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Abstract

The standard explanation for soft sediment deformation is associated with overturn of inverted density gradients. However,

in many cases, observations do not support this interpretation. Here we suggest an alternative in which stably stratified layers

undergo a shear instability during relative sliding via the Kelvin–Helmholtz Instability (KHI) mechanism, triggered by

earthquake shaking. Dead Sea sediments have long stood out as a classical and photogenic example for recumbent folding

of soft sediment. These billow-like folds are strikingly similar to KHI structures and have been convincingly tied to

earthquakes. Our analysis suggests a threshold for ground acceleration increasing with the thickness of the folded layers.

The maximum thickness of folded layers (order of decimeters) corresponds to ground accelerations of up to 1 g. Such an

acceleration occurs during large earthquakes, recurring in the Dead Sea.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The ubiquitous stratification in low-energy depos-

its, where density typically increases with depth, inhi-

bits gravitational instabilities of the Rayleigh–Taylor

type. Yet such deposits commonly show structural

evidence of mechanical instabilities experienced in

the unconsolidated state. Layer-parallel displace-
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ments, not uncommon in soft sediments, force shear

between layers and possibly drives instabilities of the

Kelvin–Helmholtz (KH) type [1]. Layer-parallel shear

in post-depositional situations can be driven by a

number of mechanisms such as sloping substrates or

water flow above the sediments. Yet, soft sediment

deformations are observed also on vanishing slopes

and at calm water environments. Sediments in the

Dead Sea basin provide long environmental records

comprising finely laminated layers, radiometrically

dated to a precision of tens to hundreds years [2].

Laminated lake deposits, such as in the Quaternary
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Dead Sea, provide spectacular examples for such

deformation structures (Fig. 1) [2]. These structures

have been tied to strong earthquakes [3–8], providing

a source for shear energy. Earthquakes may leave

several types of marks on soft laminated beds, includ-

ing faulting, folding and fragmentation. Counting

laminas (thought to represent seasonal deposition)

provides a resolution approaching annual that recently

enabled matching of particular deformed laminas to

historically documented earthquakes [3].

The folding of soft sediments appears at various

intensities, seemingly indicating various stages of

the deformation. Folding can evolve from a wavy
Fig. 1. Examples of different geometry of sediment foldings: (1a)

linear wavy geometry, (1b) coherent billow vortices, and (1c)

turbulent mixed breccia layer (Photos were taken from the Dead

Sea region). In (1a) the speculated original condition supporting

KHI is illustrated schematically: Two layers, of thickness H, ini-

tially horizontal and stably stratified (q1Nq2), experience an earth-

quake shaking in the x direction. In response to the shaking, the

denser lower layer moves more slowly than the upper one, forming

shear at the interface. The interface, located initially at z =0, was

perturbed becoming unstable with a wavy shape.
shape (Fig. 1a) which can be distorted further to a

billow-like or recumbent form (Fig. 1b). The layer

may deform further and become fully turbulent,

creating a thoroughly mixed breccia layer featuring

fragments from the original laminas (Fig. 1c)

[3,5,6].

Here we examine the feasibility for a KHI mech-

anism by which folds are being formed. The shear in

the present context is one of fluid flow, not related to

the elastic cyclic shear loading prior to liquefaction

[9]. KHI was examined in numerous laboratory

experiments [10] and numerical simulations [11].

The mechanism involves two horizontal layers that

are stably stratified (the light layer overlies the heavy

one, Fig. 1a). The layers move horizontally in the

same direction but with different speeds, creating

shear in the layers’ interface. Such shear tends to

rotate the beds, giving rise to an instability that uplifts

the heavy layer above the lighter one (Fig. 1a). As a

result, a wavy structure of billow vortices, distorted by

the shear, is formed; the heavier lifted layer tends to

collapse into the lighter layer and mix with it (Fig.

1b). If the shear persists, a mixed turbulent boundary

layer is developed at the interface where the local

shear within the billows forms secondary unstable

vortices (note the small scale wiggles in Fig. 1b).

These vortices cascade energy into smaller scales

and promote the mixing [1] (Fig. 1c).

