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Introduction

Salt diapirs push overlying rocks
upward, creating dome structures
above them. For example, islands in
the Gulf of Mexico and Persian Gulf
are formed by emerging salt stocks
(O’Brien, 1968), and ridges in the
Great Kavir, Iran, expose more than
50 salt diapirs (Jackson et al., 1990).
Salt diapirs form various types of oil
traps, known in many oil provinces
such as the North Sea and the Gulf of
Mexico (Jenyon, 1986).
One motivation for this study is the

potential of oil traps associated with
salt along the Dead Sea Fault (Fig. 1).
Asphalt seeps in the Dead Sea basin )
which have been recorded since Bib-
lical times (Genesis 14:10) ) raised
interest in the oil potential of the
Dead Sea area as early as 1912
(Nissenbaum, 1991). Twenty explora-
tion wells drilled since 1953 in this
area have encountered hydrocarbons,
but no commercial discovery has been
made (Gardosh et al., 1997). Data on
the detailed subsurface shape and
structure of diapirs are essential for
exploration. Rock formations pene-
trated by the salt may contain infor-
mation about the shape and location
of the intruding salt body. Numerical

analyses predict extension features
and thinning of the rocks overlying a
salt diapir (Withjack and Scheiner,
1982; O’Brien and Lerch, 1987;
Schultz-Ela et al., 1993). Experiments
also show extension by normal fault-
ing above and near rising diapirs, and
thrusting away from them (Childs
et al., 1993; Davison et al., 1993).
Different geological features of var-

ious scales and styles exhibit fan-
ning patterns radiating from a central
perturbation. Different mechanisms
produce similar geometry. Examples
include: (i) flexure and faulting of
sedimentary host rocks during growth
of igneous domes, Henry Mountains
(Jackson and Pollard, 1990); (ii) giant
dyke swarms such as the Mackenzie
dykes in North America that radiate
from plume centres (Ernst and
Buchan, 1995; Ernst and Head,
1995); (iii) smaller radial dyke systems
that propagated from central intru-
sions, e.g. Spanish Peak swarm (John-
son, 1970) and the Ramon dykes in
Israel (Baer and Reches, 1991), radi-
ating fracture-graben systems in
Venus (Koenig and Pollard, 1998),
radial fracture pattern caused by im-
pact and indentation (Bahat, 1991;
Lawn, 1993), columnar fractures in
basalts growing radial to master frac-
tures (DeGraff and Aydin, 1987),
radial striations and hackles on frac-
ture face (Bahat, 1991), radial thrust
faults and fold axes associated with a
diapir pinch-off (Jackson et al., 1998)
or meteoritic impact (Shoemaker and

Herkenhoff, 1984); and (iv) modelled
radial microcracks at corners of inclu-
sions of garnet (Whitney et al. 2000).
The geometry of such structures eluci-
dates the cause and location of the
distortion, establishing regional palae-
ostress fields. We did not find any
previous report on salt-related radial
fracture sets.
The present contribution describes

and analyses a well-exposed fracture
system in the Ami’az Plateau, Dead
Sea Rift, Israel, which provides a new
example of diapir-related deforma-
tion.

Geological setting

The 3- to 4-km-wide Ami’az Plateau
(Fig. 1) is a downfaulted block in the
western margin of the Dead Sea basin,
which is a pull-apart graben within
the active Dead Sea Transform Fault
(Quennell, 1956;Garfunkel, 1981). The
Ami’az block is bounded by theMount
Sedom salt diapir to the east and the
major boundary fault of the Dead Sea
basin on the west. The latter exposes
Cretaceous platform carbonates over-
lain by sands of the Miocene Hazeva
Formation. The Dead Sea graben was
flooded several times (Fig. 2). The
Sedom Salt deposited during the
Neogene transgression is the earliest
marine sediment in the Dead Sea
depression (Zak, 1967; Agnon, 1983).
The porous Hazeva sands overlain by
the Sedom Salt may form oil traps. The
Sedom Formation is overlain by the
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Amora (Zak, 1967), Samra (Picard,
1943), and Lisan (Lartet, 1869) forma-
tions, all were deposited in Plio-Pleis-
tocene lakes that preceded the modern
Dead Sea. The Lisan Formation was
deposited during the last glacial period,
70–18 ka (Kaufman, 1971; Kaufman
et al., 1992; Schramm et al., 2000). In
the study area it is partly covered by
0–2-m-thick alluvial sand and con-
glomerate shed off the cliffs and can-
yons in the plateau’s margins.
The Mt. Sedom salt diapir has been

