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1 Introduction

In this paper we present a probabilistic approach to some geometric problems in
asymptotic convex geometry. The aim of this paper is to demonstrate that the
well known Chernoff bounds from probability theory can be used in a geometric
context for a very broad spectrum of problems, and lead to new and improved
results. We begin by briefly describing Chernoff bounds, and the way we will
use them.

The following Proposition, which is a version of Chernoff bounds, gives es-
timates for the probability that at least βN trials out of N succeed, when the
probability of success in one trial is p (the proof is standard, see e.g. [HR]).

Proposition 1 (Chernoff). Let Zi be independent Bernoulli random variables
with mean 0 < p < 1, that is, Zi takes value 1 with probability p and value 0
with probability (1− p). Then we have

1) for every β < p

P[Z1 + · · ·+ ZN ≥ βN ] ≥ 1− e−NI(β,p),

2) for every β > p

P[Z1 + · · ·+ ZN > βN ] ≤ e−NI(β,p),

where I(β, p) = β ln β
p + (1− β) ln 1−β

1−p .

Assume that Xi is a sequence of independent non-negative random variables.
For simplicity assume to begin with, that they are also identically distributed,
and even bounded. A good example to consider is Xi = ‖Uix‖ where ‖ · ‖ is
some norm on n-dimensional space Rn, Ui a random orthogonal matrix (with
respect to the normalized Haar measure on O(n)) and x some fixed point in
the space. Define the sequence of partial sums SN =

∑N
i=1 Xi. The law of

large numbers says that 1
N SN converges to the expectation EXi as N tends to
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infinity. In our example the expectation is |x|M where M =
∫

Sn−1 ‖u‖dσ(u)
and σ is the rotation invariant probability measure on the sphere Sn−1.

To estimate the rate of convergence, one usually turns to large deviation
theorems, for example the following well known Bernstein’s inequality (see e.g.
[BLM]). We say that a centered random variable X is a ψ2 random variable if

there exists some constant A such that Ee
X2

A2 = 2, and the minimal A for which
this inequality holds we call the ψ2 norm of X. Below when we say the ψ2 norm
of X we mean the ψ2 norm of the centered variable (X − EX).

Proposition 2 (Bernstein). Let Xi be i.i.d. copies of the random variable
X, and assume the X has ψ2 norm A. Then for any t > 0

P[| 1
N

SN − EX| > t] ≤ 2e−cNt2 , (1)

where c = 1
8A2 .

Sometimes it is important to get the probability in (1) to be very small.
This is the case in the example of Xi = ‖Uix‖, if one wants to have an estimate
for all points x in some large net on the sphere (we study this example in more
detail in Section 4).

The obvious way to make the probability in (1) smaller is to increase t.
However, once t is greater than EX, the estimate in (1) makes sense only as
an upper bound for SN and provides no effective lower bound, since the trivial
estimate 0 ≤ SN is always true.

Thus, we see that for positive random variables, an estimate of the type (1)
does not fully answer our needs, and we actually want an estimate of the type

P[εE ≤ 1
N

SN ≤ tE] ≤ 1− f(ε, t, N,X),

with f decaying exponentially fast to 0 with N , and moreover, such that the
rate of decay will substantially improve as t tends to ∞ and ε tends to 0. This
is the aim of our probabilistic method and the subject of the next discussion.

For 1
N SN not to be very small, it is not obligatory that all Xis be large,

it is enough if some fixed proportion of them are not small. This is the main
idea behind our use of Chernoff bounds. The first time this method was applied
in our field was in the paper of Milman and Pajor [MP], where in particular a
global form of the low M∗-estimate was obtained.

Applying this in our scheme we let Zi = 1 if Xi ≥ ε and Zi = 0 if Xi <
ε. Since all Xi are positive, having

∑N
i=1 Zi ≥ βN means in particular that

1
N SN ≥ βε, and this happens with the probability written in Proposition 1,
where p = P[Xi ≥ ε], and β is any number smaller than this p.

Before we proceed let us analyze the estimate. We have

I(β, p) = u(β)− β ln p− (1− β) ln (1− p),

where we denoted u(β) = [β ln β + (1 − β) ln (1− β)]. The term u(β) is a
negative, convex function which approaches 0 as β → 0 and as β → 1, and is
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symmetric about 1/2 where it has a minima equal to − ln 2. Thus the whole
exponent is of the form

e−NI(β,p) = pβN (1− p)(1−β)Ne−Nu(β) ≤ (1− p)(1−β)N2N . (2)

We will usually use the latter, though sometimes we will need the better estimate
including u(β).

To use the full strength of (2), we will need to have the probability p of
success increase rapidly as the parameters in question change. In our example,
we will need P[Xi ≥ ε] to approach 1 fast when ε → 0. This is not always the
case, and additional work is sometimes needed. This will best be demonstrated
in Section 3.

In the remainder of this section we outline the main theorems to be proved in
this paper and explain the notation to be used throughout.

In Section 2 we give an application to a problem from learning theory, im-
proving a result of Cheang and Barron [CB]. The problem regards the approxi-
mation of the n-dimensional euclidean ball by a simpler body, which resembles
a polytope but need not be convex, and is described by the set of points satis-
fying a certain amount of linear inequalities out of a given list of length N . In
their paper [CB] Cheang and Barron showed that to ε-approximate the ball one
can do with N = C(n/ε)2 linear inequalities, and we improve this estimate (for
fixed ε and n →∞) to N = Cn ln( 1

ε )/ε2 (where C is a universal constant). We
formulate our theorem (for the proof see [AFM]) and in the remainder of the
section we show stability results.

In Section 3 we show three different applications to Khinchine-type inequal-
ities. We reprove, with slightly worse constants, a theorem of Litvak, Pajor,
Rudelson, Tomczak-Jaegermann and Vershynin, which is an isomorphic version
of Khinchine inequality in the L1 case, where instead of taking the average of
the 2n terms |〈x, ε〉| for ε ∈ {−1, 1}n, one averages only over (1 + δ)n of them
(for some fixed δ > 0), and the constants in the corresponding inequality depend
on δ. Another way to view this result is realizing an n-dimensional euclidean
section of `

(1+δ)n
1 by a matrix of random signs. Schechtman was the first who

proved the existence of such an isomorphism for some universal (and large) δ0,
and also together with Johnson proved a non-random version of this fact, see
[LPRTV] [S2] [JS]. We remark that an improvement of this result, with a much
better dependence on δ will soon be published in [AFMS].

The next application answers a similar question, where instead of random
sign vectors, the vectors are random with respect to the volume distribution in
an isotropic convex body. We show that when the rows of an (n × (1 + δ)n)
matrix are chosen randomly inside an isotropic convex body, again its image is
an n-dimensional euclidean section of `

(1+δ)n
1 . There is a conceptual difference

between this result and the preceding one, since now only the rows of the matrix
are independent, and not all entries.

In another application, we reduce the level of randomness, substituting most
of it by an explicit sign-matrix. We prove that a Hadamard (n×n) matrix with
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extra δn rows of random signs also realizes a euclidean section of `
(1+δ)n
1 , and

moreover, the isomorphism constants are polynomially dependent on δ. This is
an extension of a result by Schechtman [S1] where he used an (n× 2n) matrix
whose upper half consisted of (a scalar multiple of) the identity matrix and all
lower half entries were random signs.

