parts (i)-(ii) of the proposition show in addition that an increase in �j

bene�ts consumers when m or � are su¢ ciently large, or when m is close to its lower bound, 1+�i.

Part (iii) suggests that in fact, an increase in �j may bene�t consumers for all m > 1+�i, provided

that � is su¢ ciently large. The reason for this is that @CS(�i;�j)
@�j

is a positive cubic function of

m (the coe¢ cient on m3 is positive) and is increasing with �. It turns out that at m = 1 + �i,
@CS(�i;�j)

@�j
> 0 and is increasing with m at a decreasing rate. Hence, @CS(�i;�j)@�j

reaches a local
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maximum at some m above 1 + �i, but then it decreases and reaches a local minimum before

increasing again with m.32 If the value at the local minimum is still positive (which is more likely

when � is large), then @CS(�i;�j)
@�j

> 0 for all m > 1 + �i. If the value at the local minimum is

negative, then @CS(�i;�j)
@�j

> 0 for low or high values of m, but @CS(�i;�j)
@�j

< 0 for intermediate

values of m.33 Proposition 6(iii) also shows that when � ! 0, an increase in �j may either bene�t

consumers when m is small or harm them when m is large.34 This is because @CS(�i;�j)@�j
is no longer

cubic in m when � ! 0 and �m ! 0, but rather an inverse U-shaped function of m and hence
@CS(�i;�j)

@�j
< 0 when m is large. Finally, part (iv) of Proposition 6 shows that an increase in the

PCO stakes when they are symmetric bene�ts consumers if m is large, but harms them if m is

small.35

Proposition 6 implies that when the PCO stakes are su¢ ciently large to make innovation

drastic and the relative cost of innovation, m, or the inverse size of innovation, �, are large, an

increase in both PCO stakes is bene�cial for consumers. Consumer surplus is then maximized when

�j = �i ! 1=2. By contrast, when m is not too much above its lower bound, 1 + �i, consumer

surplus is largest when �i is small and �j is large; since �j � �i, this occurs when �j = �i = �.

Note that in both case, a symmetric PCO structure bene�ts consumers.

To see how Proposition 6 is related to the su¢ cient conditions in Proposition 3, notice that

by Lemma 4, ��i + �
�
j is decreasing with �i, and recall from Proposition 3(iii) that in this case,

@CS(�i;�j)
@��j

� 0 is su¢ cient for @CS(�i;�j)@�i
� 0. Di¤erentiating (14),

@CS (�i; �j)

@��j
= (1 + �)B

�
��i �

�

1 + �

�
� 0; , ��i �

�

1 + �
:

This condition can hold only when � < 1=3, otherwise �
1+� > 1=2 which is the upper bound on

��i by Lemma 2. Indeed, Proposition 6 shows that
@CS(�i;�j)

@�i
< 0 when � ! 0 and @CS(�i;�j)

@�i
> 0

32 @CS(�i;�j)
@�i

is also a positive cubic function of m, but at m = 1+ �i it is negative and decreasing with m,

implying that it continues to decrease until it reaches a local minimum and then it is increasing with m. As a result,
@CS(�i;�j)

@�i
< 0 for m not too far from 1+ �i and

@CS(�i;�j)
@�i

> 0 for m su¢ ciently large.

33For instance, if �i = 0:4, �j = 0:3, and � = 0:25, then
@CS(�i;�j)

@�j
> 0 if 1:4 < m < 2:14,

@CS(�i;�j)
@�j

< 0 if

2:1 < m < 3:34, and
@CS(�i;�j)

@�j
> 0 if m > 3:34: However, if �i = 0:4, �j = 0:3, and � = 0:3, then

@CS(�i;�j)
@�j

> 0

for all m > 1:4.

34When � ! 0 and �m ! 0,
@CS(�i;�j)

@�j
is no longer cubic in m but rather negative quadratic function of m, so

@CS(�i;�j)
@�j

< 0 when m is large.
35Note that as � ! 1=2, m > 1

�
� �, because by Assumption A5, m > 1 + �i, where 1 + �i is bounded from

above by 3=2, whereas 1
�
� �! 3=2 as � � � ! 1=2. Hence, part (vi) of the proposition implies that

@CS(�i;�j)
@�i

=
@CS(�i;�j)

@�j
> 0, which is consistent with part (i).
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when � ! 1=2.

Finally, we contrast Proposition 6 with the case where both �rms hold the exact same stakes

in each other and these stakes increase (rather than a unilateral increase in one of the two stakes).

To this end, we evaluate (14) at �j = �i = � and di¤erentiate with respect to �:

@CS (�; �)

@�
=
2�B

�
m�

�
1
� � �

��
(m+ �+ 1)3

:

The derivative is positive if m > 1
� � � and negative if m < 1

� � �, similarly to Proposition 6(iii).

Now, an increase in � has the same e¤ect as the increase in the stake of only one �rm when the

stakes are (nearly) symmetric. The reason is that as (13) shows, ��i and �
�
j are symmetric when

the innovation is drastic (the price is B regardless of which �rm is the sole innovator).

7 PCO vs. semicollusion, RJV, and mergers

The reason why PCO may boost investment is that it softens price competition when only one �rm

innovates and hence boosts expected pro�ts. One may wonder then how PCO performs relative

to other arrangements that also soften competition, like outright collusion in the product market,

a research joint venture (RJV), or a full merger. The di¤erence between the three arrangements

is that under collusion, �rms coordinate their pricing strategies in stage 2, but compete in stage

1. This situation is often referred to in the literature as semicollusion. Under an RJV the reverse

is true: here �rms fully coordinate their investments in stage 1 but then compete in the product

market. Under a full merger, �rms fully coordinate their strategies in both stages.

It should be noted that policymakers recognize the importance of RJVs and mergers for

promoting innovation. For instance, in the U.S., the 2000 �Antitrust Guidelines for Collaborations

among Competitors�of the DOJ and the FTC state that �Such collaborations often are not only

benign but procompetitive.�36 Likewise, the 2010 �Horizontal Merger Guidelines� of the DOJ

and FTC state that �the Agencies consider the ability of the merged �rm to conduct research

or development more e¤ectively. Such e¢ ciencies may spur innovation but not a¤ect short-term

pricing.� As for semicollusion, Fershtman and Gandal (1994) and Brod and Shivakumar (1999)

show that semicollusion can promote investments in R&D and bene�t consumers.37

36 Indeed the U.S. Congress has protected certain collaborations from full antitrust liability by passing the National

Cooperative Research Act of 1984 and the National Cooperative Research and Production Act of 1993 (codi�ed

together at 15 U.S.C. § § 4301-06).
37Similarly, Schinkel and Spiegel (2017) show that when �rms invest in the sustainability of their respective products

29



To simplify the comparisons, we will consider in what follows a symmetric PCO structure

such that �i = �j = � 2
�
�; 12

�
; that is, we will assume that the PCO stakes are su¢ ciently large

to make the innovation drastic. Then, p (�) = pm and � (�) = �m. Since p (�) = pm, PCO does

not have a price e¤ect, so the only di¤erence between PCO and the other three arrangements is

due to the cannibalization e¤ect. Substituting �i = �j = � and � (�) = �m in (5) and (6), the

equilibrium investment levels are:

��i = �
�
j = � (�) �

�m

k + (1 + �)�m
: (15)

Expected consumer surplus under PCO is

CS (�) = � (�)2 S (0) + 2� (�) (1� � (�))S (pm) + (1� � (�))2 S (c) : (16)

This expression re�ects the idea that with probability � (�)2 both �rms succeed and the price is 0,

with probability 2� (�) (1� � (�)) only one �rm succeeds so the price is pm, and with probability

(1� � (�))2, both �rms fail and the price is c.