emerging since the Pleistocene, pierc-
ing the overlying beds. The exposed
part of the diapir was portrayed as a
N–S-striking �salt-wall� diapir by Zak
(1967), who recognized the complexity
of the subsurface shape. A combined
structural and palaeomagnetic analysis

showed thatMt. Sedom exposes a tight
antiform (Weinberger et al., 1997).
Based on its structure and proximity
to the Sedom diapir, Zak (1967) spec-
ulated that a dome structure known as
the �Black Hill� was also formed by the
rise of an underlying salt diapir, per-
haps a projection of the Sedom salt
diapir.

Post-Lisan deformation in the
Ami’az Plain

Clastic dykes were mapped in the
Ami’az Plateau by tracing 1:4000-scale
air photos and by an intensive field
survey. The dykes, which are vertical
fractures in the Samra and Lisan for-
mations, are exposed as a consequence
of a � 50-m incision of the Peratzim

canyons. They are typically up to 0.4-m
wide and commonly filled with brown
sand mixed with some fragments of
the Lisan rocks (Fig. 3). The sand is
similar to the alluvium that covers the
Lisan Formation in part of the Ami’az
Plateau. The contacts between the
fracture fill and the overlying alluvium
are sharp. In places, the fractures are
rimmed by crystalline calcite, probably
the product of transformation of arag-
onite (Katz et al., 1972). No indication
for shear movement was observed,
layers are not offset across the frac-
tures and intersecting fractures do
not displace each other. Therefore,
the fractures are considered to have
formed in opening-mode.
The fracture map (Fig. 4) reveals

that they comprise two main strike

Fig. 1 Location maps and aerial photograph, showing the position of the Black Hill in the Ami’az Plateau west of Mt. Sedom. The
Peratzim Creek exposes a radial and a tangential fracture system (clastic dykes) centred on the Black Hill. Arrows show examples
of fractures. Extension is estimated (Table 1) along arcs centred at the white circle, which marks the centre of the elliptic fracture
convergence zone, spanning approximately 1 km N–S and 2 km E–W.
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systems that intersect at approximately
right angles. The radial system spans a
sector of 60� between azimuth 060� and
120�. The tangential system spans over
90�, between 150� and 060�. Measure-
ments made of 118 intersection angles
of the radial and the tangential frac-
tures are summarized in a histogram,
showing that more than 80% of the
angles are over 70� (Fig. 5).
The continuation of the radial set

eastward converges at an elliptic area
centred at the Black Hill. The Black
Hill’s flat summit is at ) 220 m bsl
(below sea level), elevated some 50 m
above the Ami’az Plateau. The Black
Hill exposes pale layers, composed of
clastics of fine-to-coarse calcarenite
with some quartz and chert grains
and several horizons of pebbles rang-
ing from a few mm up to several cm as
well as laminated gypsum layers.West-
ward dips of 45� are common and
more moderate dips to the south-west
and north-west occur in the southern
and northern parts, respectively. The
tilted beds are unconformably overlain

by up to 1-m-thick alluvium compris-
ing well-rounded pebbles to cobbles
(up to 80 cm diameter) derived pri-
marily from Cretaceous limestone,
dolomite, and chert. The alluvium is
nearly horizontal at the summit of the
Black Hill but becomes progressively
inclined toward the Ami’az Plateau.
Dark patina on the alluvium domi-
nates the surface and gives the hill its
distinct dark appearance. Seismic lines
also indicate that the young sedimen-
tary fill in the Ami’az Plateau is
deformed, probably as a result of
diapirism and salt flow eastward
(Gardosh et al., 1997).