In Section 4 we give a different type of application, proving a Dvoretzky-
type theorem in global form. We show that the average of C( a

M∗ )2 random
rotations of a convex body K (with half-mean-width M∗ and half-diameter a,
see definitions below) is isomorphic to the euclidean ball. This is well known, e.g.
[MS]. In the proof we show how the probabilistic method can be adapted to give
a new proof of the upper bound in this problem. As will be explained below, the
main use of the Chernoff method is to provide lower bounds, while upper bounds
can usually be obtained straightforwardly with the use of deviation inequalities.
However, in the standard proof of the global Dvoretzky Theorem, the upper
bound is obtained by using a deep geometric result about concentration on the
product of spheres, which itself uses Ricci curvature (see [GrM]). We will show
how standard concentration on the sphere, together with our method, provides
an alternative proof for the bound. We then show how a reformulation of a
conjecture by Vershynin, given by LataÃla and Oleszkiewicz [LO] about small
ball probabilities will imply that the above is true for (1 + δ)( a

M∗ )2 random
rotations, for any δ, with constants of isomorphism depending on δ, a result
which will be optimal. In addition we give an alternative parameter that can
be used to study these averages, similar to the one introduced by Klartag and
Vershynin [KV], which in special cases gives improved results.

The paper includes both new proofs of known result and some new results,
and our main goal is to show how the probabilistic method we describe here is
applicable in many different situations, and in some sense can be considered as
another systematic approach to obtaining lower and upper bounds. In many
cases this unifies what were before individual proofs for specific problems.

Notation We work in Rn which is equipped with the euclidean structure 〈·, ·〉
and write | · | for the euclidean norm. The euclidean unit ball and sphere are
denoted by Dn and Sn−1 respectively. We write σn for the rotation invariant
probability measure on Sn−1, and omit the index n when the dimension is
clear from the context. Every symmetric (with respect to 0) convex body K
in Rn induces the norm ‖x‖K = inf{λ > 0 : x ∈ λK}. The polar body of
K is K◦ = {y ∈ Rn : maxx∈K |〈y, x〉| ≤ 1} and it induces the dual norm
‖x‖∗K = ‖x‖K◦ = maxy∈K |〈y, x〉|. We define M(K) =

∫
Sn−1 ‖u‖Kdσn(u) and

M∗(K) =
∫

Sn−1 maxy∈K |〈y, u〉|dσn(u). So, M = M(K) is the average of the
norm associated to K on the sphere and M∗ = M∗(K) = M(K◦) is half the
mean width of K. We also denote by a and b the least positive constants for
which 1

a |x| ≤ ‖x‖K ≤ b|x| holds true for every x ∈ Rn. Thus, a is half of the
diameter of K and 1

b is the in-radius of K (so, 1
b D ⊆ K ⊆ aD). As usual in

asymptotic geometric analysis, we will be dealing with finite dimensional normed
spaces or convex bodies, and study behavior of some geometric parameters as
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the dimension grows to infinity. Thus, the dimension n is always assumed large,
and the universal constants appearing throughout the paper, denoted usually
by c, c0, c1, C, do not depend on the dimension and are just numerical constants
which can be computed. In addition, throughout, we omit the notation [·] of
integer values, and assume the numbers we deal with are integers when needed,
to avoid notational inconvenience.

2 A ZigZag Approximation for Balls

2.1 The ZigZag construction and the main theorem

We address the question of approximating the euclidean ball by a simpler set.
In many contexts, polytopes are considered to be the simplest sets available,
being the intersection of some number of half-spaces, or in other words the set
of all points satisfying some list of N linear inequalities. However, it is well
known and easy to check that to construct a polytope which is ε-close to the
euclidean ball Dn ⊂ Rn in the Hausdorff metric one needs to use exponentially
many half-spaces, N ≥ eCn ln(1/ε) (this can be seen by assuming the polytope
is inscribed in Dn, and estimating from above the volume of the cap that each
half-space cuts off the sphere Sn−1). This is a huge number, and so a different
kind of approximation was suggested, first used by Cybenko [C], and by Hornik,
Stinchcombe and White [HSW].

The first good bounds in such an approximation result (we describe the
approximating set below) were given by Barron [B]. These sets are implemented
by what is called single hidden layer neural nets or perception nets, and we will
use the simplest version of such sets, for which we suggested the name “ZigZag
approximation”.

The approximating set is the following, it is no longer convex, but is still
described by a list of linear inequalities. Given a set of N inequalities, and
a number k ≤ N , the set consists of all points satisfying no less than k of
the N inequalities. We learned of this approximation from a paper by Cheang
and Barron [CB], where they showed that there exists a universal constant C
such that for any dimension n, one can find N = C(n/ε)2 linear inequalities,
such that the set of points satisfying at least k of the N inequalities is ε-close,
in the Hausdorff metric, to Dn (where k is some proportion of N). This is
already a huge improvement, from a set described by an exponential number of
inequalities to a polynomial number.

Using our approach we improve (in the case of n → ∞) their estimate to
N = Cn ln(1/ε)/ε2 linear inequalities, and we use k = N/2. The formulation of
our result is given in the following Theorem (see [AFM] for its proof).

Theorem 3. There exists universal constants c, C such that for every dimen-
sion n, and every 0 < ε < 1, letting N = [Cn ln(1/ε)/ε2], if z1, . . . , zN are
random points with respect to Lebesgue measure σ on the sphere Sn−1, then
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with probability greater than 1− e−cn, the set

K = {x ∈ Rn : ∃i1, . . . , i[N/2] with |〈x, zij 〉| <
c0√
n
}

satisfies
(1− ε)Dn ⊂ K ⊂ (1 + ε)Dn,

where c0 denotes the constant (depending on n, but converging to a universal
constant as n → ∞) for which σ(u ∈ Sn−1 : |〈θ, u〉| ≤ c0√

n
) = 1/2 for some

θ ∈ Sn−1.

2.2 Stability Results

Theorem 3 above is stable, in the following sense, define the body

K(β) = {x ∈ Rn : ∃i1, . . . , i[βN ] with |〈x, zij
〉| < c0√

n
}

where we have changed the parameter 1/2 into β. By stability we mean that for
N large enough the two bodies K1 = K(β + δ) and K2 = K(β − δ) are close, in
the Hausdorff distance, as long as 0 < δ < δ0, where δ0 depends only on β. This
will readily follow from the fact that both bodies will be close to the euclidean
ball of the appropriate radius, depending on β.

We first remark that changing the constant c0 in the definition of K(β) into
c1 results in multiplication of the body K(β) by the factor c1

c0
. Thus if we denote

by cβ the constant so that σ(u ∈ Sn−1 : |〈θ, u〉| ≤ cβ√
n
) = β and define

K′(β) = {x ∈ Rn : ∃i1, . . . , i[βN ] with |〈x, zij 〉| <
cβ√
n
}

we will have K′(β) = cβ

c0
K(β). Notice that the way we defined c0 at the begin-

ning it actually corresponds in the current notation to c 1
2
.

Now, the fact that these bodies, K′(β), are equivalent to euclidean balls of
radius 1 when N is sufficiently large follows in the same way as in Theorem
3. We give the sketch of the proof for N = C(β, ε)n log n and ε > c/

√
n.

