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ABSTRACT

In unconsolidated granular media, the state of stress has
a major effect on the elastic properties and wave velocities.
Effective media modeling of granular packs shows that a ver-
tically oriented uniaxial state of stress induces vertical trans-
verse isotropy (VTI), characterized by five independent
elastic parameters. The Rayleigh wave velocity is sensitive to
four of these five VTI parameters. We have developed an
anisotropic Rayleigh wave inversion that solves for four of
the five independent VTI elastic parameters using anisotropic
Thomson-Haskell matrix equations that can be used to deter-
mine the degree of anisotropy and the state of stress in granu-
lar media. The proposed method incorporates an initial model
search guided by rock-physics models and dispersion curve
inversion that uses a gradient-based solver. We carried out the
inversion on a synthetic example and a real data set in which
we inverted for in situ elastic moduli of unconsolidated sands
at very low effective stress. The synthetic data example results
showed that we are able to correctly estimate the granular
media’s effective elastic moduli. When the inversion was car-
ried out with real data, the results indicate that the sand at very
low effective stress is elastically anisotropic and that it is
stiffer along the vertical axis than the horizontal axis. Further-
more, our results are in agreement with past studies related to
granular media.

INTRODUCTION

Elastic-wave velocities in unconsolidated sediments vary with
stress (Bachrach et al., 1998; Zimmer et al., 2002). Although the
stress field in granular media is heterogeneous and complex (Geng
et al., 2001), effective media modeling of granular sands tries to

associate an average stress field that represents the average sediment
response. Therefore, analysis of seismic waves in granular media
can help to determine the effective elastic properties from which
we may be able to estimate the state of stress in media such as sands.
In the case of self-loading granular media, one can consider two

simplified states of stress: a hydrostatic state and a triaxial stress
state. In the latter, the vertical stress is much greater than the maxi-
mum and the minimum horizontal stresses. Unconsolidated sands,
subject to a state of stress loading where the vertical stress is greater
than horizontal stress, develop larger elastic moduli in the direction
of the applied stress relative to elastic moduli in the perpendicular
direction; therefore, the media is anisotropic. Stress-induced
anisotropy has been observed in many laboratory and theoretical
studies (Nur and Simmones, 1969; Walton, 1987; Sayers, 2002). In
contrast, granular media under hydrostatic loading is statistically
isotropic.
Surface waves sample the shallow subsurface with varying wave-

lengths. High frequencies (short wavelengths) sample the very shal-
low part of the sedimentary column, whereas low frequencies
(long wavelengths) penetrate deeper into the ground. Surface-wave
dispersion occurs when velocity varies with depth (Aki and Ri-
chards, 1980). Note that the surface-wave velocity is related to the
media’s structure in a complex manner. The surface-wave phase-
velocity dispersion curve is usually modeled using the Thomson-
Haskell method (Thomson, 1950; Haskel 1953). The method
models surface-wave phase velocities in a horizontally stratified
media, and it is commonly used as the forward model operator in
Rayleigh and Love wave inversions.
Seismic characterization of unconsolidated granular media has

been the focus of several published works. Bachrach et al. (1998)
estimate a beach sand in situ P-wave (VP) and S-wave (VS) velocity
profile based on first-arrival analysis. Jacob et al. (2008) carry out a
laboratory experiment in which dispersion curves of guided acous-
tic surface modes were inverted to solve for P- and S-wave veloc-
ities in a pack of uniformly sized glass beads in a Plexiglas box.
Bodet et al. (2010) extend the work of Jacob et al. (2008) and carry
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out a surface-wave inversion to estimate the VS profile. Gofer and
Bachrach (2012) carry out Rayleigh wave Bayesian inversion to
estimate an in situ 1D S-wave velocity model in a thick Aeolian
sand dune. Bergamo and Socco (2016) carry out a multimode sur-
face-wave inversion on synthetic and real data, showing the uplift of
using higher modes when trying to solve for VS and VP models in
unconsolidated sands.
Theoretical effective medium models assume a granular pack of

identical perfect spheres. These models predict that the effective
elastic moduli have a pressure power dependence of 1/3 (Digby,
1981; Walton, 1987). The aforementioned published work either
solved for the P- and S-wave velocity model assuming the pressure
dependency of 1/3 or solved jointly for P- and S-wave velocities and
the pressure power dependency. Moreover, in each case, a hydro-
static state of stress was assumed. Gofer and Bachrach (2013) in-
vestigate the effects of a uniaxial stress field, caused by vertical
loading on surface-wave phase velocity. Their results show similar-
ities between dispersion curves from a field experiment on a sand
dune and a synthetic model of granular media under a uniaxial stress
state. This suggests that, in a sand dune, the vertical stress is greater
than the horizontal stress.
In this study, we explore the effect that anisotropy has on Ray-

leigh wave phase velocities using the Thomson-Haskell matrix for
vertical transverse isotopic (VTI) media. It should be noted that VTI
equations for horizontally stratified media for Rayleigh and Love
waves were derived in the past by Anderson (1961) and Ke et al.
(2011). In this study, we present another derivation of VTI equa-
tions. The equations are detailed in Appendix A.We also investigate
anisotropic surface-wave inversion for granular media and explore
the model parameters’ uncertainty of the elastic moduli. Finally, we
show results from a synthetic example and a real data set example of
anisotropic Rayleigh wave inversion.