7.1 PCO vs. semicollusion

We begin by comparing PCO with semicollusion: �rms compete in stage 1 when choosing their

investment levels, but then collude in stage 2 when they set prices.38 To simplify matters, we will

focus on a pure price �xing scheme whereby �rms charge the same price and split the market equally.

The collusive price is pm when both �rms have a marginal cost 0, pmc � argmax (p� c)Q (p) when

both �rms have a marginal cost c, and p̂ 2 [pm; pmc ] when one �rm innovates and its marginal cost is

0, while the other �rm fails and its marginal cost is c. Recall that �m � pmQ (pm) is the monopoly

pro�t when marginal cost is 0 and let �mc � (pmc � c)Q (pmc ) be the monopoly pro�t when marginal

cost is c and �rms charge pmc , �̂ � p̂Q (p̂) be the monopoly pro�t when marginal cost is 0 and �rms

charge a price p̂, and �̂c � (p̂� c)Q (p̂) be the corresponding pro�t when marginal cost is c.

(which boosts the willingness of consumers to pay) before competing in the product market, semicollusion promotes

investements and may bene�t consumers if the slope of the marginal cost of investment is su¢ ciently low relative to

the degree of product di¤erentiation.
38The collusive scheme can be supported by repeated interaction in stage 2 (for details, see the Appendix in Schinkel

and Spiegel, 2017).
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The expected value of �rm i in stage 1 of the game is,39

�i�j
�m

2
+ �i (1� �j)

�̂

2
+ �j (1� �i)

�̂c
2
+ (1� �i) (1� �j)

�mc
2
� k�

2
i

2
:

In a symmetric equilibrium,

��� =
�̂ � �mc

2k + �̂ + �̂c � �mc � �m
:

We now prove the following result:

Proposition 7: Suppose that the two �rms hold the same PCO stake � � � in each other, so

under PCO, p (�) = pm. Then, PCO leads to more investment than semicollusion and also yields

a higher expected consumer surplus.

Proof: See the Appendix.

Proposition 7 says that a symmetric PCO which is large enough to make the innovation

drastic boosts investment more than semicollusion and bene�ts consumers. To see the intuition,

note �rst that our assumption that p (�) = pm implies an increase in � does not have a price e¤ect,

so the only di¤erence between PCO and semicollusion is due to the cannibalization e¤ect. Under

semicollusion, �rms charge a price above cost and earn a pro�t even when they both innovate. By

contrast, under PCO, a �rm earns a pro�t only if it innovates and its rival fails. Conditional on

�rm j innovating, innovation by �rm i raises its pro�t from �̂c
2 to

�m

2 under semicollusion, whereas

under PCO it entails a loss of ��m, because competition eliminates �rm j�s pro�t, which �rm i

shares through PCO. And, conditional on �rm j failing to innovate, innovation raises �rm i�s pro�t

under semicollusion from �mc
2 to �̂

2 , whereas under PCO it raises it by �m. Hence, the marginal

bene�t of investment is greater under semicollusion when �rm j innovates, but it is smaller when

�rm j fails. But since Assumption A4 implies that k is large, the probability that �rm j innovates

is relatively small, so the advantage of PCO over semicollusion is greater than the disadvantage.

As for expected consumer surplus, note that under PCO, the price is either 0 if both �rms

innovate, pm when only one �rm innovates, and c if neither �rm innovates. Under semicollusion

by contrast, the corresponding prices are pm, bp, and pmc and are all higher. Hence, consumers are

better o¤ under PCO, because innovation is more likely, and prices are lower in each regime.

39When the interaction in the product market is repeated, the per-period pro�ts must be divided by the discount

factor. To make the model comparable to our two-stage game, we can assume that although the innovation takes

place once and for all in stage 1, �rms must incur the cost of the innovation in every period (e.g., each �rm i pays a

�royalty�or a maintenance cost k�2i
2
in every period).
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7.2 PCO vs. RJV

We now compare PCO with an RJV. Under an RJV, �rms cooperate in stage 1 when they choose

investments, but then compete in the product market in stage 2. We follow Choi (1993) by assuming

that by forming an RJV in stage 1, �rms perfectly coordinate their R&D investments, but their

respective probabilities of success, as well as their stage 2 prices, are independent across �rms.

In other words, under an RJV, �rms coordinate their investments, but implement the innovation

independently, so the realization of each �rm�s cost is independent of the rival�s cost.40

For now, we will assume that under an RJV, �rms also have symmetric PCO stakes in each

other such that �i = �j = � 2
�
�; 12

�
. The di¤erence is that under (pure) PCO, the two �rms invest

independently in stage 1, whereas with an RJV, they choose �i and �j in stage 1, to maximize the

sum of their values, given by,

Vi + Vj =

(1 + �)
�
�i (1� �j)�m � k�2i

2

�
+ (1 + �)

�
�j(1� �i)�m �

k�2j
2

�
1� �2

=
(�i (1� �j) + �j(1� �i))�m � k�2i

2 � k�2j
2

1� � :

The investment levels which maximize this expression are

�i = �j = �
RJV � �m

k + 2�m
: (17)

Notice from (15) that �RJV < � (�) as � < 1=2: �rms invest less under RJV than under (pure)

PCO. In fact, �RJV is even lower if �rms do not have PCO stakes in each other under an RJV,

because then the pro�t under RJV is � (c) < �m. Intuitively, under RJV, �rms fully internalize the

cannibalization e¤ect, while under PCO they only partially internalize it; hence they invest more

under PCO. Moreover, if the innovation is non-drastic, PCO leads to a price e¤ect which RJV does

not, so the incentive to innovate under PCO is even larger.

The expected consumer surplus under RJV is also given by (16) with �RJV replacing � (�).

To compare consumer surplus under (pure) PCO and under RJV, it is useful to rewrite (16) as

CS (�) = S (c) + � (�)2 (S (0)� S (c))| {z }
(+)

+ 2� (�) (1� � (�)) (S (pm)� S (c))| {z }
(�)

:

40 In Choi (1993), the RJV also generates an information spillovers, which boost the pro�ts of the two �rms.

We abstract from such spillovers. Kamien, Muller, and Zang (1992) refer to the case where �rms jointly choose

investments, but the marginal cost of each �rm depends on its own investment, as �R&D cartelization.�Under RJV,

�rms choose investments independently, but the marginal cost of each �rm depends on the sum of the investments.
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That is, the baseline consumer surplus is S (c). However with probability � (�)2, both �rms innovate

so consumer surplus increases from S (c) to S (0), and with probability 2� (�) (1� � (�)), only one

�rm innovates, in which case consumer surplus drops from S (c) to S (pm) : Note that by Assumption

A3, pm < 2c; hence pm � c < c � 0. Since S (�) is decreasing and convex, S (0) � S (c) >

S (pm) � S (c).41 But then by Assumption A4, k > �m, so from (15) it follows that � (�) < 1=2.

Hence, � (�)2 < 2� (�) (1� � (�)), implying that the sum of the second and third terms in CS (�)

may be either positive or negative. Recalling that �RJV < � (�), it follows that the second positive

term is smaller under RJV, but the third negative term is also smaller in absolute value. In general

then, consumers can be better or worse o¤ under PCO relative to RJV. In the next proposition we

can compare consumer surplus under PCO and under RJV.