For the proof of the linear dependence on n see complete details in [AFM].
We pick a 1/n net of the sphere (1 − ε)Sn−1. For a point x0 in the net we
check not only x0 ∈ K′(β), but more, namely that there exist i1, . . . , i[βN ] with
|〈x0, zij 〉| < cβ√

n
− 1

n .

Since the probability of a single event is

σ(u ∈ Sn−1 : |〈u, θ〉| < (
cβ√
n
− 1

n
)/(1− ε)) = β + pε,β

for some pε,β > 0 (and as long as ε is not too small), we have by Chernoff
bounds an exponential probability 1 − e−NI(β,β+pε,β) that x0 satisfies βN of
these inequalities. When N is large enough, greater than C(β, ε)n log n, this
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probability suffices to take care of the whole net. Then for a point x in (1 −
ε)Sn−1 which is 1/n-close to a point x0 in the net, we have that for exactly the
same indices, the inequalities |〈x, zij

〉| < cβ/
√

n are satisfied, which means that
x ∈ K′(β). So we attained (1 − ε)Dn ⊂ K′(β). The other inclusion is proved
similarly.

This implies in particular that if N is large enough

(1− ε)(
c0

cβ+δ
)Dn ⊂ K(β + δ) ⊂ K(β − δ) ⊂ (1 + ε)(

c0

cβ−δ
)Dn,

as long as δ < δ0(β).
The stability is reflected in the rate of change of cβ for β bounded away from

1, which one can estimate by standard volume estimates on the sphere. Thus,
cβ+δ < cβ−δ(1 + Cδ). This is what we consider a stability result. We remark
that it is not difficult to check that for, say, β > 1/2 and bounded away from 1,
we have c0cβ < cβ < c0Cβ and thus

(
c

β
)Dn ⊂ K(β) ⊂ (

C

β
)Dn.

(We mean here, that the constants c and C are universal for, say 1/2 < β < 3/4,
and in general depend only on δ0 when we assume 1/2 < β < 1− δ0.) The same
is true for β < 1/2 and bounded away from 0.

The reason that stability results can be important is that sometimes one
cannot check exactly if a proportion 1/2 of the inequalities is fulfilled, but can
do the following weaker thing: to have a set so that each point in the set satisfies
at least 1/2 − δ of the inequalities, and each point outside the set has at least
1/2 − δ inequalities which it violates. The stability result implies that we can
be sure this set is Cδ-isomorphic to the euclidean ball (provided δ is in some
bounded range).

Remark 1 The same type of results hold for the following body, where we omit
the absolute value,

K(β) = {x ∈ Rn : ∃i1, . . . , i[βN ] with 〈x, zij 〉 <
c0√
n
}.

Remark 2 The above discussion implies in particular a probabilistic approach
to deciding whether a point is in the ball or not. Indeed, once we have a
description of the ball as points satisfying at least 1/2 of the inequalities from
a list of N inequalities, we can now for a given point pick randomly say 100
of the inequalities and check what proportion of them is satisfied. Again using
Chernoff bounds, we can show that if it satisfies more than 1/2 of them there
is a large probability that it is inside (1 + ε)Dn and if it violates more than 1/2
of the inequalities there is a large probability that it is outside (1− ε)Dn. The
word “large” here is relative to the choice 100.
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3 Khinchine-type Inequalities, or: isomorphic
embeddings of `n

2 into `N
1

3.1 Isomorphic Khinchine-type Inequality

The classical Khinchine inequality states that for any 1 ≤ p < ∞ there exist
two constants 0 < Ap and Bp < ∞ such that

Ap(
n∑

i=1

x2
i )

1/2 ≤ (Aveε1,...,εn =±1|
n∑

i=1

εixi|p)
1
p ≤ Bp(

n∑

i=1

x2
i )

1/2 (3)

holds true for every n and arbitrary choice of x1, . . . , xn ∈ R.
In this section we show how Khinchine inequality can be realized without

having to go through all 2n summands in (3). We will insist that instead of
going through all 2n n-vectors of signs we use only N sign-vectors, where N =
(1 + δ)n and 0 < δ < 1 is any small positive number, and show that we can get
inequalities like (3) loosing only in the constants. We know that one cannot do
with less than n such vectors since `p and `2 are not isomorphic, and this means
that the constants of isomorphism will depend on δ and explode as δ → 0.

Let us rewrite the inequality once again to make this clearer. For simplicity
we only deal with the case p = 1; the same method works for all other 1 ≤ p ≤ 2
(it is easy to see that p = 1 is the hardest case, because of monotonicity). We
denote by ε(j) an n-vector of ±1, ε(j) = (εi,j)n

i=1. The average in (3) means
summing over all possible vectors ε(j), and there are 2n of them. We wish to
find vectors ε(1), . . . , ε(N) such that

1
N

N∑

j=1

|〈ε(j), x〉| ' |x|. (4)

Notice that, obviously, this cannot be achieved by ≤ n vectors since this
would give an embedding of `n

2 into `n
1 . However, as we know that `

(1+δ)n
1 does

have isomorphic euclidean sections of dimension n (see [K]), it is conceivable
that such an embedding can be constructed with a matrix of random signs.

This problem has a history. It was first shown by Schechtman in [S2] that
the above is possible with a random selection of N = Cn vectors, where C is a
universal constant, and then repeated in [BLM] in a more general context in-
cluding Kahane type generalization. Schechtman showed that for this quantity
of vectors, if chosen randomly, (4) holds with universal constants, with expo-
nentially large probability. The question then remained whether the constant
C can be reduced to be close to 1. This was resolved by Johnson and Schecht-
man, and follows from their paper [JS]. However, they showed the existence of
such vectors, and not that it is satisfied for random N = (1 + δ)n sign-vectors.
Very recently in a paper by Litvak, Pajor, Rudelson, Tomczak-Jaegermann and
Vershynin [LPRTV] this was demonstrated. We reprove this result, using our
method, getting slightly weaker dependence of the constants on δ. In a recent
paper, joint with S. Sodin, we were able to significantly improve the dependence,
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from exponential in (1/δ) to polynomial, loosing only a little in the probability,
see [AFMS].

One final remark is that even if we take an L2 average instead of an L1

average in formula (4) above, it is not correct that we can do with n random
vectors alone. This is because, although the norm defined in (4) would be
euclidean, it will correspond to some ellipsoid rather than to the standard ball
Dn. This leads to the question of finding the smallest eigenvalue of an (n× n)
matrix of random signs, which is itself an interesting question. Even the fact
that with probability going to 1 exponentially fast such a matrix is invertible
is a non trivial theorem due to Kahn, Komlós, and Szemerédy [KKS] (for a
new improvement by Tao and Vu see [TV], see also [R]). The same question
remains when one asks for smallest singular values of an ((1 + δ)n× n) matrix
of signs (where now the expectation of the smallest singular value is a constant
depending on δ). This is also addressed in [LPRT], and follows also from our
methods in the same way replacing p = 1 by p = 2. See also [AFMS] for better
dependence on δ.

Our goal is to prove that with large probability on the choice of N = (1+δ)n
vectors ε(1), ε(2), . . . , ε(N), where ε(j) = (εi,j)n

i=1 ∈ {−1, 1}n, we have for every
x the estimate (4) where the isomorphism constants depend only on δ > 0.
Throughout this section we demonstrate our method by proving the following
Theorem.