THOMSON-HASKELL METHOD FOR VTI MEDIA

Elastic wave propagation in a stratified media can be solved
through a boundary value problem. The problem can be posed as a
finite number of linear first-order differential equations with variable
coefficients. The solution of such a system composed of motion-
stress equations can be presented using the product integral (also
known as the propagator) of the coefficients’ matrix (Gilbert and
Backus, 1966). The Thomson-Haskell method uses this system to
solve the dispersion of Rayleigh and Love waves under the approxi-
mation of stratified media made of homogeneous layers. The first-
order differential P-SV wave motion stress equations can be defined
by

dfðzÞ
dz

¼ AðzÞfðzÞ; (1)

where

AðzÞ¼

2
664

0 k C44ðzÞ−1 0

−kC13ðzÞC33ðzÞ−1 0 0 C33ðzÞ−1
k2ðC11ðzÞ−C13ðzÞ2C33ðzÞ−1Þ−ω2ρ 0 0 kC13ðzÞC33ðzÞ−1

0 −ω2ρ −k 0

3
775;

(2)

where ω is the angular frequency, ρ is the density, k is the horizontal
wavenumber, and Cij are the elastic stiffness parameters of a VTI
media and the indices represent Voigt notations

fðzÞ ¼ ½u; w; σzx; σzz�T; (3)

where u and w are the horizontal and vertical displacement compo-
nents, respectively, and σxz and σzz are the stress components. Given
that each layer in the stratified media is homogeneous, the motion-
stress vector at the bottom of the layer can be defined as a function of
the motion-stress vector at the top of the layer as

fðzÞ ¼ Gðz; z0Þfðz0Þ; (4)

where

Gðz; z0Þ ¼ eðz−z0ÞAðzÞ; (5)

where G, defined in Appendix A, is based on the eigenvector matrix
of matrix A (Aki and Richards, 1980). Applying continuity of dis-
placement and stress at the interfaces between layers, we can express
the relationship between the free surface and the bottom layer with
the propagator matrix as

fðznÞ ¼ Pðzn; z0Þfðz0Þ ¼ Gn−1 : : :G2G1fðz0Þ: (6)

Subscript n indicates the number of the layer in the stratified media.
The Rayleigh wave is the nontrivial solution of the P-SV wave-

field along a surface between the air and a solid. Given the boundary
conditions of zero stress at the free surface and no upgoing wave
coming from the bottom half-space, the nontrivial solution must sat-
isfy

2
664
P\

S\

0

0

3
775 ¼ F−1

nþ1Pðzn; z0Þfðz0Þ ¼ Bfðz0Þ; (7)

where F is the solution of the eigenvalue problem of matrix A (Ap-
pendix A). The nontrivial solution for a given stack of homogeneous
horizontal layers exists for pairs of angular frequency and horizontal
wavenumbers that satisfies

����B31 B32

B41 B42

���� ¼ 0; (8)

where B represent elements in matrix B. Matrix B is a 4 × 4 matrix,
and the subscripts in equation 8 represent the row and column indi-
ces, respectively.

STRESS-STATE EFFECT ON DISPERSION CURVE

Following Walton (1987), unconsolidated granular media in a
state of hydrostatic stress are statistically isotropic. Therefore, the
effective elastic stiffness tensor for these media can be represented
using two effective elastic moduli: the bulk modulus and the shear
modulus. When the same granular pack is subjected to uniaxial com-
pression, the medium is statistically transversely isotopic, which can
be described by five independent elastic constants: C11, C33, C44,
C66, and C13. The elastic moduli are dependent on the porosity of
the medium, the coordination number, and the effective stress. In both
states of stress, the elastic moduli have a power-law dependency on
stress of 1/3. TheWalton (1987) effective elastic moduli are explicitly
detailed in Appendix B. Assuming that the vertical effective stress is
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the overburden stress, we can calculate the stiffness matrix and the
effective elastic moduli at each depth point for uniaxial and/or hydro-
static loading conditions.
To investigate the effect of the state of stress in granular media on

the Rayleigh wave dispersion curve, we model a medium that is
made of perfectly round and smooth grains of quartz with a porosity
of 37% and average coordination number of four. For simplicity, we
assume that the stress is only depth-dependent (no change in density
or porosity as a function of depth, an assumption consistent with
sand dunes or beach sand at the near surface). Note that as the ef-
fective stress increases with depth, the effective elastic moduli at
each depth level increase. This leads to the depth-dependent effec-
tive elastic stiffness tensor shown in Figure 1 for
a uniaxial state of stress. Note that the model in
Figure 1 has Thomsen’s (1986) VTI parameters
ε and δ equal −0.31 and −0.35, respectively; ε is
negative because overburden stress makes C33 >
C11. The calculated dispersion curves of the hy-
drostatic stress state model (blue line) and the uni-
axial stress state model (red line) are shown in
Figure 2. Surface-wave phase velocities are slower
when we assume uniaxial loading. In this case,
phase velocities are 35% slower because the aver-
age phase-velocity difference between the two
models is 80 m∕s. This difference is constant
along the curves because both models assume the
same power dependence in effective stress of 1/3.
This difference between the curves shows how
sensitive surface waves are to the stress state.