We attempt to construct a simple physical model to

capture the dynamics of the phenomenon (Section 2)

and examine its potential instability (Section 3). Fi-

nally, we discuss the applicability of the model to

Dead Sea deposits (Section 4).
2. A simple model of sediment KHI

The folds amount to evidence that deformation

took place while the sediment was in a state of un-

consolidated mud, reasonably treated as a fluid. Dur-

ing the processes of sedimentation and loss of fluid,

the suspension can be viewed as an array of particles

falling through the suspending fluid at a steady state

velocity. The sedimentation velocity decreases with

increasing mass fraction v. Gradients in v tend to

form sharp fronts between layers of uniform density,

and these fronts travel through the suspension as

kinematic waves [12]. Hence, the layers are distin-
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guished by mass fraction vj, of solid material in the

sediment. The layers’ density is described by

qj ¼ vjqs þ 1� vj
� �

qw; ð1Þ

where the index j numerates the layers, qs is the

suspended solid material density and qw is the sus-

pending fluid density (corresponding to either fresh or

salty water). We consider a simple configuration of

two neighboring sediment layers j =1,2 (layer-1

underlies layer-2 so that q1Nq2, Fig. 1a) with thick-

ness H (A typical value of qs=2500 kg/m3 where the

water density might increase from 1000–1300 kg/m3

with increasing salinity, for fresh and salty water. A

typical value of the fraction in the sediments is v =2 /3
and thus Eq. (1) suggests a mean typical density value

of the sediments at the range of qm =2000�2100 kg/

m3. The typical fraction difference between two suc-

cessive sediment layers Dv =v1�v2, is of the order of

0.1 which gives Dq =150�120 kg/m3bqm, for both

fresh and salty water.). Observations indicate that the

typical unstable perturbed wavelength is small com-

pared to the layer interface length but has the same

order of the sediment layer width (aspect ratio at the

order of unity) [2]. Hence we take for simplicity an

infinite horizontal interface (with no vertical bound-

aries). We consider a case where away from the inter-

face at say z =FH the perturbation vertical velocity

vanishes. We assume that the problem is essentially

two dimensional (where x is the direction of the earth-

quake shaking and z is the vertical), hydrostatic, in-

compressible and irrotational away from the interface.

Introducing viscosity to the problem is non-trivial

since it is impossible to recover from the present

folded sediment layers the original viscosity qualities

of the paleo unconsolidated mud before deformation.

Moreover, the effective viscosity of a thick suspension

under dynamic conditions depends on sizes and

shapes of suspended particles. These properties are

not well characterized in many natural deposits, and

their quantitative effect on viscosity is poorly known.

Even if we assume an isotropic viscosity within the

layers it is straightforward to show that the viscosity

vanishes for an incompressible irrotational flow. Then

the viscosity should be incorporated in the internal

boundary condition by requiring continuity of the

normal stress along both sides of the interface [1].

These normal stress cannot be quantified however,
from present observations. Hence, here we take a

simple approach of representing viscosity in terms

of the bulk Rayleigh damping [13]:

f v ¼ � ru; ð2Þ

where fv provides the damping force per unit mass,

u=(u, w) is the 2-D velocity vector and for a given

dominant frequency r is taken as a constant. Damping

should be sufficient to reduce the motion significantly

within the time scale of an earthquake duration, how-

ever it should not be too strong as to diminish the

motion completely. We can estimate the damping by

using the response to seismic shear waves, as the

attenuation of these would dissipate energy in a man-

ner similar to that of internal gravity waves [14]. The

quality factor, Q, is the ratio between the stored

energy and the energy lost during a cycle. Due to

the Rayleigh damping the wave amplitude decays as

exp (�rt) and its energy as exp (�2rt). Hence,

Q =2k / [1�exp (�2r / f)]ckf / r, were f represents

the frequency of the most energetic wave, if we

assume r / fb1. Recent estimates based on in situ

measurements for sediments [15], provide typical

values of Q ~30F20, thus suggesting r ~0.1f.