Theorem 4. For any 0 < δ < 1 there exists a constant 0 < c(δ), depending
only on δ and universal constants 0 < c′, C < ∞, such that for large enough n,
for N = (1+δ)n random sign vectors ε(1), . . . , ε(N) ∈ {−1, 1}n, with probability
greater than 1− e−c′n, one has for every x ∈ Rn

c(δ)|x| ≤ 1
N

N∑

j=1

|〈ε(j), x〉| ≤ C|x|.

Remark 1 The constant c(δ) which our proof provides is c(δ) = (c1δ)1+2/δ,
where c1 is an absolute constant. The constant in [LPRTV] is better: c

1/δ
1 .

In [AFMS] we get a polynomial dependence on δ, but with a slightly worse
exponent in the probability: 1− e−c′δn1/6

.
Remark 2 It is easy to see that once you learn the theorem for small δ, it holds
for large δ as well. This applies also to Theorem 7 and Theorem 11. Thus we
may always assume that δ < δ0 for some universal δ0.

Before beginning the proof we want to remark on one more point. The tech-
nique we show below works for the `n

2 → `N
2 case as well, that is, to estimating

the smallest singular number of an almost-square matrix. We present the proof
for the `n

2 → `N
1 case, which is, even formally, more difficult. It is important

to emphasize however that in the proof we do not use any known fact about
the smallest singular number of the matrix (differently from what we do in
[AFMS]). Thus, in fact, although proving `n

2 → `N
1 is formally more difficult,
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the main difficulty, and the reason for the exponentially bad bound that we get,
lies primarily in the euclidean case. This section gives in particular another way
to get lower bounds on smallest singular value of a random sign matrix using
Chernoff bounds.

Proof of Theorem 4 We will denote |||x||| = 1
N

∑N
j=1 |〈ε(j), x〉|. This is a random

norm depending on the choice of N sign vectors.
We need to estimate P[ε(1), . . . , ε(N) : ∀x ∈ Sn−1 c ≤ |||x||| ≤ C]. The

following step is standard: this probability is greater than

1− P[∃x, |||x||| > C|x|]− P[(∀y, |||y||| ≤ C|y|) and (∃x, |||x||| < c|x|)]. (5)

We begin by estimating P[∃x ∈ Sn−1, |||x||| > C]. This is relatively easy, and
does not require a new method; we do it in a similar way to the one in [BLM]:
Let N = {xi}m

i=1 be a 1
2 -net of Sn−1, with m ≤ 5n. For each i = 1, . . . , m define

the random variables {Xi,j}N
j=1 by

Xi,j = |〈ε(j), xi〉|,

and denote r = E|〈ε, x〉|. It is obvious that r ≤ |x| = 1.
We use Proposition 2 from Section 1. It is well known that Xi,j are ψ2

random variables and ‖Xi,j‖ψ2 ≤ c3 for some absolute constant c3 > 0 (it fol-
lows from Khinchine inequality and the basic facts about ψ2 random variables).
Proposition 2 then implies that for every t > 0, and a fixed i, we have

P[ε(1), . . . , ε(N) :
1
N

N∑

j=1

Xi,j > r + t] ≤ 2e−t2N/8c2
3 ,

which in turn implies that (using that r ≤ 1) for a fixed point xi ∈ N and any
t > 1 we have

P[ε(1), . . . , ε(N) :
1
N

N∑

j=1

|〈ε(j), xi〉| > t] ≤ 2e−(t−1)2N/8c2
3 , (6)

We choose t so that 2e(−(t−1)2N/8c2
3)5n ≤ e−n, for example t = 6c3 + 1. Then,

with probability at least 1− e−n, for every i = 1, . . . , m,

1
N

N∑

j=1

|〈ε(j), xi〉| ≤ t.

We thus have an upper estimate for a net on the sphere. It is standard to
transform this to an upper estimate on all the sphere (an important difference
between lower and upper estimates). One uses consecutive approximation of a
point on the sphere by points from the net to get that |||x||| ≤ 2t = 12c3 + 2
for every x ∈ Sn−1. This completes the proof of the upper bound, where
C = 12c3 + 2 is our universal constant.
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We now turn to the second term to be estimated in (5). Notice that when
estimating this term we know in advance that the (random) norm ||| · ||| is
bounded from above on the sphere. This is crucial in order to transform a
lower bound on a net on the sphere to a lower bound on the whole sphere. For
the lower bound we use our method, as described in Section 1, to estimate the
following probability

P[
(∀y ∈ Sn−1, |||y||| ≤ C

)
and

(∃x ∈ Sn−1, |||x||| < c
)
]. (7)

Let us denote by px,α the probability that for a random ε ∈ {−1, 1}n we
have |〈ε, x〉| ≥ α, where α > 0 and x is some point on Sn−1:

px,α := P[|〈ε, x〉| ≥ α]. (8)

If “doing an experiment” means checking whether |〈ε, x〉| ≥ α (with ε a
random sign vector) then for |||x||| to be greater than some c it is enough that
c/α of the experiments succeed.

Of course, we will eventually not want to do this on all points x on the
sphere, but just some dense enough set. This set turns out to be slightly more
complicated than usual nets, because of the estimates we get for px,α, but the
underlying idea is still the usual simple one.

We first estimate px,α. In estimating this probability we will consider two
cases. Notice that in the simple example of x = ( 1

2 , 1
2 , 0, . . . , 0), for every 0 <

α < 1 we have px,α = 1
2 . This is not a very high probability, and if we look

again at the estimate (2) we see that we cannot make use of the parameters (in
this case, decreasing α) to increase the rate of decay. This is a bad situation,
however this is the worst that can happen, as shown in Lemma 5. Moreover, for
most points x (these will be points x with ‘many’ small coordinates), a much
better estimate holds, which we present in Lemma 6. The proof of the following
lemma is not difficult, and we include it for the convenience of the reader.

Lemma 5. There exists a universal constant α0 > 0 such that for every x ∈
Sn−1 we have

P[|〈ε, x〉| ≥ α0] ≥ 1/2 (9)

where ε ∈ {−1, 1}n is chosen uniformly.

Proof We prove this Lemma in two stages. First, assume that one of the
coordinates of x is greater than or equal to α0 (we later choose α0, and it will
be universal). Without loss of generality we may assume x1 ≥ α0. Then, using
conditional probability

P[|
n∑

i=1

εixi| ≥ α0] ≥ 1
2
P[

n∑

i=2

εixi ≥ 0] +
1
2
P[

n∑

i=2

εixi ≤ 0] =
1
2
.