Kinematic association between
the radial fracture system
and the Black Hill salt diapir

It was hypothesized that the radial
fractures formed as a result of a
diapir rising beneath the Black Hill;
this was tested by estimating the
strain associated with these features.
Because there are only 2–3 tangential

dykes along any radius, their contri-
bution to the strain is neglected. It
was assumed that radial fractures
formed when the extension near the
surface caused by the rise of a salt
diapir reached, or slightly exceeded,
the tensile strength of the host rocks,
which yielded in a brittle manner.
Fracture widths may be used to
estimate the amount of extension S
in the rocks. An estimate was then
made of the minimum amount of
uplift at the Black Hill required to
generate this strain. For a radial
fracture system, this estimation is
given by the ratio of the cumulative
fracture widths dW along an arc
centred at the inferred location of
the system to the arc length L
(Baragar et al., 1996). S was calcu-
lated assuming that the centre of the
uplift is at the Black Hill, where the
radial fracture traces converge using:

S ¼ dW =L: ð1Þ

The strain is calculated for a limited
range of arcs between 1.7 and 2.0 km
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away from the centre of the conver-
gence zone at the BlackHill (Fig. 1). In
this area the mapped fracture arrays
are not obscured by alluvium. The
extensional strain is between 1.8 · 10)3
and 3.8 · 10)3 (Table 1), depending
mainly on the fracture widths (mini-
mum andmaximum, respectively). For
example, strain of 3.8 · 10)3 is calcu-
lated for 10 m of cumulative fracture
maximum widths in � 2700 m of arc,
at a distance of � 2000 m from the
Black Hill. The strain provided by the
topographic uplift is now estimated:
the topographic slope a is of the order
of the square root of the circumfer-
ential strain (Landau and Lifshitz,
1986; Baragar et al., 1996; Fialko and
Rubin, 1999):

a � p
s: ð2Þ

The strain calculated from the
cumulative fracture widths provides a
first-order approximation for maxi-
mum circumferential strain (Fialko

and Rubin, 1999). Hence, the cumu-
lative width of the radial fracture
system requires a minimum uplift of
the Black Hill on the order of 70 m
(Table 1). Even if this estimate of the
strain is off by one order of magni-
tude, the estimated uplift would be off
by only a factor of 3. In spite of the
large uncertainties associated with
data, this rough estimate is in good
agreement with the actual 50 m that
the hill rises above the Ami’az plateau.
Similar results were obtained for
quantifying the amount of uplift fol-
lowing the geometric method of Bar-
agar et al. (1996).
The clastic dykes demonstrate

extensional deformation that is differ-
ent from E–W extension manifested
as N-striking normal faults near Mas-
ada, 25 km to the north (Marco and
Agnon, 1995). The faults near Masada
were syndepositional and their activity
was associated with earthquakes. It is
probable that the opening of the

fractures here was also associated with
earthquakes.