MODEL PARAMETER
UNCERTAINTY ANALYSIS

The Rayleigh wave phase velocity can be writ-
ten in its nonlinear implicit form:

Rðf; k; C11; C33; C44; C13; ρ; hÞ ¼ 0; (9)

where f is the frequency and k is the horizontal
wavenumber; C11, C33, C44, and C13 are the elas-
tic stiffness vectors; ρ is the density vector; and h
is the layer thickness vector. The vectors contain
the values of each parameter in every layer. In
surface-wave inversion problems, we solve for properties ofN num-
ber of layers givenM number of picked phase velocities. In shallow
unconsolidated dry granular medium where the effective elastic
moduli can change rapidly as a function of depth, there is a need
to discretize the medium to many layers. In this case, the inverse
problem can become underdetermined. To reduce the model param-
eter space, we define model parameters that are a function of depth
based on the effective medium theory of granular media where we
assume that effective stress increases with depth z. Each elastic
parameter is related to depth by

A11 ¼ a11z1∕n;A33 ¼ a33z1∕n;A44 ¼ a44z1∕n;A13 ¼ a13z1∕n;

(10)

where Aij are the density normalized elastic stiffness parameters,
which have velocity squared units; a11, a33, a44, and a13 are the
depth-independent coefficients of A11, A33, A44, and A13, respec-

tively; and n is the power-law exponent. Also, the model parameter
set we invert for is m ¼ ½a11; a33; a44; a13; n�T . The density is fixed
and assumed to be known, as per our constant porosity assumption.
To understand our ability to solve for specific model parameters,

we carry out an uncertainty analysis. We formulate the Rayleigh
wave inverse problem as a Bayesian inverse problem, in which
the posterior probability density function (PDF) is defined as
pðmjdÞ ∝ pðdjmÞpðmÞ, where pðdjmÞ is the likelihood and pðmÞ
is the prior. The objective function, assuming normal distribution, is
a two-term objective function consisting of a data misfit term and a
model prior misfit term (equation C-1). At the minimum of the ob-
jective function, the gradient of the function vanishes and the region

Figure 1. Effective Lamè parameter and shear modulus associated with hydrostatic
stress state and effective elastic stiffness of the induced VTI response associated with
the uniaxial stress state. (a) P-wave modulus, C11 and C33, (b) Lamè parameter and C13,
and (c) shear modulus and C44.

Figure 2. Rayleigh wave dispersion curves, fundamental mode, and
first higher mode assuming a hydrostatic stress state (blue lines) and
a uniaxial stress state (red lines).

Anisotropic Rayleigh wave inversion MR193
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is expressed with the Hessian (equations C-2 and C-3). Following
Duijndam (1988), we approximate the N-dimensional ellipsoid
shape around the minimum with eigenvalue decomposition to de-
termine which parameters are well-resolved and which are poorly
resolved. Well-resolved parameters are associated with high eigen-
values, and poorly resolved ones are related to low eigenvalues.
First, we plot (Figure 3) the eigenvectors and eigenvalues of the

Hessian of the objective function defined in equation C-1 given
that the observed Rayleigh wave dispersion curve includes only
a fundamental mode. The picking error of the Rayleigh wave phase
velocity Vf is assumed to have a normal distribution, where
Vf ∼ NðVf; 100Þ. Prior model uncertainty is also assumed to have
a normal distribution. We assume a variance of 0.2 km∕s2 for each
of the depth-independent coefficients and variance of 0.2 for n. In
the eigenvector matrix V, we consider VT

ij to be the jth cosine di-
rection related to the jth model parameter and to the ith eigenvalue.
Examining eigenvectors and eigenvalues in Figure 3, we can easily
determine which model parameter is best resolved and which model
parameter is the most difficult one to recover. We see that we are
able to resolve well-model parameters a44 and n associated with the
first and the second eigenvectors, respectively; a11 and a13 are re-
lated to eigenvectors 3 and 4. Eigenvalues 3 and 4 have the same
order of magnitude, meaning that we can resolve the two parameters
in an equal manner. In the fourth eigenvector, we see that a11 and
a33 have cosine values of approximately 0.4, showing that, in the
model parameter space, the model parameters are not orthogonal to
each other. As a result, error in estimating one parameter will leak
into the estimation of another model parameter. The most challeng-

ing model parameter to recover is a33. It is associated with the fifth
eigenvector and eigenvalue, which is three orders of magnitude
lower than the first eigenvalue.
Figure 4 shows eigenvectors and eigenvalues of the Hessian

given that observed Rayleigh wave dispersion curve phase velocity
includes the fundamental mode and the first higher mode. The ei-
genvector plot shows that a13 is better resolved relative to the case
in which the Rayleigh wave dispersion curve included only funda-
mental mode phase velocities. Eigenvectors four and five show that
including the first higher mode causes an increase in the intercon-
nectivity between a11 and a33. This implies that it will be harder to
estimate a11 accurately relative to the case in which the Rayleigh
wave dispersion mode includes only the fundamental mode. Errors
in estimating a33, which is associated with the lowest eigenvalue,
will cause errors in a11 estimation. Figures 3 and 4 suggest that the
general dispersion curve trend can be reproduced with a44 and n.
Figure 4 suggests that when the observed Rayleigh wave dispersion
curve includes the fundamental mode and the first higher mode,
there is more interconnectivity between a11 and a33.