This proves the statement in the case where one of the coordinates is greater
than α0. In the case where all the coordinates of x are smaller than α0 we use the
Berry-Esséen Theorem (see [Ha]), which will promise us that the distribution of

11



the sum is close to gaussian, for which we can estimate the probability exactly.
The theorem of Berry-Esséen states that for X1, X2, . . . independent random
variables with mean zero and finite third moments, setting Sn =

∑n
j=1 Xj and

s2
n = E(S2

n) one has

sup
t
|P[Sn ≤ snt]− Φ(t)| ≤ C ′s−3

n

n∑

j=1

E(|Xj |)3 (10)

for all n ≥ 1, where C ′ is a universal constant and where Φ(t) is the gaussian
distribution function, i.e., Φ(t) = 1√

2π

∫ t

−∞ e−s2/2ds.
In our case, we let Xj = εjxj , where εj ’s are independent±1 valued Bernoulli

random variables. We are assuming that
∑n

j=1 x2
j = 1, and thus sn = 1. Also,∑n

j=1 E(|Xj |)3 =
∑n

j=1 x3
j . Since we are in the case that for all j, xj < α0, we

have that
∑n

j=1 E(|Xj |)3 ≤ α0. Inequality (10) tells us that

sup
t
|P[〈ε, x〉 ≤ t]− Φ(t)| ≤ C ′α0.

We choose once t = α0 and once t = −α0, and get

P[|〈ε, x〉| ≤ α0] =
P[〈ε, x〉 ≤ α0]− P[〈ε, x〉 < −α0] ≤

Φ(α0)− Φ(−α0) + 2C ′α0 ≤ 2α0√
2π

+ 2C ′α0.

We choose α0 = 1
4( 1√

2π
+C′) , then the sum is less than or equal to 1/2 and this

completes the proof of Lemma 5. ¤
Looking above, one sees that in the case where the coordinates of x are

small we can very much improve the estimate 1
2 in the lemma, by decreasing

α0. In the next lemma we push further this point of view. We estimate (8) when
not necessarily all the coordinates are small (smaller than a), but a significant
“weight” of them, γ2, is. We can interplay with these two parameters a and γ,
where for a given x, the parameter a determines γ, however it is the ratio that
enters the estimate.

This has recently been done independently by the group Litvak, Pajor,
Rudelson and Tomczak-Jaegermann in [LPRT], and the reader can either adapt
the proof above or refer to Proposition 3.2 in [LPRT] for the proof of the fol-
lowing Lemma.

Lemma 6. Let x ∈ Sn−1 and assume that for j = 1, . . . , j0 we have |xj | < a,
and that

∑j0
j=1 x2

j > γ2. Then for any α > 0 one has

P[|〈ε, x〉| > α] ≥ 1− (
2α√
2π

+ 2C ′a)/γ

where C ′ is the universal constant from (10).

12



We return now to the proof of Theorem 4; we need to estimate the probability
in (7). Note that we can bound it in the following way for any choice of a and
γ (both x and y below are assumed to be in Sn−1):

P[(∀y, |||y||| ≤ C) and (∃x s.t.|||x||| < c)] ≤

P[(∀y, |||y||| ≤ C) and


∃x s.t.

∑

{i:|xi|≤a}
x2

i > γ2 and |||x||| < c


] +

P[(∀y, |||y||| ≤ C) and


∃x s.t.

∑

{i:|xi|≤a}
x2

i ≤ γ2 and |||x||| < c


].

This type of decomposition is by now considered standard, we were introduced
to it by Schechtman, who used a similar decomposition in his paper [S1]. It
is also used in [LPRT]. We need to estimate these two probabilities, choosing
a and γ in the right way. We start by estimating the easy part, which is the
second probability (again, in (11) both x and y belong to Sn−1):

P[(∀y |||y||| ≤ C) and


∃x s.t.

∑

{i:|xi|≤a}
x2

i ≤ γ2 and |||x||| < c


] (11)

If there exists x ∈ Sn−1 with |||x||| < c and
∑
{i:|xi|≤a} x2

i ≤ γ2, then it is close
to a vector with small support, let us denote it by y = y(x). The vector y(x) is
defined as yi = 0 when |xi| ≤ a and yi = xi when |xi| > a. Thus |x − y| < γ.
Since |y| ≤ |x| = 1, it is clear that the support of y, the number of coordinates
where y is non zero, cannot be larger than [1/a2]. We prefer to use a normalized
version, namely y′ = y/|y|, which also has support no larger than [1/a2], is on
the sphere, and satisfies

|y′ − x| ≤ |y′ − y|+ |y − x| ≤ 1− (1− γ2)1/2 + γ ≤ 2γ.

In addition we know that |||y′||| ≤ |||x|||+ |||y′− x||| ≤ c + C|x− y′| ≤ c + 2Cγ.
We let N be a subset of Sn−1 such that for every y′ with |y′| = 1 and

which is supported on no more than [1/a2] coordinates, there is a vector v ∈ N

with |y′ − v| ≤ θ1. (The parameter θ1 will be chosen later.) For this we take
a θ1-net on each [1/a2]-dimensional coordinate sub-sphere of Sn−1, and let N

be the union of all these nets. We thus have |N| ≤ (
n

[1/a2]

)
( 3

θ1
)[1/a2]. If there

exists x as above, and correspondingly y and y′, then there exists v ∈ N with
|||v||| ≤ |||y′|||+ |||v− y′||| ≤ c + 2Cγ +Cθ1. Hence we can estimate probability
(11) by

P[∃v ∈ N : |||v||| ≤ c + 2Cγ + Cθ1]. (12)

By Lemma 5, for a given v ∈ N (for any unit vector, for that matter)
pv,α0 = P[|〈ε, v〉| ≥ α0] ≥ 1

2 . In order to estimate the probability in (12), we
choose in our scheme β = 1/4 (so, it is smaller than pv,α0) to be the proportion
of “trials” {|〈ε, v〉| ≥ α0} we want to succeed. We want βα0 ≥ c + 2Cγ + Cθ1,
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so we have to make sure that γ, θ1 and c are small enough, each say less than
α0/20C. At this point we choose both γ and θ1 to be equal α0/20C. The choice
of c is postponed to later on since in the second part of the proof we have some
more conditions on it.

Proposition 1 gives that for a given v

P[|||v||| ≤ c + 2Cγ + Cθ1] ≤ e−NI( 1
4 , 1

2 ).

Combining this with the size of N, and the trivial calculation for I( 1
4 , 1

2 ), we get
that

P[∃v ∈ N : |||v||| ≤ c + 2Cγ + Cθ1] ≤
(

n

[1/a2]

)
(

3
θ1

)[1/a2]e−c′′n (13)

for c′′ = ln(33/4/2).
We want this probability to be very small, less than 1

2e−c′n. Thus we get a
restriction on a which is very mild (θ1 has already been chosen), which we keep
in mind for the time when we choose the constants. (The parameter a will later
be chosen to be a small constant depending only on δ, and since n is assumed
to be large, this condition will automatically be satisfied.)

We turn now to the more difficult task of estimating (again, x and y are
assumed to be in Sn−1):

P[(∀y |||y||| ≤ C) and


∃x s.t.