We treat the acceleration perturbation of earthquake

waves in the soft sediment as pressure gradients, with a

horizontal component P ¼ � B
Pp
Bx
. The pressure gradi-

ent force is assumed to be damped by Eq. (2), within

the time scale of the duration of strong motion. As a

result the layers reach an approximate balance where

both layers move in concert but the denser lower layer

moves more slowly than the upper one, i.e.

rUj ¼
P
qj

ð3Þ

(Uj denotes the mean velocity of layer j), forming

shear at the interface. We are focusing on cases where

hindered settling creates minor differences between

adjacent layers, hence we assume that Dqbqm =

(q1+q2) / 2. Then Eq. (3) gives

DU ¼ P
rq2

m

Dq; ð4Þ

where DU =U2�U1N0 and Dq =q1�q2N0.

Hence, under these simplified assumptions a Kel-

vin–Helmholtz like configuration of stratified sheared

bi-layer is being established within the time scale of
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an earthquake. Next we examine the possible modal

instability resulted from the KHI mechanism.
3. Damped growth of sedimental KHI

We seek normal mode wavelike solutions for the

perturbation in the form of exp[ik(x�ct)], where k is

wavenumber and c is phase speed (which could be

complex). Then in the Appendix we derive the

damped bounded KHI dispersion relation,

c ¼ Um þ i

�
rH

2K

��
F

�
1þ

�
K
r

�2

K K � 2Ri tanh Kð Þ
�1=2

� 1

�
ð5Þ

where

Um ¼ q1U1 þ q2U2

q1 þ q2

; K ¼ kH ;

K ¼ DU

H
; N2 ¼ g

qm

Dq
H

; Ri ¼
�
N

K

�2

:

ð6a; b; c; d; eÞ

Um is density weighted mean velocity, K is the

nondimensional wavenumber scaled by the layers’

width H, K can be regarded as the bulk mean shear

and N as the bulk buoyancy (Brunt–Väisälä) frequen-

cy. The square of the ratio of the two latter terms is

known to be the bulk Richardson number [13].

Modal instability is obtained when the imaginary

part of the phase speed, ci, of Eq. (5) is positive,

possible only for wavenumbers K NKc =2Ritanh Kc,

which is precisely the explicit criterion for the inviscid

case of bounded KHI. Using Eq. (6c,e), the latter

condition can also be rewritten in terms of the mini-

mal shear required to make a specific wavelength

unstable in a given density stratification, i.e.,

DUNNH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 tanh K=K

p
. The difference between the

viscid and the inviscid KHI is therefore not in the

range of instability but in the exponential growth rate,

GR =kci s
�1,

GR ¼ r

2

��
1þ

�
K
r

�2

K K � 2Ri tanh Kð Þ
�1=2

� 1

�
ð7Þ
which is always smaller than the inviscid KHI growth

rate (when r =0).

A useful measure for earthquake effectiveness is

the ground acceleration imposed by the shaking, com-

monly normalized by the gravitation acceleration g.

Hence, defining the averaged ground acceleration as

a =C /qm, then using Eqs. (4) and (6c), the condition

for instability can be rewritten as a=gN r=Nð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tanh K=K

p
. The typical perturbed wavelength

which is found in the observations (c.f. Fig. 1) has

an aspect ratio around unity, i.e., k /H ~1 or K ~2k
and tanh (K)c1. Therefore, the lower limit to the

averaged ground acceleration for the development of

such perturbations is

a

g
N

rffiffiffi
p

p
N

¼ r

ffiffiffiffiffiffiffiffiffiffiffiffi
qmH

pgDq

s
: ð8Þ

The threshold for instability increases with

damping r and with the square-root of the layer

thickness. The threshold is inversely proportional to

the square-root of the density difference suggesting

that a high density difference is less stable. By

contrast, density difference tends to suppress the

inviscid KHI. This somewhat surprising result for

the viscid case considered here is solely due to the

increasing bulk shear for a given pressure gradient.