Proposition 8: Suppose that the two �rms hold the same PCO stake � in each other. Then

� (�) > �RJV , regardless of whether �rms also hold symmetric PCO stakes in each other under an

RJV. In the unit demand case, consumer surplus is larger under PCO if m � k=B is su¢ ciently

small and larger under RJV if m is su¢ ciently large.

Proof: See the Appendix.

7.3 PCO vs. full merger

Finally, we consider the possibility that the two �rms fully merge. Then, the two �rms can fully

coordinate both their investment levels in stage 1, and their pricing strategies in stage 2. This

is unlike semicollusion where there is coordination in stage 2 but competition in stage 1, or RJV

where the opposite is true. A full merger di¤ers from PCO in that PCO can be viewed as a �partial

merger,�in which �rms internalize only part of their externality on rivals, while under a full merger

they fully internalize it.

When �rms fully merge, they charge the monopoly price pm when at least one of them

has a marginal cost 0 (only the e¢ cient �rm serves the market in this case) and charge pmc �

argmax (p� c)Q (p) when they both have a marginal cost c. Hence, in stage 1, the merged �rm

chooses �i and �j to maximize the sum of the �rms�values, given by

(1� (1� �i) (1� �j))�m + (1� �i) (1� �j)�mc �
k�2i
2
�
k�2j
2
;

41Note that S0 (p) = �Q (p) < 0 and S00 (p) = �Q0 (p) > 0.
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where �mc � (pmc � c)Q (pmc ). The investment levels which maximize this expression are,

�i = �j = �
m =

�m � �mc
k + �m � �mc

:

Comparing with (15), yields,

Proposition 9: Suppose that the two �rms hold the same PCO stake � � � in each other, so

under PCO, p (�) = pm. Then, � (�) > �m if and only if

� <
�mc k

�m (�m � �mc )
: (18)

Expected consumer surplus is higher under PCO.

Proof: See the Appendix.

Proposition 9 says that a su¢ ciently large symmetric PCO which induces �rms to charge

the monopoly price, pm, when only one of them innovates, boosts investments more than a full

merger, provided that it is not too large. In particular, PCO boosts investment more than a full

merger provided that � � � < �mc k
�m(�m��mc )

. This condition surely holds when � ! 1=2 because

then � � � and when k is su¢ ciently large.42 Intuitively, there are two di¤erences between a full

merger and a PCO. Conditional on �rm j innovating, �rm i�s innovation has no value under a full

merger (one innovation is enough for the merged entity to lower its cost), whereas under PCO it

implies a loss of ��m, due to the fact that �rm j�s pro�t (which �rm i shares due to its PCO stake

�) drops from �m to 0. And conditional on �rm j failing, innovation by �rm i raises the merged

entity�s pro�t from �mc to �
m, whereas under PCO it implies a gain of �m. Whether the marginal

bene�t of investment is greater under a full merger or under PCO therefore depends on the value

of ��m relative to the value of �m � �mc .

As for prices, under a full merger they are always higher than under PCO since there is

always a monopoly in the product market, whereas under PCO there is competition when both

�rms innovate or both �rms fail.
42To see that the set of parameters for which the condition holds is non empty, note that in the unit demand case,

pm = pmc = B, �m = B, and �mc = B � c. Then, p
m�c
pm

= B�c
B

� � and �mc k

�m(�m��mc )
= (B�c)k

Bc
� �z > �, because

z > z � 1.
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8 Conclusion

We have explored the competitive e¤ects of partial cross ownership (PCO) in rival �rms in the

context of a duopoly model in which �rms �rst invest in innovation and then compete in prices.

Innovation in our model is stochastic and can either succeed or fail. When both �rms succeed or

both fail, they engage in Bertrand competition and make 0 pro�t. But when only one �rm succeeds,

it captures the entire market and earns a positive pro�t. This pro�t is even higher when the failing

�rm holds a stake in the innovating �rm, as the former is reluctant to undercut the latter because it

shares its pro�t. PCO then creates a price e¤ect, which boosts the incentive to invest and become

the innovating �rm. Although the innovation in our model is non-drastic absent PCO, it becomes

drastic when the PCO stakes are large; then a sole innovator charges the monopoly price, so an

increase in PCO does not lead to a further price increase. Apart from a price e¤ect, PCO also

creates a cannibalization e¤ect: when a �rm innovates, it cannibalizes the rival�s pro�t if the rival

also innovates. This e¤ect weakens the incentive to innovate and more so the larger is the stake

that the �rm holds in the rival.

Interestingly, more investment is not always good for consumers: although more investment

increases the likelihood that both �rms innovate, which is the best outcome for consumers, it also

raises the likelihood that only one �rm innovates, which is the worst outcome for consumers. We

provide su¢ cient conditions for PCO to harm or bene�t consumers and then explore the welfare

implications of PCO in greater detail under the assumption that consumers have a unit demand

function. Importantly, we allow �rm i to possibly have a bigger PCO stake in �rm j than �rm j has

in �rm i. Hence, an increase in �rm i�s stake in �rm j makes the PCO structure more asymmetric,

whereas an increase in �rm j�s stake in �rm i makes it more symmetric.

The welfare implications of PCO in our model depend on whether the PCO stakes are or are

not large enough to make the innovation drastic. When they are relatively small so the innovation

is non-drastic, an increase in �rm i�s stake in �rm j always harms consumers. An increase in �rm

j�s stake in �rm i can bene�t consumers provided that the relative cost of innovation is not too

high; otherwise an increase in �rm j�s stake in �rm i also harms consumers.

When the PCO stakes are su¢ ciently large to make the innovation drastic, an increase in

the PCO stakes only a¤ects the equilibrium investment levels, but does not create a price e¤ect.

The PCO stakes can now bene�t consumers if the relative cost of innovation is su¢ ciently large,

or its size is large relative to the willingness of consumers to pay. Moreover, an increase in �rm
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j�s stake in �rm i can also bene�t consumers if the relative cost of innovation or its size are small.

We also show that increases in the PCO stakes can harm consumers; for instance, when the size

of the innovation is large, an increase in �rm i�s stake in �rm j harms consumers and an increase

in �rm j�s stake in �rm i harms consumers when the relative cost of innovation is large, or in the

neighborhood of a symmetric PCO structure when the relative cost of innovation is small.

The upshot is that PCO stakes may harm or bene�t consumers depending on various factors,

including the size of the PCO stakes and how symmetric they are, whether the innovation is drastic

or non-drastic, and the size of the innovation and its relative cost. In particular, our analysis

importance of asymmetries in the PCO structure for evaluating the welfare e¤ects of PCO.

9 Appendix

Following are technical proofs.

Existence and uniqueness of a stable interior Nash equilibrium in stage 1: Note that

Assumption A5 is equivalent to �(�j)
�(�j)+�i�(�i)

> �(�i)
k , where �(�j)

�(�j)+�i�(�i)
is the vertical intercept

of BRi (�j) in the (�i; �j) space and
�(�i)
k is the vertical intercept of BRj (�i).43 Moreover, recall

that the assumption that �i � �j implies that � (�i) � � (�j), which implies in turn that

� (�i)

�
1 +

�i� (�i)

� (�j)

�
� � (�j)

�
1 +

�j� (�j)

� (�i)

�
:

Hence, Assumption A5 also implies that �(�i)
�(�i)+�j�(�j)

>
�(�j)
k , where �(�i)

�(�i)+�j�(�j)
is the horizontal

intercept of BRi (�j) in the (�i; �j) space and
�(�j)
k is the horizontal intercept of BRj (�i).44

Together with the fact that by (4), the slope of BRi (�j) is constant, and likewise the slope of

BRj (�i) is constant, Assumption A5 ensures that BRi (�j) crosses BRj (�i) in the interior of the

(�i; �j) space once and from above, which ensures in turn the existence of a unique and stable Nash

equilibrium in stage 1.