SURFACE-WAVE INVERSION METHOD

Inverting a Rayleigh wave dispersion curve is very challenging.
The forward model operator is nonlinear, the model parameter sen-
sitivity is complex, and the inversion solution is nonunique. As a re-
sult, gradient-based methods will converge to a local minima biased
by the initial model (Luke et al., 2003; Dal Moro et al., 2007; Socco
and Boiero, 2008). Therefore, prior to the inversion, we search for an

initial model with a low data misfit to provide to
the gradient-based solver.
We solve for the effective medium parameters

in two steps. In step 1, we scan for the effective
medium associated with the lowest data misfit
between the modeled and the observed Rayleigh
wave dispersion curves. This is done by initially
calculating the depth-independent coefficients
a11, a33, a44, and a13 using Walton’s (1987)
equations. We calculate the coefficients for
four different cases: a pack of infinitely rough
spheres assuming a hydrostatic stress state, a
pack of infinitely rough spheres assuming a uni-
axial stress state, a pack of perfectly smooth
spheres assuming a hydrostatic stress state, and
a pack of perfectly smooth spheres assuming a
uniaxial stress state. In each case, we scan for
different values of porosity and coordination
number, assuming we have prior information re-
garding the grains’ elastic properties. We then
calculate different Rayleigh wave dispersion
curves for each set of a11, a33, a44, and a13 given
a different value of power-law depth dependency
n. Zimmer et al. (2007) show that the power-
law stress dependency of P- and S-wave velocity
in dry sands can range from 1/3 to 1/6. This
is equivalent to 1/1.5 to 1/3 power-law stress
dependency of the effective elastic moduli.
Therefore, we only model Rayleigh wave phase
velocities for n ranging from 1.5 to 3. Finally, a
misfit is calculated between the observed and the
modeled dispersion curves.

Figure 3. (a) Rayleigh wave dispersion curve made of the fundamental mode, (b) eigen-
vector matrix, and (c) logarithmic scaled plot of eigenvalues.

Figure 4. (a) Rayleigh wave dispersion curve made of the fundamental mode and first
higher mode, (b) eigenvector matrix, and (c) logarithmic scaled plot of eigenvalues.
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In step 2, we use a quasi-Newton solver to minimize the objective
function shown in equation C-1. The objective function is com-
posed of two terms: The first term minimizes the fit to the observed
data, and the second term penalizes deviation from the prior model.
Note that the quasi-Newton method is dependent on an initial model
and finds a local minimum. In this case, the initial model is the
model with the lowest data misfit from step 1. This two-step ap-
proach does not require extensive scanning of the model parameter
space and enables us to provide the Rayleigh wave inversion with a
good starting model.

SYNTHETIC EXAMPLE

We test our surface-wave inversion by inverting an exact theo-
retical Rayleigh wave dispersion curve calculated for a sand model
made of spherical quartz grains with the elastic parameters detailed
in Table 1. First, we calculated the depth-independent coefficients
for coordination numbers ranging from six to 10, with a sampling
grid of 0.5, and then we modeled dispersion curves for each com-
bination of the aij coefficients sets and n. In this example, we varied
n values from two every 0.01 up to a maximum value of three. Fig-
ure 5 shows the fundamental mode of the true model (the black line
with black circles) on top of the modeled curves color coded by
their data misfit. In the figure, the modeled curve with the slowest
phase velocities is associated with an aij set of effective medium
with a coordination number of six and a uniaxial stress state. The
modeled dispersion curve with the fastest phase velocities is related
to an aij set of effective medium with a coordination number of 10
and a uniaxial stress state. The combination of calculated aij set,

assuming porosity of 37%, a coordination number of nine and a
power-law depth dependency of n ¼ 2.72, generated the modeled
curve with the lowest data misfit. Therefore, we chose this model to
be the inversion’s starting model. Its aij and the depth-power
dependency values are detailed in Table 1. The effective medium
values in Table 1 show that by scanning through different effective
mediums, we were able to get an initial model that is very close to
the true model.
Once we chose an initial model, we inverted the dispersion curve.

In this synthetic example, we assumed no data uncertainty and that
no prior information is available. The density is assumed to be con-
stant and equal to the true model value. Figure 6 shows Rayleigh
wave fundamental mode dispersion curves of the true model (blue
line), the initial model (green line), and the inverted model (red line).
Table 1 shows model parameters of the true model, the initial model,
and the inverted model. Figure 6 shows the theoretical dispersion
curve that was reproduced by inversion results, and Table 1 shows
that all five model parameters were well-estimated. We see that the
power-law depth dependency was accurately estimated. We also see
in Table 1, that a33, the hardest model parameter to recover, had only
a 0.1 km∕s2 error. The synthetic example shows that we can solve for
the effective medium of dry unconsolidated granular media using the
proposed two-step approach.