The growth rate Eq. (7) then takes the form

GR ¼ r

2

��
1þ

�
K
r

�2

4p p � Rið Þ
�1=2

� 1

�
: ð9Þ

Finally, using Eqs. (4) and (6), then Eq. (9) can be

rewritten explicitly in terms of (H, a /g)

GR ¼ r

2

��
1þ

�
2pgDq
r2qmH

�2��
a

g

�2

� r2qm

pgDq
H

��1=2
� 1

�
: ð10Þ

Fig. 2 shows the calculated growth rate (normal-

ized by the frequency of the dominant seismic wave)

as a function of (H, a /g). For this example we take

typical values of the Dead Sea sediment composi-

tion. The solid material, with density qs =2500 kg/

m3, is suspended into salty water with density

qw =1200 kg/m3. The averaged suspended mass frac-
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Fig. 2. An example for the KHI growth rate, normalized by frequency f, as a function of the layer thickness H, and the normalized ground

acceleration a /g, as given by (10). Here we take typical values of the Dead Sea sediment composition (c.f. text) of qm =2000 kg/m3, and

Dq =130 kg/m3. The damping coefficient is taken as r =0.1 Hz. The parabolic solid line marks the threshold for instability (c.f. 8). For onset of

linear KHI wave folding (as in Fig. 1a), the growth rates must be in the order of the driving seismic wave frequency (order of 1 Hz). Coherent

billows (Fig. 1b) require high growth rates, where fully turbulent mixing, leading to breccia layers (Fig. 1c), requires yet higher growth rates.
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tion, vm, and its difference between the layers, Dv,
are 2 /3 and 0.1, respectively, yielding qmc2000

kg/m3, and Dq =130 kg/m3. The damping coefficient

was taken as r =0.1f, where the frequency of the

most energetic seismic waves f was taken as 1 Hz.

The layers are stable for ground accelerations a,

smaller than 0:07
ffiffiffiffiffiffiffi
Hg

p
(where H is in meters), c.f.

the parabolic threshold solid line and Eq. (8). For

onset of linear KHI wave folding (as in Fig. 1a), the

growth rates must be in the order of f. Coherent

billows (Fig. 1b) require high growth rates, where

fully turbulent mixing, leading to breccia layers (Fig.

1c), requires yet higher growth rates. For example,

for an acceleration a =0.7g, layers of 1 m thickness

or thicker are stable. Thinner layers become unstable,

yet for thickness larger than about half a meter, the

growth rate might not suffice for the development of

instability during the seismic wave half-period. Bil-

low structures can develop in layers with a thickness

of fractions of a meter, while fully turbulent mixing

is expected for layers with thickness of the order of

centimeters.
4. Discussion

Laminated fine-grained sediments, deposited on

horizontal bottom under low-energy conditions, are

expected to be stably stratified, so density increases

with compaction and hence with depth. Since gravita-

tional Rayleigh–Taylor instabilities are not likely

under these conditions, alternative mechanisms should

be at work. From an observational aspect, the striking

similarity of structures in fine-grained laminated

deposits to KHI billows, suggests that shear plays a

central role in soft sediment deformation (For exam-

ple, Fig. 3 is a photograph of KHI billow clouds taken

in New Zealand during the summer. An atmospheric

inversion layer yields both strong stratification and

wind shear which together enable KHI to develop.

Please note the similarity between Figs. 1b and 3.).

The simple analysis presented here examines the

feasibility of KHI in stably stratified sediments. We

contend that shear energy is available in various de-

positional settings such as sloping substrate, high

water energy environment, or earthquake prone



Fig. 3. Kelvin Helmholtz billow clouds in the New Zealand summer sky. The clouds are formed along an atmospheric inversion layer (of strong

stratification, where temperature increases with height). The inversion layer tends to isolate the surface boundary layer wind from the free

atmosphere above it and as a result a shear is formed along the inversion layer. The combination of shear, stratification and humidity provides

the conditions for KHI billow clouds to develop. The photo was taken by Mr. Attay Harkabi on January 2001.

E. Heifetz et al. / Earth and Planetary Science Letters 236 (2005) 497–504502
regions. We focus here on earthquake related settings,

yet the analysis is valid for other scenarios, as long as

the pressure gradients are known.

The application of the model to earthquake settings

is based on a translation of the instrumentally measur-

able ground accelerations to pressure gradients. As a

preliminary model it does not provide precise corre-

spondence between field observations and the actual

driving ground accelerations. Moreover, we cannot

rule out alternative sources for pressure gradients,

such as surface and internal waves in the depositing

water body.