In fact, Assumption A5 ensures that the slope of BRi (�j) in the (�i; �j) space exceeds 1 in

absolute value, whereas the slope of BRj (�i) is below 1 in absolute value. To see why, note that

43That is,
�(�j)

�(�j)+�i�(�i)
is the value of �j for which �i = 0, i.e., BRi

�
�(�j)

�(�j)+�i�(�i)

�
= 0, and �(�i)

k
is �rm j�s

best response against �i = 0, i.e., BRj (0) =
�(�i)
k
.

44That is, �(�i)

�(�i)+�j�(�j)
is the value of �i for which �j = 0 and

�(�j)
k

is �rm i�s best response against �j = 0.
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fully di¤erentiating (4), evaluating at �i = BRi (�j), and using Assumption A5,

����@�j@�i

���� = k

� (�j) + �i� (�i)
>
� (�i)

�
1 + �i

�(�i)
�(�j)

�
� (�j) + �i� (�i)

=
� (�i)

� (�j)
� 1;

where the last inequality follows because �i � �j implies that � (�i) � � (�j). Similarly, evaluated

at �j = BRj (�i),����@�j@�i

���� = � (�i) + �j� (�j)

k
<

� (�i) + �j� (�j)

� (�i)
�
1 + �i

�(�i)
�(�j)

� = 1 + �j
�(�j)
�(�i)

1 + �i
�(�i)
�(�j)

� 1;

where the last inequality follows because �i � �j and � (�i) � � (�j).

Finally, we assume that k > k for the following reason. Suppose that k = k and �i = �j = �.

Then k � � (�i)
�
1 + �i

�(�i)
�(�j)

�
= � (�) (1 + �), so the vertical intercept of BRj (�i) in the (�i; �j)

space is �(�)
k = �(�)

�(�)(1+�) =
1

1+� . The vertical intercept of BRi (�j) in turn is
�(�)

�(�)+��(�) =
1

1+� .

Since by symmetry the same holds for horizontal intercepts, BRi (�j) and BRj (�i) coincide. �

Proof of Lemma 2: (i) First, note that ��i ; �
�
j > 0 because the equilibrium in stage 1 is interior

as we have proved above. Moreover, using (5) and (6) and rearranging terms,

��j � ��i =
� (�i) (k + �i� (�i))� � (�j) (k + �j� (�j))
k2 � (� (�j) + �i� (�i)) (� (�i) + �j� (�j))

� 0;

where the inequality follows because Assumption A5 ensures that the denominator is positive, and

�i � �j implies � (�i) � � (�j) by Lemma 1.45 Therefore, 0 < ��i � ��j .

Second, in Proposition 1(i) below we prove that ��i is maximized when �j = �i = �.

Evaluating (5) at �j = �i = �,

��i =
� (�)

k + (1 + �)� (�)
<

1

2 (1 + �)
� 1

2
;

where the �rst inequality follows because Assumption A5 implies that when �j = �i = �, k >

� (�) (1 + �), and the second inequality follows because 1
2(1+�) is maximized when � = 0.

45 In particular, note that since by Assumption A5, k > k,

k2 � (� (�j) + �i� (�i)) (� (�i) + �j� (�j)) > k2 � (� (�j) + �i� (�i)) (� (�i) + �j� (�j))

= (� (�j) + �i� (�i))

�
� (�i)

2

� (�j)
2 (� (�j) + �i� (�i))� (� (�i) + �j� (�j))

�
� (� (�j) + �i� (�i)) [(1� �j)� (�j)� (1� �i)� (�i)] > 0:
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Third, in Proposition 2(i) below we prove that ��j decreases with k. Then using (6),

��j <
� (�j)

� (�j) + �i� (�i)
< 1;

where the upper bound on ��j is its value as k ! k � � (�i)
�
1 + �i

�(�i)
�(�j)

�
, and the last inequality

follows because �(�j)
�(�j)+�i�(�i)

is maximized when �j ! �i ! 0.

(ii) Suppose that k ! k. Then (5) and (6) imply that if �j < �i, ��i ! 0 and ��j !
�(�j)

�(�j)+�i�(�i)
, which tends to 1 as �i ! 0. If �j = �i = �, then by Assumption A5, k =

� (�) (1 + �), so as k ! k,

��i = �
�
j !

� (�)

k + � (�) (1 + �)
=

1

2 (1 + �)
;

which equals 1=2 when � = 0. As k !1, (5) and (6) imply that ��i ! 0 and ��j ! 0. �

Proof of Proposition 1: (i) Recalling from Lemma 1 that �0 (�j) � 0,

@BRi (�j)

@�i
= ��j (� (�i) + �i�

0 (�i))

k
< 0;

@BRj (�i)

@�i
=
(1� �i)�0 (�i)

k
� 0:

Since the best-response functions are downward sloping, an increase in �i shifts their intersection

point northwest in the (�i; �j) space. Hence, ��i decreases and �
�
j increases. The comparative

statics with respect to �j are analogous.

(ii) Using (5) and (6) again,

��i + �
�
j =

(� (�i) + � (�j)) k � 2� (�i)� (�j)� �i (� (�i))2 � �j (� (�j))2

k2 � (� (�j) + �i� (�i)) (� (�i) + �j� (�j))
:

Di¤erentiating with respect to �i, evaluating at �i = �j = �, and rearranging yields

@
�
��i + �

�
j

�
@�i

�����
�i=�j=�

=
�0 (�) k � (� (�))2

(k + (1 + �)� (�))2
:

Note that when �i = �j = �, Assumption A5 implies

k > k � � (�)
�
1 +

�� (�)

� (�)

�
= (1 + �)� (�) :

Moreover, when �i = �j = � < �, � (�) = c
1��Q

�
c

1��

�
, so

�0 (�) =
c

(1� �)2

�
Q

�
c

1� �

�
+

c

1� �Q
0
�

c

1� �

��
>

c

(1� �)2
Q

�
c

1� �

�
=
� (�)

1� �:

Hence,

@
�
��i + �

�
j

�
@�i

�����
�i=�j=�

>

�(�)
1�� � (1 + �)� (�)� (� (�))

2

(k + (1 + �)� (�))2
=

(� (�))2 � 2�
1��

(k + (1 + �)� (�))2
> 0:
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(iii) When �i � �j � �, p (�i) = p (�j) = pm and � (�i) = � (�j) = pmQ (pm) � �m. Then,

@
�
��i + �

�
j

�
@�i

= �
 

�m (k � (1 + �j)�m)
k2 � (1 + �i) (1 + �j) (�m)2

!2
< 0:

Noting that ��i + �
�
j is symmetric with respect to �i and �j , we also have

@(��i+��j)
@�j

< 0. �

Proof of Proposition 2: (i) Starting with ��i , notice from (5) that

@��i
@k

=
� (�j)� 2k��i

k2 � (� (�j) + �i� (�i)) (� (�i) + �j� (�j))
;

where the denominator is positive by Assumption A5. By Lemma 2, if �j < �i, then ��i ! 0 as

k ! k, implying that @�
�
i

@k > 0. Next, note that

@2��i
@k2

=
�2
�
��i + k

@��i
@k

�
k2 � (� (�j) + �i� (�i)) (� (�i) + �j� (�j))

� 2k � � (�j)� 2k��i
(k2 � (� (�j) + �i� (�i)) (� (�i) + �j� (�j)))2| {z }

@��
i

@k

=
�2
�
��i + 2k

@��i
@k

�
k2 � (� (�j) + �i� (�i)) (� (�i) + �j� (�j))

:

Hence, @
2��i
@k2

� 0 whenever @��i
@k = 0, so any extremum point must be a maximum. Since ��i is a

continuous function of k, it is �rst increasing with k (from 0) and then decreasing with k (to 0) and

attains a unique maximum when @��i
@k = 0. If �j = �i = �, then the numerator of

@��i
@k is such that

� (�j)� 2k��i < � (�j)�
2k

2 (1 + �)
= �� (�j) < 0;

where the �rst inequality follows because Lemma 2 implies that as k ! k, ��i =
1

2(1+�) , and the

equality follows because k = 1 + � when �j = �i = �. Hence,
@��i
@k < 0 for all k > k.