∑

{i:|xi|≤a}
x2

i > γ2 and |||x||| < c


]. (14)

Let N be this time a θ-net on Sn−1, θ is yet another parameter we will choose
later on. We can find one with cardinality ≤ ( 3

θ )n. We bound (14) by

P[∃v ∈ N′ s.t. |||v||| < c + Cθ] (15)

where N′ = {v ∈ N :
∑
{i:|vi|≤a+θ} v2

i ≥ (γ − θ)2}. Indeed, if there exists
x ∈ Sn−1 such that

∑
{i:|xi|≤a} x2

i > γ2 and |||x||| < c then there is a vector
v ∈ N such that |x − v| ≤ θ and we have |||v||| ≤ |||x||| + |||x − v||| < c + Cθ.
Also, all the coordinates i for which |xi| ≤ a satisfy of course |vi| ≤ a + θ, and
the square root of the sum of squares of these coordinates for v cannot differ by
more than θ from the square root of the sum of squares of these coordinates for
x. Therefore when taking squares the difference is at most (γ − θ)2. Hence if
for the norm ||| · ||| there exist an x ∈ Sn−1 for (14), then there exists also some
v ∈ N′ for (15). By Lemma 6, for a given v ∈ N′ we have for any α > 0 that

pv,α = P[|〈ε, v〉| ≥ α] ≥ 1− (
2α√
2π

+ 2C ′(a + θ))/(γ − θ).

We return to our scheme, in order to estimate the probability in (15). As-
sume βα ≥ c+Cθ (where β will be the portion of good trials out of N according
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to our scheme, and α another constant we later choose); Proposition 1 together
with the estimate (2) gives that for a given v

P[|||v||| ≤ c + Cθ] ≤ 2N (1− pv,α)(1−β)N ,

and so for a given v ∈ N′ we can estimate

P[|||v||| ≤ c + Cθ] ≤ (2(
(2α/

√
2π) + 2C ′(a + θ)

(γ − θ)
)(1−β))N .

Combining this with the size of N′ (which is at most the size of N) we get that

P[∃v ∈ N′ : |||v||| ≤ c + Cθ] ≤ (
3
θ
)n(2(

(2α/
√

2π) + 2C ′(a + θ)
(γ − θ)

)(1−β))N .

We choose β such that (1 − β)(1 + δ)n = (1 + δ
2 )n, (so, β = δ

2(1+δ) ) thus we
have (remembering that N = (1 + δ)n) that

P[∃v ∈ N′ s.t. |||v||| ≤ c + Cθ] ≤

[(
3
θ
)2(1+δ) (2α/

√
2π) + 2C ′(a + θ)

(γ − θ)
]n · [ (2α/

√
2π) + 2C ′(a + θ)

(γ − θ)
]

δ
2 n

We are now in the place to choose all the various constants. We let a = c =
θ. As θ will soon be chosen very small, smaller than γ/2 (which was already
specified in the first part) we have that γ − θ is bounded from below by a
universal constant α0/40C. We need to make sure that βα ≥ c + Cθ, so we let
α = 12Cθ/δ. What we get, so far, without choosing θ yet, is that

P[∃v ∈ N′ s.t. |||v||| ≤ c + Cθ] ≤ (
C1

δ
)n · (C2θ

δ
)

δ
2 n

for universal constants C1 and C2. To make this probability less than 1
2e−c′n

we choose θ ≤ (1
2e−c′ δ

C1
)2/δ δ

C2
and the proof of the estimate for the probability

(14), and of the whole of Theorem 4, is complete. ¤

3.2 Euclidean sections of `N
1 generated by isotropic convex

bodies

The second application we present also deals with Khinchine-type inequalities,
this time when the matrix elements are chosen differently. The conceptual
difference is that they are not all independent anymore.

Instead of considering the norm of the form given in (4), with N random sign
vectors, we do the same but with vectors distributed uniformly in some isotropic
convex body K (just as in (4) they were distributed uniformly in the discrete
cube). By isotropic we mean that K satisfies V ol(K) = 1,

∫
K

x = 0 and, most
importantly, for every θ ∈ Sn−1 the integral

∫
K
〈x, θ〉2 is a constant independent

of θ, depending only on K, which is called the (square of the) isotropic constant
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of K and denoted L2
K . It is easy to check that every body has a linear image

which is isotropic. In other words, saying that the body is in isotropic position
only means that we identify the right euclidean structure with which to work.

We want to check, as in Section 3.1, how close the randomly defined norm
1
N

∑N
j=1 |〈zj , x〉| is to being euclidean, when the points zj are chosen randomly

with respect to the volume distribution in K. We prove the following theorem.

Theorem 7. For any 0 < δ < 1 there exist a constants 0 < c(δ), depending
only on δ and universal constants 0 < c′, C < ∞ such that for large enough n,
for any convex body K ⊂ Rn in isotropic position, with probability greater than
1− e−c′n we have that

c(δ)LK |x| ≤ 1
N

N∑

j=1

|〈zj , x〉| ≤ CLK |x|,

where N = (1 + δ)n and zj are chosen independently and uniformly inside the
body K.

Proof We begin with the upper estimate. As explained before in this paper,
upper bounds usually present less difficulties, and the use of Chernoff bounds
is not needed. When a point z is chosen uniformly inside a convex body, the
distribution of the random variable 〈x, z〉 (where x is some fixed point) is not
necessarily a ψ2 distribution. For example for the unit ball of `n

1 and the point
x = (1, 0, 0, . . . , 0), the decay of the distribution function is only exponential and
not gaussian. This is the worst that can happen though. We say that a random
variable X has ψ1 behavior if there exists a constant λ such that Ee

X
λ ≤ 2. The

smallest λ for which this inequality holds is what we call the ψ1 norm of X. The
following Lemma (resulting from the work of C. Borell) shows that our random
variables are always ψ1 (for proof see [MS] Appendix III and [GiM2] Section 1.3
and Lemma 2.1)

Lemma 8. There exists a universal constant C ′ such that for any isotropic con-
vex body K, and any direction θ ∈ Sn−1 the random variable X = |〈θ, z〉| where
z is chosen uniformly in K has ψ1 distribution and its ψ1 norm is equivalent to
LK and to its expectation, namely

LK ≤ ‖X‖ψ1 ≤ C ′EX ≤ C ′2LK .

We thus need a proposition of the like of Proposition 2 but for ψ1 distribu-
tions and it is the following, the proof of which is standard, in the same lines of
the inequality in Proposition 2.

Proposition 9. Let {Xj}N
j=1 be i.i.d. copies of the random variable X. Assume

that X is ψ1 and that the ψ1 norm of X is smaller than some constant A. Then
for any t,

P[| 1
N

N∑

j=1

Xj − EX| > t] ≤ 2e−Nt/(3A). (16)
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Thus, for t = C ′′LK with C ′′ large enough, this probability is enough to
take care of a 1/2 net of the sphere, and then by successive approximation one
has an upper bound for the whole sphere.

We turn to the lower bound, where we will use our method. We need, as
usual, to estimate the probability P[z ∈ K : |〈x, z〉| < LKα]. This is done in the
following Proposition:

Proposition 10. There exists a universal constant C1 such that for any α > 0
and for any symmetric isotropic convex body K, for every direction u ∈ Sn−1

P[x ∈ K : |〈x, u〉| < LKα] < C1α.