In deriving the model we have neglected differen-

tial displacement between grains and suspending

fluid. Such displacement is evident in the very exis-

tence of billows in sedimentary rocks. While KHI are

very common in our surroundings, the resulting struc-

tures are ephemeral due to the stabilizing force of

gravity. By contrast, billows are so well preserved in

sediments due to water loss and consolidation shortly

after the onset of the instability. We assume here that

on the time scale of development of KHI, the differ-

ential displacement between grains and suspending

fluid is negligible, yet in the time scale of attenuation

of the seismic energy, the differential displacement is

sufficient to preserve some of the structure.

Tentative evidence for such differential displace-

ment can be seen in Fig. 1c. [5] have interpreted such

structures as a case for differential displacement be-

tween grain and water during shaking. Water loss in

the lower cohesive zone to the overlying homoge-

neous zone may have provided upward flow to com-

pletely suspend this zone.
The analysis assumes that all displacement fields

are confined to a vertical plane. This assumption is

valid away from the earthquake source, where P, S,

and surface waves have dispersed sufficiently. Some

of the most photogenic cases of billows in the Dead

Sea laminated deposits indeed show such two-dimen-

sional displacement fields. In the vicinity of the earth-

quake source, the displacement field is three

dimensional, and a more complete analysis is re-

quired. At the same time, well documented three

dimensional observations will be useful for the

study of the vicinity of the earthquake source.

The introduction of bulk damping to represent

viscosity, a key simplification of the present analysis,

assumes that the viscous damping of the suspension

is proportional to the velocity. This representation

bypasses the formidable challenge of assessing the

effective viscosity under the dynamic conditions of

shaking of a thick suspension, in which the sus-

pended particles exhibit a wide range of shapes

and scales [16]. The advantage in the present formu-

lation is that the actual coefficient of damping can be

estimated from direct experimental observations in a

shaking tank. In the absence of such experimental

data, we parametrize the bulk Rayleigh damping

coefficient in terms of the driving frequency domi-

nant in the acceleration spectrum of the earthquake.

The time scale for damping should be sufficiently

short as to balance the driving pressure gradient

during the time around peak acceleration, say a

tenth of the acceleration cycle. This is the rationale

behind choosing a bulk Rayleigh friction coefficient

10 times the frequency. The estimation of damping is
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also in agreement with the attenuation of seismic

shear waves, as the attenuation of these would dis-

sipate energy in a manner similar to that of internal

gravity waves [14].

The force balance between the driving pressure

gradient and Rayleigh damping yields an expression

for the mean shear between the two layers Eq. (4),

turning out proportional to the density difference. This

leads to the somewhat nonintuitive result that damped

KHI increases with the density difference Eq. (8).

This result is only valid in the range of small density

difference (with respect to the mean density), a range

in which Eq. (4) results from Eq. (3). Hence high

density difference cannot lead to instability at low

acceleration. The prediction of Eq. (8), namely that

the instability is promoted by increasing the density

difference (at the low range of Dq /qm) can be sub-

jected to experimental verification.

The ability of the analysis to rationalize field obser-

vations suggests that KHI is a plausible mechanism

for deformation of stably stratified soft sediments.

Earthquake-triggered KHI seems plausible for depos-

its laid horizontally in calm water, as the case is for

the earthquake prone Dead Sea basin. The present

study sets a foundation for quantitative analysis of

deformation structures in laminated sediments and for

the extraction of dynamic conditions during earth-

quakes. This can be a contribution to earthquake

science and hazard assessment.

Our analysis indicates that density inversion is not

required from the physics of earthquake-induced soft

sediment deformation. By extension, we expect that

the Kelvin–Helmholtz will provide explanations to

common geophysical situations, where gravitational

instabilities are inhibited by density stratification.

These may include the emplacement of ophiolites,

mixing of the upper mantle with the denser lower

mantle, and entrainment by hot plumes of dense

slugs at the core mantle boundary.
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Appendix A. Bounded modal KHI in the presence

of Rayleigh damping:

Writing the 2-D Navier–Stokes [1] in the equation,

f should become fr as defined in Eq. (2).