Turning to ��j , recalling that �i � �j implies � (�i) � � (�j) by Lemma 1, it follows that

evaluated at k ! k,

��j =
� (�i) k � � (�j) (� (�i) + �j� (�j))

k2 � (� (�j) + �i� (�i)) (� (�i) + �j� (�j))
=

� (�j)

� (�j) + �i� (�i)
> 0:

At the other extreme where k !1, ��j ! 0. Moreover,

@2��j
@k2

=
�2
�
��j + 2k

@��j
@k

�
k2 � (� (�j) + �i� (�i)) (� (�i) + �j� (�j))

;

so
@2��j
@k2

< 0 (recall that ��j > 0 in the relevant range) whenever
@��j
@k = 0, implying that as a function

of k, ��j attains a unique maximum. We now show that this maximum is below k, implying that
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��j decreases with k for all k > k. To this end, note that

@��j
@k

=
� (�i)� 2k��j

k2 � (� (�j) + �i� (�i)) (� (�i) + �j� (�j))
:

The sign of the derivative depends on the sign of the numerator. Evaluating it at k ! k and

recalling that ��j =
�(�j)

�(�j)+�i�(�i)
as k ! k, yields

� (�i)� 2�
� (�i) (� (�j) + �i� (�i))

� (�j)
� � (�j)

� (�j) + �i� (�i)
= �� (�i) < 0:

Hence, ��j is decreasing with k for all k > k:

(ii) When �j � �i < �, the horizontal intercept of BRi (�j),
�(�j)
k , shifts to the right as

c increases, while the vertical intercept of BRj (�i),
�(�i)
k , shifts up. As for the vertical intercept

of BRi (�j),
�(�j)

�(�j)+�i�(�i)
, substituting � (�i) = c

1��iQ
�

c
1��i

�
and � (�j) = c

1��jQ
�

c
1��j

�
and

rearranging, yields
� (�j)

� (�j) + �i� (�i)
=

1

1 +
�i(1��j)
1��i

Q
�

c
1��i

�
Q

�
c

1��j

� :

Recalling that " (p) � �pQ0(p)
Q(p) is the elasticity of demand

@

@c

0@Q
�

c
1��i

�
Q
�

c
1��j

�
1A =

1
1��iQ

0
�

c
1��i

�
Q
�

c
1��j

�
� 1

1��jQ
0
�

c
1��j

�
Q
�

c
1��i

�
�
Q
�

c
1��j

��2
=

Q
�

c
1��i

�
cQ
�

c
1��j

�
24 c
1��iQ

0
�

c
1��i

�
Q
�

c
1��i

� �
c

1��jQ
0
�

c
1��j

�
Q
�

c
1��j

�
35

= �
Q
�

c
1��i

�
cQ
�

c
1��j

� �"� c

1� �i

�
� "

�
c

1� �j

��
� 0;

where the inequality follows because by Assumption A2, "0 (p) � 0, so �i � �j implies that

"
�

c
1��i

�
� "

�
c

1��j

�
. Hence, the vertical intercept of BRi (�j),

�(�j)
�(�j)+�i�(�i)

, shifts up when

c increases. Likewise, the horizontal intercept of BRj (�i) shifts to the right. Given that both

BRi (�j) and BRj (�i) shift outward, the sum of ��i and �
�
j increases.

(iii) When �i � �j � �, p (�i) = p (�j) = pm and � (�i) = � (�j) = �m. Substituting in (5)

and (6), the equilibrium investments become

��i =
k
�m � (1 + �i)�

k
�m

�2 � (1 + �i) (1 + �j) ; ��j =
k
�m � (1 + �j)�

k
�m

�2 � (1 + �i) (1 + �j) :
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��i and �
�
j are independent of c and depend on �

m only through k
�m . Hence, the comparative static

result with respect to �m are the opposite of those with respect to k. �

Proof of Proposition 3: Recalling from part (i) of Proposition 1 that ��i � ��j ,

@CS (�i; �j)

@�i
� @CS (�i; �j)

@�j
� ��i (S (0)� S (p (�i)))� (1� ��i ) (S (c)� S (p (�j)))

� [��i (S (0)� S (p (�j)))� (1� ��i ) (S (c)� S (p (�i)))]

= S (p (�j))� S (p (�i)) � 0;

where the last inequality follows because by Lemma 1, �i � �j implies p (�i) � p (�j).

Noting that S0 (p) < 0 and p0 (�i) � 0, it follows that@CS(�i;�j)@�i
� 0 if the sum of the �rst

two terms in (8) is negative, i.e.,

@CS (�i; �j)

@�i
=
@CS (�i; �j)

@�i

@��i
@�i|{z}
(�)

+
@CS (�i; �j)

@�j

@��j
@�i|{z}
(+)

� 0; (19)

where the signs of @�
�
i

@�i
and

@��j
@�i

are due to Proposition 1(i). The following conditions ensure that

(19) holds and are therefore su¢ cient for @CS(�i;�j)@�i
� 0:

(i) If @CS(�i;�j)@�i
� 0 � @CS(�i;�j)

@�j
, both terms of (19) are negative.

(ii) If @CS(�i;�j)@�i
� 0 and ��i + ��j is increasing with �i; using (19) and recalling from part

(i) that @CS(�i;�j)@�i
� @CS(�i;�j)

@�j
,

@CS (�i; �j)

@�i
=
@CS (�i; �j)

@�i| {z }
(�)

@��i
@�i|{z}
(�)

+
@CS (�i; �j)

@�j| {z }
(�)

@��j
@�i|{z}
(+)

� @CS (�i; �j)

@�i| {z }
(�)

@
�
��i + �

�
j

�
@�i| {z }
(+)

� 0:

(iii) Likewise, if @CS(�i;�j)@�j
� 0 and ��i + ��j is decreasing with �i, then,

@CS (�i; �j)

@�i
=
@CS (�i; �j)

@�i| {z }
(+)

@��i
@�i|{z}
(�)

+
@CS (�i; �j)

@�j| {z }
(+)

@��j
@�i|{z}
(+)

� @CS (�i; �j)

@�i| {z }
(+)

@
�
��i + �

�
j

�
@�i| {z }
(�)

� 0:

If the above inequalities are strict, or p0 (�i) > 0, then
@CS(�i;�j)

@�i
< 0. �

Proof of Corollary 1: By Proposition 1(ii), �@��i
@�i

<
@��i
@�i

in the neighborhood of a symmetric

PCO structure, whereas by Proposition 1(iii), �@��i
@�i

>
@��j
@�i

when �i � �j � �. The result then

follows immediately from Proposition 3(ii) and (iii). �
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Proof of Proposition 4: Di¤erentiating CS (�i; �j) with respect to �j yields,