Uplift rates

The presented field observations and
mechanical analyses suggest that a
salt body ) perhaps a projection of
the Sedom salt diapir ) is hidden
underneath the Black Hill. The
Sedom and Black Hill diapirs are
not expected to rise at the same rate
because of different overburden and
buoyancy forces (Weinberger, 1992).
Fifty metres of vertical elevation dif-
ference between the Black Hill and
Ami’az Plateau give a Holocene mean
rise rate of 3.5 mm yr)1 (Zak, 1967).
Several indicators can be used to
estimate the mean rise rate of Mt.
Sedom diapir: (i) the Lisan Forma-
tion has been displaced by the diapir
since the end of sedimentation about
20 ka; (ii) the present elevated salt
table stopped forming about 15–
20 kyr BP but is displaced along
subvertical bedding planes about
80 m, implying a mean rate of 4–
5 mm yr)1 (Zak and Freund, 1980);
(iii) all the Mid-Holocene Dead Sea
terraces north of Mt. Sedom are
found at the same level, but in Mt.
Sedom the same terrace is at least
30 m higher. Hence, the inferred
mean diapir rise rate since the mid-
Holocene is 6–9 mm yr)1 (Frumkin et
al., 1999). Preliminary results of an
Interferometric Synthetic Aperture
Radar (InSAR) study also show an
uplift rate of 6–9 mm yr)1 at Mt.
Sedom (Pe’eri et al., 2001). All the
estimates of the diapir mean rise rate
range between 3 and 9 mm yr)1,
allowing for 60–180 m post-Lisan
uplift (the last 18 kyr). The similar
rise rates support a possible common
source of the Mt. Sedom and the
Black Hill salt. It is argued that the
fractures cannot result from the rise
of the Mount Sedom diapir because
its elongate wall shape is incompati-
ble with a central perturbation.

Time constraints

The fractures cross the entire section
of the Lisan Formation, hence they
post-date the drying of Lake Lisan
about 18 ka (Schramm et al., 2000).
The sharp contacts between the frac-
tures fill and the overlying, unfrac-
tured alluvium (Fig. 3) indicate that

Fig. 3 (a) General view of a clastic dyke crossing the late Pleistocene lacustrine Lisan
Formation. Note also the smaller fractures on both sides of the dyke. (b) A clastic
dyke; white specs are Lisan intraclasts. Pocket-knife for scale is 9 cm long. (c) Upper
termination of a fracture; Holocene alluvium is not affected by the fracture.
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the alluvium post-dates the fractur-
ing. InSAR data show active rising
of Mt. Sedom (Pe’eri et al., 2001)
and stability at the Ami’az Plateau.
The Black Hill is between the two
domains and its current movement is
poorly constrained (Gideon Baer,
pers. comm., Jan. 2002). Alluvium
at the top of the Black Hill indicates
some 50 m post-Lisan uplift there.
Hence, either the Black Hill has
stopped rising recently or deforma-
tion continues in a different style.
The poor lithification of the Holo-
cene alluvium cannot be ruled out as
the cause for the lack of opening-
mode fractures in this unit.
An interesting local geomorphic

consequence of the fractures is appar-
ent in the Peratzim Creek, a north-
flowing drainage system incised into
the Ami’az Plateau. Many of its trib-
utaries follow the fractures (Fig. 4).
This geometry of the drainage system,
which is governed by the diapir-
induced fractures, either post-dates
or is contemporaneous with the rise
of the Black Hill.

Conclusions

The array of radial opening-mode
fractures accommodate on average
1.8 · 10)3)3.8 · 10)3 extension in
the Ami’az Plateau, Dead Sea Rift.

The estimated extension is consistent
with stresses exerted by 50 m rise of
the Black Hill, where the extrapolated
fracture traces converge. It is suggest-
ed that a salt diapir pushed the Black
Hill upward and triggered fracturing
around it. The topography of the
Black Hill and the required uplift at
the penetration zone based on fracture
widths are in good agreement.
An intricate drainage system incised

into the lacustrine Lisan Formation,
the Peratzim Creek, follows the frac-
ture traces. Fracturing post-dates the
drying of Lake Lisan, about 18 ka,
and pre-dates the overlying unfrac-
tured late Holocene alluvium. The
absence of fractures in the alluvium
indicates either a pause or cessation of
rise or a transition to a different type
of deformation.
Mapping presented herein provides

independent support for previous
speculations about a salt body beneath
the Black Hill, and demonstrates how
deformation analysis can constrain the
location of hidden diapirs ) potential
hydrocarbon traps.
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