Proof We use two well known facts from Asymptotic Geometric Analysis. First,
all central sections of an isotropic convex body have volume ≈ 1

LK
. Second, for

a centrally symmetric convex body K and a direction u, of all sections of K
by hyperplanes orthogonal to u, the one with the largest volume is the central
section (for proofs see e.g. the survey [GiM1]). In particular the two facts imply
that there exists some universal constant C1 such that for any direction u, any
section of K orthogonal to u has (n− 1)-dimensional volume ≤ C1

2LK
. Now use

Fubini Theorem to get that P[x ∈ K : |〈x, u〉| < LKα] < C1α. ¤
Notice that, differently from what was going on in Section 3.1, here for any

point x, we can make the probability as small as we want by reducing α. This
allows us to use just one simple net: take a θ-net N in Sn−1, with less than
( 3

θ )n points xi. Define the random variables Xi,j = |〈zj , xi〉|. We know that for
β < 1− C1α (which is hardly a restriction, α will be very small and so will β)
we have

P[
1
N

N∑

j=1

Xi,j > βLKα] ≥ 1− e−NI(β,1−C1α).

We choose β so that (1 + δ)(1 − β) = (1 + δ/2), hence β = δ
2(1+δ) . We choose

θ = βα/2C, where C comes from the upper bound (which is CLK). To make
sure that the probability that the above holds for all points in the net we ask
that

(
3
θ
)n2N (C1α)(1+

δ
2 )n ≤ 1

2
e−c′n.

For this we choose α = (C2δ)
2
δ for some universal C2, and get the lower bound

for each point of the θ-net of Sn−1. Now using the upper bound, for every
x ∈ Sn−1 we have for some i that (denoting |||x||| = 1

N

∑N
1 |〈x, zi〉|)

|||x||| ≥ |||xi||| − |||x− xi||| ≥ βLKα− θCLK .

Thus the proof of the lower bound, and of Theorem 7, is complete. ¤
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3.3 Reducing the level of randomness

Another variant of the question answered in Section 3.1 which we discuss in this
section is related to a more “explicit” construction of n-dimensional euclidean
sections of `

(1+δ)n
1 . In Section 3.1 we described Schechtman’s question about

realizing such a euclidean section by the image of a random sign matrix. In
a different paper, [S1], Schechtman showed that for δ = 1, that is, a 2n × n
matrix, one can take the upper half to be the identity matrix, and the lower to
be n random sign vectors, and this gives an isomorphic euclidean section of `2n

1 .
Using this method we can also take only the identity with only δn additional
random sign vectors (so, get a section of `

(1+δ)n
1 ), and the isomorphism constant

will depend on δ. Below we present a similar construction, in which we use our
method to show that when the upper half (that is, the first n vectors) is a
Hadamard matrix, namely a matrix of signs whose rows are orthogonal, and
add to it δn random sign vectors below, you also get an isomorphic euclidean
section of `

(1+δ)n
1 .

Remark While it is not known precisely for which n a Hadamard matrix exists
(the Hadamard conjecture is that they exist for n = 1, 2 and all multiples of 4),
it is known that the orders of Hadamard matrices are dense in the sense that
for all ε if n is sufficiently large there will exist a Hadamard matrix of order
between n and n(1 − ε). However, we only use the fact that the first n rows
are an orthonormal basis of Rn and Theorem 11 below holds if we replace the
Hadamard matrix by any other orthonormal matrix (normalized properly). For
more information on Hadamard matrices we refer the reader to [H]. We chose
Hadamard matrices since this way the section we get is generated by a sign
matrix.

Denote the rows of the n × n Hadamard matrix Wn by 1√
n
ε(j) for j =

1, . . . , n. They form an orthonormal basis of Rn. We prove below that by
adding the random sign vectors ε(n + 1), . . . , ε(n + δn) we get a matrix which
gives an isomorphic euclidean section of `

(1+δ)n
1 . We prove

Theorem 11. Let 0 < δ < 1, and denote N = (1 + δ)n. There exists a
constant c(δ) depending only on δ, and universal constants c′, C, such that for
large enough n, with probability 1 − e−c′δn, for δn random sign-vectors ε(j) ∈
{−1, 1}n, with j = n + 1, . . . , n + δn, one has for every x ∈ Rn

c(δ)|x| ≤ 1
N

N∑

j=1

|〈x, ε(j)〉| ≤ (1 +
√

δC)|x|, (17)

where one may take c(δ) = c1δ
3/2/(1 + ln(1/δ)) for a universal c1.

Proof Since 1√
n
ε(1), . . . , 1√

n
ε(n) is an orthonormal basis of Rn, every x ∈ Sn−1

can be uniquely written as x = 1√
n

∑
aiε(i), and ai = 1√

n
〈x, ε(i)〉. So,

∑
a2

i = 1,
and a = (ai)n

i=1 ∈ Sn−1 depends on x. Our aim is to show that inequality (17)
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holds. We can rewrite it as

c(δ)|x| ≤ 1
(1 + δ)

1
n

n∑

j=1

|〈x, ε(j)〉|+ 1
N

δn∑

j=1

|〈x, ε(n + j)〉| ≤ (1 +
√

δC)|x|. (18)

Fix x ∈ Sn−1. To prove the upper bound, first notice that the first summand
satisfies

1
(1 + δ)

1√
n

∑
|ai| ≤ 1

(1 + δ)

√∑
a2

i =
1

(1 + δ)
.

As for the second one, we can use a standard upper bound approach as in Section
3.1. Notice that the second term is in fact

[
δ

1 + δ
]

1
δn

δn∑

j=1

|〈x, ε(n + j)〉|,

so the upper bound we would expect for this part is ' δC. However, this is
not true, since if we would go ahead trying to prove this, the probability we
would get for an individual x to satisfy this would be 1− e−cδn and this is not
enough to take care of say a 1/2-net of the sphere. Thus, we need to take a
larger deviation in order to increase the probability. Take a 1/2-net N of Sn−1,
then taking t = C/(2

√
δ) in inequality (6) with N = δn we get that for a fixed

x ∈ N

P[
1
δn

δn∑

j=1

|〈x, ε(n + j)〉| ≤ C/(2
√

δ)|x|] ≥ 1− e
−δn( C

2
√

δ
−1)2/c4

for some universal c4. For large enough C, this probability is enough to take
care of the whole 1/2-net, and by successive approximation we get that with
high probability 1− e−cn we have for every x

[
δ

1 + δ
]

1
δn

δn∑

j=1

|〈x, ε(n + j)〉| ≤
√

δC|x|. (19)

The bound for the whole expression is thus as wanted, and in fact we will later
use the bound

√
δC for the second term separately.

For the lower bound, denote

Aγ = {x ∈ Sn−1 :
1√
n

n∑

i=1

|ai| ≤ γ}.

If x 6∈ Aγ then in inequality (17) we have

1
N

N∑

j=1

|〈x, ε(j)〉| ≥ 1
(1 + δ)

1
n

n∑

j=1

|〈x, ε(j)〉| ≥ γ/(1 + δ)
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and so a lower bound of the order γ/(1+ δ) holds. We want to choose γ so that
all x ∈ Aγ are taken care of by the δn random sign vectors, that is, by the right
hand side term in equation (18).

We need the following observation: Let α < 1 be some proportion. If
1√
n

∑n
i=1 |ai| ≤ γ, denote by ai0 the term ai which is in absolute value the

(αn)’st largest one. Then

γ ≥ 1√
n

n∑

i=1

|ai| ≥ 1√
n

∑

αn biggest

|ai| ≥ αn√
n
·|ai0 | ≥ α

√
n

(
1

(1− α)n

∑

i∈I

|ai|2
)1/2

where I is the set of the (1 − α)n coordinates ai which are smallest in abso-
lute value. Thus for some set I of coordinates, with |I| = (1 − α)n, we have
(
∑

i∈I |ai|2)1/2 ≤ γ
√

1−α
α .