@CS (�i; �j)

@�j
=
@CS (�i; �j)

@�i

@��i
@�j|{z}
(+)

+
@CS (�i; �j)

@�j

@��j
@�j|{z}
(�)

+ ��i
�
1� ��j

�
S0 (p (�j)) p

0 (�j) : (20)

If �i � �j � �, then p0 (�j) = 0 and Proposition 1(iii), @�
�
i

@�j
< �@��j

@�j
. If in addition 0 � @CS(�i;�j)

@�i
�

@CS(�i;�j)
@�j

, then:

@CS (�i; �j)

@�i| {z }
(�)

@��i
@�j|{z}
(+)

+
@CS (�i; �j)

@�j| {z }
(�)

@��j
@�j|{z}
(�)

� @��i
@�j|{z}
(+)

0BBB@@CS (�i; �j)@�i
� @CS (�i; �j)

@�j| {z }
(+)

1CCCA � 0:

If @CS(�i;�j)@�i
< 0 then @CS(�i;�j)

@�j
> 0. �

Proof of Lemma 3: (i) It is clear from (11) that as z ! z, ��i ! 0 and ��j ! 1��i
1��i�j , and as

z !1, ��i ! 0 and ��j ! 0.

(ii) Recalling that z � 1��i�j
(1��i)2

, straightforward di¤erentiation using (11) yields

@
�
��i + �

�
j

�
@�i

=
(1� �j)2 (z � 1)

(z (1� �i) (1� �j) + (1� �i�j))2
> 0;

and
@
�
��i + �

�
j

�
@�j

=
(1� �i)2 (z � 1)

(z (1� �i) (1� �j) + (1� �i�j))2
> 0:

(iii) Straightforward di¤erentiation using (11), yields

@��i
@z

=
(1� �j)Ti (z)

(1� �i)2
�
z2 (1� �j)2 � (1� �i)2 z2

�2 ;
where

Ti (z) = � (1� �j)2 z2 + 2 (1� �j)2 zz � (1� �i)2 z2:

The sign of @�
�
i

@z depends on the sign of Ti (z), which is concave in z and maximized at z = z: Hence

T 0i (z) < 0 for all z > z, and recalling that �j � �i < 1=2,

lim
z!z

Ti (z) = (�i � �j) (2� �i � �j) z2 � 0;

with strict inequality when �j < �i. Since Ti (z) < 0 for z su¢ ciently large as the coe¢ cient of z2

is negative, it follows that ��i is �rst increasing (when Ti (z) > 0) and then decreasing with z (when

Ti (z) < 0) if �j < �i and is decreasing with z for all z > z if �j = �i.
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Likewise,
@��j
@z

=
(1� �j)2 Tj (z)

(1� �i)
�
z2 (1� �j)2 � (1� �i)2 z2

�2 ;
where

Tj (z) = � (1� �j)2 z2 + 2 (1� �i)2 zz � (1� �i)2 z2:

The sign of
@��j
@z depends on the sign of Tj (z), which is concave in z. Now, for all z > z,

T 0j (z) = �2
h
(1� �j)2 z � (1� �i)2 z

i
< 0:

Moreover, recalling that �j � �i,

lim
z!z

Tj (z) = � (�i � �j) (2� �i � �j) z2 � 0:

Hence, Tj (z) < 0 for all z > z, so ��j is decreasing with z for all z > z. �

Proof of Proposition 5: (i) Di¤erentiating (12) with respect to �i; yields

@CS (�i; �j)

@�i
=

cHi�
z2 (1� �i)2 (1� �j)2 � (1� �i�j)2

�3 ;
where the sign of the derivative depends on the sign of

Hi � (1� �j (1� �j)) (1� �i�j)4

� (1� �j)2 (1� �i�j)3 (2 (1� �i) (1� �j) + 1� �i�j) z

+2 (1� �i) (1� �j)2 (1� �i�j)2 (2� �j (4� �i � �i�j)) z2

�2 (1� �i) (1� �j)3 (1� �i�j)
�
(1� �i)2 + (1� �j)2 + �j (1� �i) (1� �i (2� �j))

�
z3

+(1� �i)3 (1� �j)4 (3 + �j (1� �j) + �i (1� �j (3 + �j))) z4

� (1 + �i) (1� �i)3 (1� �j)6 z5:

Since the coe¢ cient of z5 is negative, Hi < 0 when z is su¢ ciently large. Using Mathematica, it

turns out that Hi < 0 for all z > z and all 0 � �j � �i < 1=2.46

(ii) Di¤erentiating (12) with respect to �j ; yields

@CS (�i; �j)

@�j
=

cHj�
z2 (1� �i)2 (1� �j)2 � (1� �i�j)2

�3 ;
46The commad we use is Reduce[Hi � 0 && z > z && 0 � �i < 1=2&& 0 � �j � �i,fz; �i; �jg], where z � 1��i�j

(1��i)2
.

The command returns the output �False�, implying that, given the parameter restrictions, Hi < 0.
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where Hj is similar to Hi, except that �i and �j switch roles. The sign of
@CS(�i;�j)

@�j
is equal to the

sign of Hj , where

lim
z!z

Hj =
�i (�i � �j)2 (1 + �i � �j) (2� �i � �j)2 (1� �i�j)4

(1� �i)4
� 0;

with strict inequality for �j < �i. By contrast, Hj < 0 when z is su¢ ciently large because the

coe¢ cient of z5 is negative.

(iii) Evaluated at �j = �i = �,

Hj = � (1� �)7
�
1 + (z (1� �) + �)

�
z
�
1� �2

�
+ �2

���
z � 1 + �

1� �

�3
< 0; (21)

where the inequality follows because by Assumption A5, z > z = 1+�
1�� when �j = �i = �. �

Proof of Lemma 4: (i) Note from (13) that when �j = �i and m! 1 + �i, ��i ! 0, and

��j !
(1 + �i)� (1 + �j)

(1 + �i)
2 � (1 + �i) (1 + �j)

=
1

1 + �i
:

If �j = �i = �,

��i = �
�
j =

m� (1 + �)
m2 � (1 + �)2

=
1

m+ 1 + �
;

which is approaching 1
2(1+�) when m! 1+�. Moreover, note that ��i ! 0 and ��j ! 0 as m!1.

(ii) By straightforward di¤erentiation,

@
�
��i + �

�
j

�
@�i

= � (m� (1 + �j))2

(m2 � (1 + �i) (1 + �j))2
< 0;

@
�
��i + �

�
j

�
@�j

= � (m� (1 + �i))2

(m2 � (1 + �i) (1 + �j))2
< 0:

(iii) By straightforward di¤erentiation,

@��i
@m

=
� (m� (1 + �i))2 + (�i � �j) (1 + �i)

(m2 � (1 + �i) (1 + �j))2
;

and
@��j
@m

= �(m� (1 + �j))
2 + (�i � �j) (1 + �j)

(m2 � (1 + �i) (1 + �j))2
:

Clearly,
@��j
@m < 0 for all m > 1 + �i and all �j � �i. Moreover,

@��i
@m Q 0 if m R bm � 1 + �i +p

(�i � �j) (1 + �i). When �j = �i, @�
�
i

@m < 0 for all m > 1 + �i. �

Proof of Proposition 6: Straightforward di¤erentiation, using (13), yields

@CS (�i; �j)

@�i
=

B (m� (1 + �j))Mi

(m2 � (1 + �i) (1 + �j))3
;

@CS (�i; �j)

@�j
=

B (m� (1 + �i))Mj

(m2 � (1 + �i) (1 + �j))3
;
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where

Mi � � (1 + �i) (1 + �j) (1� �j�) + (1 + �j) (2 + (1� �i)�)m� (1 + (2 + �j)�)m2 + �m3;

and Mj is similar to Mi, except that �i and �j switch roles. The signs of
@CS(�i;�j)

@�i
and @CS(�i;�j)

@�j

depend on the signs of Mi and Mj , which in turn depend on 4 parameters: �, m, �i, and �j , where

m > 1 + �i, 0 < � � �j � �i < 1=2.