REAL-DATA EXAMPLE

A multichannel analysis of surface wave (MASW) experiment
was conducted on an Aeolian sand dune at Beit Yanai Beach, Israel.
The sand comprises mainly of quartz grains with a mean diameter of
0.2 mm (Figure 8) and the in situ porosity was estimated to be 37%.
A 2D seismic spread line with a 24 bit seismic acquisition system
was placed 200 m from the water’s edge on a dune. The line was
composed of 96 27 Hz geophones with a group interval of 0.2 m.
The seismic source was a 1.5 kg hammer hitting a flat aluminum
plate. And the data were acquired by carrying out single-sensor re-
cording. Figure 7a shows the seismic line placed on the sand and
Figure 7b shows a microscopic image of a sand sample taken from
the dune.
We created a shot supergather from all 25 shot locations along the

seismic line by summing common-offset traces. The 1D assumption

Table 1. Rayleigh wave inversion results of synthetic example.

km2∕s2 a11 a33 a44 a13 n

True model 0.79 2.03 0.24 0.52 2.80

Initial model 0.81 2.15 0.27 0.54 2.72

Inverted model 0.79 2.02 0.24 0.51 2.80

Figure 5. True model dispersion curve (black) and modeled dis-
persion curves of different effective granular mediums color coded
by the data misfit.

Figure 6. True model dispersion curve (blue line with circles), ini-
tial model dispersion curve (green line with circles), and inverted
model dispersion curve (red line).
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was validated by comparing picked dispersion curves from all differ-
ent shots. Figure 8 shows a shot supergather and phase-velocity spec-
trum with the retrieved dispersion curve from a supergather. The
fundamental mode can be picked from the velocity spectrum from
30 to 80 Hz, whereas higher modes are not visible within that range.
Once we picked the dispersion curve, we compared it with dispersion

curves modeled from the same granular media models used in the
synthetic example. Figure 9 shows the picked phase velocities (black
line with black circles) on top of the modeled curves color coded by
their data misfit. The modeled curves are based on aij sets of the
effective medium assuming a uniaxial stress state and perfectly
smooth spheres. Following Gofer and Bachrach (2013), we chose

a soft configuration with zero tangential stiffness.
Note that because we had prior information on the
in situ porosity, we limited our scanning to only
the coordination number to calculate the depth-in-
dependent coefficients. The modeled fundamental
mode curve with the smallest data misfit was cal-
culated from an aij set, assuming a coordination
number of 10. Murphy’s (1982) coordination
number for 37% porosity is about nine. The
power-law depth dependency of the model is
n ¼ 2.75. This model was chosen as the inver-
sion’s starting model.
Table 2 shows inversion results of the five

model parameters. Figure 10 shows the picked
Rayleigh wave fundamental model (blue) and
the modeled dispersion curve (red); the modeled
effective elastic medium based on inversion re-
sults is plotted in Figure 11. Figure 10 shows
that the observed dispersion curve is well-fitted
by the inverted dispersion curve. The inversion
results shown in Table 2 show a sand model

of a11 ¼ 1.17 ðkm∕sÞ2, a33 ¼ 2.6 ðkm∕sÞ2, a44 ¼ 0.39 ðkm∕sÞ2,
and a13 ¼ 0.14 ðkm∕sÞ2 with a power dependence in depth of
1/2.43.

Figure 7. (a) The seismic line placed on the sand and (b) a microscopic image of a
sample taken from the dune.

Figure 8. (a) Shot supergather and (b) observed phase-velocity
spectrum and picked fundamental mode Rayleigh wave dispersion
curve.

Figure 9. Picked Rayleigh wave dispersion curve (black) and mod-
eled dispersion curves of different effective granular mediums color
coded by data misfit.

Table 2. Rayleigh wave inversion results of real-data example.

km2∕s2 a11 a33 a44 a13 n

Initial model 0.86 2.30 0.29 0.57 2.75

Inverted model 1.17 2.60 0.39 0.14 2.43
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COMPARISON WITH PREVIOUS RESULTS FOR
GRANULAR MEDIA

The inverted results are in agreement with Zimmer et al. (2007),
who showed that, at low effective stress, the P- and S-wave veloc-
ities stress dependency varies from 1/4 to 1/6. This is equivalent to
1/2 to 1/3 power-law dependency of the effective elastic parameters.
Walton (1987) predicts a 1/3 power-law dependence assuming that
all spheres are identical, have constant porosity, and a constant co-
ordination number. This discrepancy was attributed in the past to an
increase in coordination number with an increase in effective stress
and buckling of particle chains (Goddard, 1990; Cascante and San-
tamarina, 1996).
Based on inverted a33 and a44, we calculated a 2.58 VP∕VS

ratio. The calculated ratio is high when compared with values
observed by previous publications using isotropic assumptions.
In works by Bachrach et al. (2000), Jacob et al. (2008), and Bodet
et al. (2010), all VP∕VS ratios range from 1.5 to 2. This result is
more comparable with ratios calculated by Zimmer (2003). At
low effective stress, Zimmer (2003) calculates a VP∕VS ratio rang-