Bu

Bt
þx � uþj

juj2

2
¼ � 1

q
jp�jU þ f ; ðA:1Þ

the vorticity x =j�u, p, q, U =gz, are the pressure,

density and the gravitation potential. t denotes time

and j=(Bx, 0, Bz). The viscosity, fr, is given by Eq.

(2). We assume a mean hydrostatic balance in the

vertical direction and a mean horizontal balance in

the form of Eq. (3).

We seek normal mode wavelike solutions for the

perturbation in the form of exp[ik(x�ct)]. Every-

where except at the interface, the layers are assumed

irrotational, x =0. While the normal modes result

from the basic state vorticity d-function on the inter-

face, the companion set of solutions of the continuous

spectrum results from rotation within the layers. The

continuous spectrum is neutral and therefore tradi-

tionally neglected in the context of linear stability.

However, due to non-orthogonality between the con-

tinuous spectrum and the normal modes, an interac-

tion between the two sets of solutions might lead to a

super non-modal growth in finite time [17]. This sort

of growth mechanism is however beyond the scope of

this work. The modal velocity can be written then in

terms of the velocity potential w; u=�Dw. Then Eq.

(A.1) can be rewritten in the barotropic gradient form:

j �
�
Bw
Bt

þ rw

�
þ
�
juj2

2
þ p

q
þ U

�#
¼ 0;

"

ðA:2Þ

and Eq. (2) has been used to represent the viscosity.

Eq. (A.2) implies that

�
�
Bw
Bt

þ rw

�
þ
�
juj2

2
þ p

q
þ U

�
¼ F tð Þ;

ðA:3Þ
where F(t) is some function of time only. The LHS of

Eq. (A.3) can be regarded as the Rayleigh viscid

unsteady flow generalization of the Bernoulli conser-

vation (indicated by the second brackets of the LHS).

Assuming also incompressibility of the layers
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(jui=0) and decomposing the perturbation from the

basic state so that ui=(Ui+uiV, 0, wiV), prime indicates

the perturbation, then wi=�Uix +wiV. Writing

wiV= w̃i(z) exp [ik(x�ct)], the incompressibility con-

strain yields the Laplace equation for the perturbation

streamfunction (j2wiV=0).
The boundary conditions of vanishing the vertical

velocity on the horizontal outer boundaries of the

layers, located at z =FH, give the solution:

w̃wi zð Þ ¼ ŵwi

cosh kHð Þ cosh k H � jzjð Þ½ 
; ðA:4Þ

where ĉi is the perturbation’s velocity potential am-

plitude on the two sides of the interface at z=0.

Before and after the time when the perturbation is

initiated the pressure on both sides of the interface

should be even. This allows us to set the time function

F(t) by using the latter condition in Eq. (A.3) at z=0,

prior to the perturbation:

1

2
q1U

2
1 � q2U

2
2

� �
¼ ðq1 � q2ÞF tð Þ; ðA:5Þ

which suggests F(t) to be taken as constant. Perturb-

ing the interface with a vertical displacement fV= f̂
exp [ik(x�ct)], linearizing the kinetic energy juij2=2
cU2

i =2�
BwV

i

Bx
Ui; then pressure continuity across the

perturbed interface, together with Eqs. (A.3-5), yield

q1½ik U1 � cð Þŵw1 þ rŵw1 � gf̂f


¼ q2 ik U2 � cð Þŵw2 þ rŵw2 � gf̂f
i
: ðA:6Þ

h
In order to obtain the dispersion relation we also

imply that the vertical velocity at z=0 is equal to the

Lagrangian time derivative of the interface vertical

displacement,

w z ¼ 0ð Þ ¼
�

B

Bt
þ udj

�
f̂f: ðA:7Þ

Next we linearize the RHS of Eq. (A.7) with

respect to the basic state. Recall that w =�BwV /Bz,
we can then write for the two sides of the interface

tanh kHð Þŵw1 ¼ � i U1 � cð Þf̂f;
tanh kHð Þŵw2 ¼ � i U2 � cð Þf̂f:

Using that Dqbqm, Eqs. (A.6) and (A.8) provide

the dispersion relation of Eq. (5).
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