(i) Mi and Mj are positive cubic functions of m (the coe¢ cient of m3 is positive); hence

Mi > 0 andMj > 0 for m su¢ ciently large. If � ! 1=2, then �j ; �i ! 1=2; since m > 1+�i ! 3=2

by Assumption A5, Mi = Mj ! (m� 3=2)3 =2 > 0. Hence, in both cases, @CS(�i;�j)@�i
> 0 and

@CS(�i;�j)
@�j

> 0.

(ii) Note that,

lim
m!1+�i

Mi = � (1 + �i) (�i � �j) (1� (�i � �j))� � 0:

Moreover, limm!1+�i
@Mi
@m = � (�i � �j) (2� (1 + 3�i)�) < 0, where the inequality follows because

� � �i < 1=2 implies that 2 � (1 + 3�i)� > 2 � (1 + 3=2) =2 > 0. Since Mi is a positive cubic, it

follows that Mi < 0 for values of m not too much above 1 + �i, and Mi > 0 otherwise.

Likewise,

lim
m!1+�i

Mj = (1 + �i) (�i � �j) (1 + �) � 0;

and limm!1+�i
@Mj

@m = (1 + �i) (�i � �j)� > 0, limm!1+�i
@2Mj

@m2 = �2 (1 + (1� 2�i)�) < 0, where

the inequality follows because � � �i < 1=2. Since Mj is a positive cubic, Mj > 0 for m not too

far above 1 + �i and it is possible that Mj > 0 for all m if Mj has only one root (rather than 3).

(iii) If � ! 0 and �m! 0,

Mi ! � (m� (1 + �j))2 � (�i � �j) (1 + �j) < 0;

implying that @CS(�i;�j)@�i
< 0, and

Mj ! � (m� (1 + �i))2 + (�i � �j) (1 + �i) ;

which is negative ifm > bm � 1+�i+
p
(�i � �j) (1 + �i) and positive ifm < bm. Hence,@CS(�i;�j)@�j

<

0 if m > bm and @CS(�i;�j)
@�j

> 0 if m < bm:
Straightforward di¤erentiation reveals that

@Mj

@�
= �i (1 + �i) (1 + �j) + (1 + �i) (1� �j)m� (2 + �i)m2 +m3:
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Using Mathematica, the derivative is strictly positive for m > 1 + �i and all 0 � �j � �i < 1=2.47

Hence, as � increases, Mj and hence
@CS(�i;�j)

@�j
are more likely to be positive.

(iv) Evaluated at �i = �j = � � �, Mi =Mj �M , where

M = � (m� (1 + �))2
�
m�

�
1

�
� �

��
:

Hence, @CS(�i;�j)@�i
=

@CS(�i;�j)
@�j

R 0 as m R 1
� � �: �

Proof of Proposition 7: Recall that when the PCO structure is symmetric, k > � (�) (1 + �);

since � (�) = �m as � � �, (15) implies that � (�) � �m

k+(1+�)�m >
�m

2k . Hence,

� (�)� ��� >
�m

2k
� �̂ � �mc
2k + �̂ + �̂c � �mc � �m

=
�m (2k + �̂ + �̂c � �mc � �m)� 2k (�̂ � �mc )

2k (2k + �̂ + �̂c � �mc � �m)

=
2k (�m � �̂ + �mc )� �m (�m � �̂ + �mc � �̂c)

2k (2k + �̂ + �̂c � �mc � �m)

=
(2k � �m) (�m � �̂ + �mc ) + �m�̂c
2k (2k + �̂ + �̂c � �mc � �m)

> 0;

where the last inequality follows because by Assumption A4, k > �m � �̂ � � (p̂).

Expected consumer surplus under semicollusion is given by

CS�� = (���)2 S (pm) + 2��� (1� ���)S (bp) + (1� ���)2 S (pmc ) ;
which is analogous to (16). Comparing CS�� with (16) and noting that pmc > bp > pm > c > 0, it is
clear that CS (�) > CS��. �

Proof of Proposition 8: In the text we show that � (�) > �RJV . Turning to the unit demand

case, substituting �m = B and m � k=B in (15) and (17), the equilibrium levels of investments

under PCO are under RJV are given by

� (�) =
1

m+ 1 + �
; �RJV =

1

m+ 2
:

Note that � (�) > �RJV as � < 1=2.

Using (14), expected consumer surplus under PCO and under RJV are given by

CS (�) =
B
�
1 + � (�+m)2

�
(m+ 1 + �)2

; CSRJV =
B
�
1 + � (1 +m)2

�
(m+ 2)2

:

47The commad we use is Reduce[D [Mj ; �] � 0 && m > 1+�i && 0 � �j � �i < 1=2; f�i; �j :mg]. The command

returns the output �False�, implying that, given the parameter restrictions, @Mj

@�
> 0.
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Notice that CS (1) = CSRJV and

CS0 (�) =
2B
�
� (�+m)2 � 1

�
(m+ 1 + �)3

:

If m is su¢ ciently large, CS0 (�) > 0, so CS (�) < CSRJV for all 0 � � < 1=2. By contrast, if

m! 1 + � (the lower bound on m by Assumption A5), then

lim
m!1+�

CS0 (�)! B (� (2�+ 1)� 1)
4 (1 + �)3

<
B (2� � 1)
4 (1 + �)3

< 0;

where the �rst inequality follows because � < 1=2 and the second follows because 0 < � < 1=2 by

Assumption A3. Hence, if m! 1 + �, CS (�) > CSRJV for all 0 � � < 1=2. By continuity this is

also the case when m is su¢ ciently small. �

Proof of Proposition 9: Note that,

� (�)� �m =
�mc k � ��m (�m � �mc )

(k + (1 + �)�m) (k + �m � �mc )

=
�m (�m � �mc )

(k + (1 + �)�m) (k + �m � �mc )

�
�mc k

�m (�m � �mc )
� �

�
:

Since by de�nition �m > �mc , � (�) > �m if and only if (18) holds. Consumer surplus is higher

under PCO since prices under full merger are either pm or pmc > p
m, whereas under PCO they are

lower and equal to pm, p (�) � pm, or c. �

47



10 References

Airline Business (1998), �Airlines with Ownership by Other Carriers,�June 1998, News, 48.

Alley W. (1997), �Partial Ownership Arrangements and Collusion in the Automobile Industry,�

Journal of Industrial Economics, 45, 191-205.

Amundsen E. and L. Bergman (2002), �Will Cross-Ownership Re-Establish Market Power in the

Nordic Power Market,�The Energy Journal, 23, 73-95.

Antón M., F. Ederer, M. Giné, and M. Schmalz (2021), �Innovation: The Bright Side of Common

Ownership?�https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3099578.