ing up to 2.6. Note that Bachrach et al. (2000) estimate Poisson’s
ratio based on the best-fitted Hertz-Mindlin model by taking into
account grain angularity and assuming that the media consists of
slipping and nonslipping grain contacts. Zimmer (2003), Jacob
et al. (2008), and Bodet et al. (2010) estimate the stress-indepen-
dent coefficient and power-law stress dependency for P- and
S-velocity individually. The results shown here estimated four
of the five VTI elastic constants given a single power-law
dependence.
Thomsen’s (1986) ε and δ from the surface-wave inversion

results were calculated to be ε ¼ −0.28 and δ ¼ −0.39. A value
of ε ¼ −0.3 was obtained from velocity measurements from
uniaxial compression testing on dry Santa Crus sand by Ruiz
(2003). The sand sample had high porosity of 0.45, mean grain size
of 0.25 mm, and grain density of 2.606. These values are similar to
the Aeolian sand on which the seismic experiment was carried out.
The VTI model inverted from Rayleigh wave dispersion indicates
that the medium is stiffer along the vertical axis than the horizon-
tal axis.

CONCLUSION

We introduced an anisotropic Rayleigh wave inversion that sol-
ves for an in situ effective elastic medium in unconsolidated dry
sands. The inversion solves for depth-independent coefficients of
density-normalized elastic parameters A11, A33, A44, and A13 and
for their power dependency in depth. We demonstrated on a syn-
thetic example that we are able to solve for all five parameters by
inverting fundamental mode and incorporating rock-physics mod-
eling to obtain a good initial model. We also showed surface-wave
inversion results from a MASW experiment on an Aeolian sand
dune. We were able to estimate the in situ 1D profile of the effective
elastic medium. The estimated power dependency in depth 1/2.43 is
in agreement with published observations. Inversion results also
show that the in situ VP∕VS ratio is high, 2.58, and that Thomsen’s
ε and δ have values of approximately −0.3. Results indicate that the
sand is elastically anisotropic and that it is stiffer along the vertical
axis than the horizontal axis.
Anisotropic Rayleigh wave inversion can provide a better insight

of in situ elastic properties in unconsolidated granular media than
isotropic Rayleigh wave inversion. Solving for four independent
elastic parameters A11, A33, A44, and A13 and their power depend-
ence in depth makes Rayleigh wave inversion a more robust tool to
characterize in situ granular media. We acknowledge that, to carry
out better characterization of granular media, we must further ex-
pand the methodology presented here. Our initial model search is
constrained by the limitation of the Walton model. We can only
calculate effective elastic moduli for either a hydrostatic stress state
or a uniaxial stress state, and we are limited to have prior informa-
tion on the grain composition of the unconsolidated rock. We must
also further develop our method performing joint anisotropic Ray-
leigh wave and Love wave inversion as well as joint anisotropic
surface wave and guided wave inversion. Love waves are a function
of A44 and A66. A joint inversion will enable us to estimate A44 more
accurately. Moreover, we will be able solve for all five independent
VTI elastic parameters. Joint anisotropic surface wave and guided
wave inversion might help to improve the accuracy of the estimated
A11 and A33.

Figure 10. Picked Rayleigh wave dispersion curve (blue) and mod-
eled Rayleigh wave dispersion curve (red). Modeled dispersion
curve is based on inversion results.

Figure 11. Effective density normalized elastic stiffnesses as a
function of depth based on surface-wave inversion results.
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APPENDIX A

ANISOTROPIC THOMSON-HASKELL MATRIX

Here, we present the explicit analytical expression of matrix A’s
eigenvalues, eigenvectors (matrix F), and matrix G. To do so, we
begin by defining several terms:

χ ¼ A11A33 − A2
13; (A-1)

α ¼ k4χð2 � A44 þ A13Þ; (A-2)

β ¼ −ðk2ω2Þð2A33A44 þ A13A33 þ 3A13A44 þ 2A2
13 − χÞ;

(A-3)

γ ¼ ω4ðA33 − A44Þ; (A-4)

ζ1 ¼ 2k4χðA44 þ A13Þ − k2ω2ð2A33A44 þ A13A33 þ 3A13A44

þ 2A2
13 þ χÞ þ ω4ðA33 − A44Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ β þ γ

p
;

ζ2 ¼ 2k4χðA44 þ A13Þ − k2ω2ð2A33A44 þ A13A33 þ 3A13A44

þ 2A2
13 þ χÞ þ ω4ðA33 − A44Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ β þ γ;

p
(A-5)

where Aij are the density normalized elastic stiffnesses, k is the
wavenumber, and ω is the angular frequency.
The square of the eigenvalues of matrix A are defined as

λ21 ¼

�
−k2A13A44þ 1

2
ðk2χ−ω2ðA33þA44Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþβþ γ

p Þ
�

A33A44

;

λ22 ¼

�
−k2A13A44þ 1

2
ðk2χ−ω2ðA33þA44Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþβþ γ

p Þ
�

A33A44

:

(A-6)

Matrix A’s eigenvector are

F11¼
�
A2
44ζ1þ

�
k2χð2A33þA13Þ−ω2

�
2A33A44þA13ðA33þA44Þ

þA13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþβþγ

p ����
k2A13A44−0.5

�
k2χ−ω2ðA33þA44Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþβþγ

p ��

×
��

k2χ−ω2ðA33þA44Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþβþγ

p ��
−1
ζ−11 ;