Antón M., F. Ederer, M. Giné, and M. Schmalz (2022), �Common Ownership, Competition, and

Top Management Incentives,�mimeo, https://�orianederer.github.io/common_ownership.pdf

Aoki R. and Y. Spiegel (2009), �Pre-Grant Patent Publication and Cumulative Innovation,� In-

ternational Journal of Industrial Organization, 27, 333�345.

Azar J., M. Schmalz, and I. Tecu (2018), �Anti-competitive E¤ects of Common Ownership,�The

Journal of Finance, 73(4), 1513-1565.

Backus M., C. Conlon, and M. Sinkinson (2021), �Common Ownership and Competition in the

Ready-to-Eat Cereal Industry,�Discussion paper, National Bureau of Economic Research.

Backus M., C. Conlon, and M. Sinkinson (2021), �Common Ownership in America: 1980-2017,�

American Economic Journal: Microeconomics, 13(3), 273-308.

Banal-Estañol A., J. Seldeslachts, and X. Vives, (2020), �Diversi�cation, Common Ownership,

and Strategic Incentives,�AEA Papers and Proceedings, 110, 561�564.

Baumol W. and J. Ordover (1994), �On the Perils of Vertical Control by a Partial Owner of a

Downstream Enterprise,�Revue d�économie Industrielle, 69 (3e trimestre), 7-20.

Bayona A. and A. L. López, (2018), �Silent Financial Interests and Product Innovation,�Eco-

nomics Letters, 170, 109�112.

Bolle F. and W. Güth (1992), �Competition Among Mutually Dependent Sellers,� Journal of

Institutional and Theoretical Economics, 148, 209-239.

48



Bresnahan T. and S. Salop (1986), �Quantifying the Competitive E¤ects of Production Joint

Ventures,�International Journal of Industrial Organization, 4, 155-175.

Brito D., R. Ribeiro, and H. Vasconcelos (2014), �Measuring Unilateral E¤ects in Partial Hori-

zontal Acquisitions.�International Journal of Industrial Organization, 33, 22�36.

Brod A. and R. Shivakumar (1999), �Advantageous Semi-Collusion,�The Journal of Industrial

Economics, 47(2), 221-230.

Burnside A. and A.Kidane (2020), �Common Ownership: An EU Perspective,� Journal of An-

titrust Enforcement, 8, 456�510.

Choi J. P. (1993), �Cooperative R&D with Product Market Competition,�International Journal

of Industrial Organization, 11, 553�571.

Dietzenbacher E., B. Smid, and B. Volkerink (2000), �Horizontal Integration in the Dutch Finan-

cial Sector,�International Journal of Industrial Organization, 18, 1223-1242.

European Commission (2013), �Towards More E¤ective EU Merger Control,�Commission Sta¤

Working Document, available at http://ec.europa.eu/competition/consultations/2013_merger_control/

Federico, G., G. Langus, and T. Valletti (2018), �Horizontal Mergers and Product Innovation,�

International Journal of Industrial Organization, 59, 1�23.

Fershtman C. and N. Gandal (1994), �Disadvantageous Semicollusion,� International Journal of

Industrial Organization, 12, 141-154.

Flath D. (1991), �When is it Rational for Firms to Acquire Silent Interests in Rivals?,� Interna-

tional Journal of Industrial Organization, 9, 573-583.

Flath D. (1992), �Horizontal Shareholding Interlocks,�Managerial and Decision Economics, 13,

75-77.

Gilo D. (2000), �The Anticompetitive E¤ect of Passive Investment,�Michigan Law Review, 99,

1-47.

Gilo D., Y. Moshe, and Y. Spiegel (2006), �Partial Cross Ownership and Tacit Collusion,�RAND

Journal of Economics, 37, 81-99.

49



Greenlee P., and A. Raskovich (2006), �Partial Vertical Ownership,�European Economic Review,

50(4), 1017�1041.

Heim S., K. Hüschelrath, U. Laitenberger, and Y. Spiegel (2022), �The Anticompetitive E¤ect

of Minority Share Acquisitions: Evidence from the Introduction of National Leniency Pro-

grams,�American Economic Journal: Microeconomics, 14, 366-410.

Hunold M. and K. Stahl (2016), �Passive Vertical Integration and Strategic Delegation,�RAND

Journal of Economics, 42, 891-913.

Jullien B. and Y. Lefouili (2018), �Mergers and Investments in New Products,� TSE Working

Paper, n. 18-949.

Kamien K., E. Muller, and I. Zang (1992), �Research Joint Ventures and R&D Cartels,� The

American Economic Review, 82(5), 1293-1306.

Levy N, Y. Spiegel, and D. Gilo (2018), �Partial Vertical Integration, Ownership Structure and

Foreclosure,�American Economics Journal: Microeconomics, 10(1), 132-180.

Lewellen K. and M. Lowry (2021), �Does Common Ownership Really Increase Firm Coordina-

tion?�Journal of Financial Economics, 141(1), 322-344.

Li Y. and J. Zhang (2021), �Product Positioning with Overlapping Ownership,�Economics Let-

ters, 208, 110058.

López Á. and X. Vives (2019), �Overlapping Ownership, R&D Spillovers, and Antitrust Policy,�

Journal of Political Economy, 127, 2394-2437.

Malueg D. (1992), �Collusive Behavior and Partial Ownership of Rivals,� International Journal

of Industrial Organization, 10, 27-34.

Motta M. and Tarantino E. (2021), �The E¤ect of Horizontal Mergers, when Firms Compete in

Prices and Investments,�International Journal of Industrial Organization, 78, 102774.

Nain A. and Y. Wang (2016), �The Product Market Impact of Minority Stake Acquisitions,�

Management Science, 64(2), 825-844.

Nitta K. (2008), �Corporate Ownership Structure in Japan� Recent Trends and Their Impact,�Fi-

nancial Research Group, Available at http://www.nli-research.co.jp/english/economics/2008/eco080331.pdf

50



OECD (2012), �The Role of E¢ ciency Claims in Antitrust Proceedings,� Policy Roundtables,

Available at http://www.oecd.org/competition/E¢ ciencyClaims2012.pdf.

Ono H., T. Nakazato T., C. Davis, and W. Alley (2004), �Partial Ownership Arrangements in the

Japanese Automobile Industry; 1990-2000, Journal of Applied Economics, 12(2), 355-367.

Rei¤en D. (1998), �Partial Ownership and Foreclosure: An Empirical Analysis,�Journal of Reg-

ulatory Economics, 13(3), 227-44.

Reitman D. (1994), �Partial Ownership Arrangements and the Potential for Collusion,�Journal

of Industrial Economics, 42, 313-322.

Reynolds R. and B. Snapp (1986), �The Competitive E¤ects of Partial Equity Interests and Joint

Ventures,�International Journal of Industrial Organization, 4, 141-153.

Rock E. and D. Rubinfeld (2018), �Antitrust for Institutional Investors,�Antitrust Law Journal,

82(1), 221-278.

Schinkel M.P. and Y. Spiegel (2017), �Can Collusion Promote Sustainable Production?,� Inter-

national Journal of Industrial Organization, 53, 371-398.

Shelegia S. and Y. Spiegel (2012), �Bertrand Competition when Firms Hold Passive Ownership

Stakes in One Another,�Economics Letters, 114, 136-138.

Spiegel (2013), �Backward Integration, Forward Integration, and Vertical Foreclosure,� CEPR

Discussion Paper No. DP9617

Stenbacka R. and G. Van Moer (2022), �Overlapping Ownership and Product Innovation,�Mimeo

Vives X. (2020), �Common Ownership, Market Power, and Innovation,�International Journal of

Industrial Organization, 70, 102528.

51