F21¼−λ1A44k−1
�
k2A13ζ

−1
1

�
A2
44ζ1þ

�
k2χð2A33þA13Þ−ω2

×
�
2A33A44þA13ðA33þA44ÞþA13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþβþγ

p ���
þA44

	

×
�
ðk2χ−ω2ðA33þA44Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþβþγ

p
Þ
�
−1
;

F31¼0.5λ1A44ρζ
−1
1

�
k2χð2A44þA13Þ−ω2

×
�
2A33A44þA13ðA33þA44ÞþA13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþβþγ

p ��
;

F41¼0.5A44ρk−1;

F12¼
�
A2
44ζ2þ

�
k2χð2A33þA13Þ−ω2

�
2A33A44þA13ðA33þA44Þ

þA13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþβþγ

p ��	�
k2A13A44−0.5

×
�
k2χ−ω2ðA33þA44Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþβþγ

p �	

×
��

k2χ−ω2ðA33þA44Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþβþγ

p ��
−1
ζ−12 ;

F22¼−λ2A44k−1
�
k2A13ζ

−1
2

�
A2
44ζ2þ

�
k2χð2A33þA13Þ−ω2

×
�
2A33A44þA13ðA33þA44ÞþA13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþβþγ

p ���
þA44

�

×
��

k2χ−ω2ðA33þA44Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþβþγ

p ��
−1
;

F32¼0.5λ1A44ρζ
−1
2

�
k2χð2A44þA13Þ−ω2

×
�
2A33A44þA13ðA33þA44ÞþA13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþβþγ

p ��

F42¼0.5A44ρk−1; (A-7)

where matrix F is

F ¼

2
664
F11 F12 F11 F12

F21 F22 −F21 −F22

F31 F32 −F31 −F32

F41 F42 F41 F42

3
775: (A-8)

At this point, we define another quantity that is a function of the
eigenvalues and will be used when we define matrix G:

κ ¼ ðλ1 − λ2Þðλ1 þ λ2Þ: (A-9)
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The components of matrix G for each layer are

G11 ¼G33 ¼ðk2 ½χðA33A44Þ−1−A13A−1
33 −ω2A−1

44 �½coshðλ1hÞ−coshðλ2hÞ�þλ21 coshðλ2hÞ−λ22 coshðλ1hÞÞκ−1 ;

G12 ¼−G43 ¼

0
BB@
½k3ðχðA33A44Þ−A13A33−k−2ω2A44−k−2λ22Þ−kω2A−1

33 ð1þA13A44 Þ�λ1 sinhðλ1hÞ−

½k3ðχðA33A44Þ−A13A33−k−2ω2A44−k−2λ21Þ−kω2A−1
33 ð1þA13A44 Þ�λ2 sinhðλ2hÞ

1
CCAκ−1 ;

G13 ¼

0
BBB@
½−k2A−1

33 ðρ−1þA13ðA44ρÞ−1Þþðk2 ½χðA33A44Þ−1−A13A−1
33 �−ω2A−1

44 −λ22Þ�λ1 sinhðλ1hÞ−

½−k2A−1
33 ðρ−1þA13ðA44ρÞ−1Þþðk2 ½χðA33A44Þ−1−A13A−1

33 �−ω2A−1
44 −λ21Þ�λ2 sinhðλ2hÞ

1
CCCAκ−1 ;

G14 ¼−G23 ¼½kA−1
33 ð1þA13A−1

44 Þðcoshðλ1hÞ−coshðλ2hÞÞ�ðκρÞ−1 ;

G21 ¼G34 ¼

2
664
ðkA13A33ðk2A13A−1

33 þω2A−1
33 þλ22Þ−kA−1

33 ðk2χA−1
33 −ω2Þð1þA13A−1

44 ÞÞλ−11 sinhðλ1hÞ−

ðkA13A33ðk2A13A−1
33 þω2A−1

33 þλ21Þ−kA−1
33 ðk2χA−1

33 −ω2Þð1þA13A−1
44 ÞÞλ−12 sinhðλ2hÞ

3
775ðκρÞ−1 ;

G22 ¼G44 ¼½ðk2A13A−1
33 −ω2A33þλ21Þcoshðλ2hÞ−ðk2A13A−1

33 −ω2A33þλ22Þcoshðλ1hÞ�κ−1 ;

G24 ¼

2
664
ð−k2A13A−2

33 ρ
−1ð1þA13A−1

44 Þ−A−1
33 ρ

−1ðk2A13A−1
33 −ω2A−1

33 −λ22ÞÞλ−11 sinhðλ1hÞ−

ð−k2A13A−2
33 ρ

−1ð1þA13A−1
44 Þ−A−1

33 ρ
−1ðk2A13A−1

33 −ω2A−1
33 −λ21ÞÞλ−12 sinhðλ2hÞ

3
775κ−1 ;

G31 ¼

2
664
ð−ðk2A13ρA−1

33 Þðk2χA33−ω2−ω2A13A−1
33 Þþðk2χρA33−ω2ρÞð−k2A13A−1

33 þk2χA−1
33 A

−1
44 Þ−ω2A−1

44 −λ22Þλ1 sinhðλ1hÞ−

ð−ðk2A13ρA−1
33 Þðk2χA33−ω2−ω2A13A−1

33 Þþðk2χρA33−ω2ρÞð−k2A13A−1
33 þk2χA−1

33 A
−1
44 Þ−ω2A−1

44 −λ21Þλ2 sinhðλ2hÞ

3
775κ−1 ;

G32 ¼−G41 ¼½kρðk2χA−1
33 −ω2−ω2A13A−1

33 Þðcoshðλ1hÞ−coshðλ2hÞÞ�κ−1 ;

G42 ¼

2
664
ð−k4χA−1

33 þk2ω2ð1þ2A−1
33 Þþω4A−1

33 þω2λ22Þλ−11 sinhðλ1hÞ−

ð−k4χA−1
33 þk2ω2ð1þ2A−1

33 Þþω4A−1
33 þω2λ21Þλ−12 sinhðλ2hÞ

3
775κ−1ρ: (A-10)

APPENDIX B

REVIEW OF GRANULAR MEDIA EFFECTIVE
MEDIUM APPROXIMATION

Walton (1987) explicitly expresses effective elastic moduli for a
random packing of identical spheres corresponding to the hydro-
static stress state and the uniaxial stress state, where the spheres are
assumed to be either infinitely rough or perfectly smooth. For the
hydrostatic stress case, unconsolidated media can be assumed to be
statistically isotropic. Therefore, its effective stiffness tensor can be
represented using two effective elastic moduli, bulk and shear modu-
lus. For a pack of perfectly smooth spheres, the bulk and the shear
modulus are defined as

Geff ¼
1

10

�
3ð1 − φÞ2c2hPi

π4B2

�
1∕3

; Keff ¼
5

3
Geff ; (B-1)

where φ, c, and hPi are the porosity, coordination number, and the
effective hydrostatic stress, respectively; B is derived directly from
the grains’ Lamé moduli, λ and n

B ¼ 1

4π

�
1

μ
þ 1

λþ μ

�
; (B-2)

where the grains are assumed to be made of isotropic mineral.
When the same granular pack is subjected to uniaxial stress along

the vertical direction, the vertical strain is then defined by

−e3 ¼ −
�hσ3i6π2B
ð1 − φÞn

�
2∕3

: (B-3)

Under uniaxial compression, the medium is statistically trans-
versely isotropic, which can be described by five independent elas-
tic constants C11, C33, C44, C66, and C13. For a pack of perfectly
smooth spheres, the effective moduli are given by

C11 ¼ 3α;C33 ¼ 8α;C44 ¼ α;C66 ¼ α;C13 ¼ 2α; (B-4)

where α is

α ¼ ð1 − φÞcð−e3Þ1∕2
32π2B

: (B-5)

Equation B-4 shows that, for granular packs under uniaxial load-
ing, C33 > C11.
We assume that the vertical effective stress in unconsolidated dry

sands is the overburden stress

σOB ¼
Z

z

0

ρðzÞgdz; (B-6)

where ρðzÞ is the density at depth z and g is the acceleration due to
gravity. Using equations B-1 through B-5, we can calculate the ef-
fective elastic moduli at each depth point using uniaxial and/or hy-
drostatic loading conditions.

APPENDIX C

REVIEW OF BAYESIAN INVERSION
UNCERTAINTY ANALYSIS

Formulating an inverse problem as a Bayesian inverse problem,
in which the posterior PDF is defined as pðm∕dÞ ∝ pðdjmÞpðmÞ,
the objective function, assuming normal distribution, is then given
by (Duijndam, 1988):

JðmÞ ¼ 1

2
ðd −GðmÞÞC−1

d ðd −GðmÞÞ

þ 1

2
ðm0 −mÞC−1

m ðm0 −mÞ; (C-1)

where d is the picked Rayleigh wave dispersion curve, m0 is the
prior model, and Cm and Cd are the data and prior model covariance
matrices, respectively. In the region where JðmÞ is close to its mini-
mum, Jðm̂Þ, JðmÞ can be expended in a Taylor series (Brad, 1974)

JðmÞ ¼ Jðm̂Þ þ ∂J
∂mi

Δmþ 1

2
ΔmT ∂2J

∂mi∂mj
Δm; (C-2)

where Δm ¼ m − m̂. At the minimum, the gradient, ∂J∕∂mi, van-
ishes and the region around the minimum is then expressed by the
Hessian as

2½JðmÞ − Jðm̂Þ� ¼ ΔmT ∂2J
∂mi∂mj

Δm: (C-3)

The shape of equation C-3 is an N-dimensional ellipsoid. We can
approximate the shape of the ellipsoid without the requirement to
map the a posteriori PDF with eigenvalue decomposition of the
Hessian:

∂2J
∂mi∂mj

¼ VΛ2VT; (C-4)

where V is the normalized eigenvector matrix and Λ is a vector of
the eigenvalues. The principle axes of the ellipsoid correspond to
the coordinate axes of the eigenvectors of the Hessian, and the
length in which the ellipsoid stretches along these axes is inversely
proportional to the square roots of the eigenvalues. This means that
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the ellipsoid stretches further in the directions associated with low
eigenvalues where the model parameters are poorly resolved
(Duijndam, 1988).
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