We let E stand for a subspace spanned by αn of the (normalized) Hadamard
basis row vectors ε(1), . . . , ε(n). The observation tells us that every x ∈ Aγ can
be written as x = y+z with y in some such E, and |z| < γ

√
1−α
α . We will choose

α so that the δn additional random vectors take care of all vectors in all the E’s,
with a lower bound c′′. We will then choose γ such that γ

√
1−α
α C

√
δ ≤ c′′/2

(where C is from the upper bound in (19)) and by this we will finish, since then

1
N

δn∑

j=1

|〈x, ε(n + j)〉| ≥ 1
N

δn∑

j=1

|〈y, ε(n + j)〉| − C
√

δ|z| ≥ c′′/2.

(So, we will have a lower bound c(δ) = min(γ, c′′/2).) We make sure that
γ
√

1−α
α < 1/2, so that |y| > 1/2.
We thus have to find α and c′′ such that for a set of

(
n

αn

)
subspaces E of

dimension αn we have for all y ∈ E ∩ Sn−1 that

1
N

δn∑

j=1

|〈y, ε(n + j)〉| ≥ c′′.

We take a θ-net on this set (the value of θ will be chosen later). Its cardinality
is less than

(
n

αn

)
( 3

θ )αn, this is≤ ( e
α )αn( 3

θ )αn. For a single y in the net we estimate
the probability that

1
N

δn∑

j=1

|〈y, ε(n + j)〉| ≥ c′′

by our usual method. The probability for a single experiment |〈y, ε〉| ≥ α0|y| is
bounded below, for a suitably chosen α0, by 1/2, from Lemma 5. Choose, say
β = 1/4, and just as in previous sections

P[
1
N

δn∑

j=1

|〈y, ε(n + j)〉| > δ

1 + δ
βα0/2] ≥ 1− e−2c′δn
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(this is our definition of c′). We choose, say, θ = α0
√

δ
100C (since the upper bound

for the second part in (18) is
√

δC and so we are able to transfer the bound
from the net to the whole set) and then we choose α such that

(
3e

αθ
)αne−2δnc′ ≤ e−c′δn.

This holds if α ≤ c2δ/(1 + ln 1
δ ) for some universal c2. This finally gives,

say, c′′ = δα0/16. We still have to return to γ, which we can choose to
be γ = αc′′/(4C

√
δ), and this is the order of the lower bound we achieve,

c(δ) = c1δ
3/2/(1 + log(1/δ)). ¤

4 Dvoretzky-type theorems

In this Section we deal with a different question, namely with a global Dvoretzky-
type theorem. We will first illustrate yet another application where our method
works, reproving a well known version of the global Dvoretzky Theorem. First,
we will show how the upper bound can be obtained using Chernoff’s inequalities
and standard concentration on the sphere. This is different from the standard
way of proof for global Dvoretzky Theorem (which we also indicate below),
where usually the upper bound is obtained by a deep geometric argument about
concentration on the product of spheres, (inequality (20) below). The lower
bound we then obtain by using our Chernoff scheme.

We will then state, as a conjecture, a natural strengthening of the global
Dvoretzky Theorem (which would be optimal), the local analogue of which is
known to hold. We show how this strengthened theorem would be implied by
the validity of a small ball probability conjecture of LataÃla and Oleszkiewicz
[LO].

In the last part of the section we discuss an alternative parameter that is
of interest, and is similar to a parameter introduced by Klartag and Vershynin
in [KV], and which clarifies some other cases where the global Dvoretzky-type
theorem holds in an improved form.

4.1 About Global Dvoretzky’s Theorem

The global analogue of Dvoretzky’s Theorem first appeared in [BLM], in a non
explicit form, and explicitly in [MS2], and is the following Theorem, which, by
duality, means that the Minkowski average of C ′( a

M∗ )2 random rotations of a
convex body K with radius a and mean width M∗ is isomorphic to a euclidean
ball of radius M∗.

Theorem 12. There exist universal constants c, c′, C and C ′ such that for
every symmetric convex body K ⊂ Rn satisfying 1

b D ⊆ K, letting M = M(K),
we have with probability 1 − e−c′n, that the N = C ′( b

M )2 random orthogonal
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transformations U1, . . . , UN ∈ O(n) satisfy for every x ∈ Rn that

cM |x| ≤ 1
N

N∑

i=1

‖Uix‖K ≤ CM |x|.

Remark We later show that in fact the constant C ′ above can be chosen to be
(4 + δ) for any δ > 0, and then all other constants depend on δ. We also later
conjecture that in fact (1 + δ) for any δ > 0 should be the optimal constant.

It is clear that we are dealing with a lower and an upper bound for a sum of
random variables. It is also clear what our experiments will be: for a random
orthogonal transformation Uj , there is some fixed probability (for a given x ∈
Sn−1) that ‖Ujx‖ ≥ αM . We say that the experiment is a success if this
happens. In fact, taking α = 1 and taking M to be the median of the norm
instead of its expectation (they are very close, see [MS]), this probability is
exactly 1/2. If at least 1/4 of the trials succeed, we get the average above to
be at least M/4. This can be thought of as the main idea, however, we need
something stronger in order to get that N ' (b/M)2 rotations are enough, and
this naive approach will only give N ' n. which is typically much larger.

4.1.1 The upper bound, using concentration on the product of spheres

We start with the upper bound. The upper bound is usually handled with
the estimate (see 6.5.2 in [MS]): Fix x ∈ Sn−1, then for random Uj ∈ O(n),
j = 1, . . . , N , and t > 0 we have

P[(U1, . . . , UN ) : | 1
N

N∑

j=1

‖Ujxi‖ −M | > tM ] ≤
√

π

2
e−t2N( M

b )2 n−2
2 , (20)

which is a concentration result on the product of N spheres.
Concentration on the product of n spheres is quite a strong tool, and at first

glance this seems appropriate since we are searching for a strong result: not
a sum of N ' n variables, but much less (typically), N ' (b/M)2. In what
follows we will several times use the well known and easily provable fact that
b ≤ √

nM . To complete the upper bound using (20) we simply take a 1/2-net
on the sphere, with at most 5n points xi. For each i we use (20) with, say,
t = 4, and get that with probability at least 1 − 5n

√
π
2 e−8N( M

b )2(n−2) we have
for every xi in the net that

1
N

N∑

j=1

‖Ujxi‖ < 5M.

We clearly see that if N ≥ ( b
M )2, the probability above is exponentially close

to 1. Passing from a net on the sphere to the whole sphere, in an upper bound,
is standard, and may be done by successive approximation, which gives us that
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for every x ∈ Rn

1
N

N∑

j=1

‖Ujxi‖ < 10M.

Before moving to the lower bound, we would like to offer an alternative proof for
the upper bound, which does not use (20) directly, but gives a proof of a slightly
weaker estimate (which is sufficient for our needs) by using only Chernoff’s
bounds. We remark that (20), which is concentration on the product of n
spheres, is a much deeper fact than the concentration estimate on the sphere,
see [GrM].

4.1.2 The upper bound, avoiding concentration on the product of
spheres

In this paper, up till now, we have mostly shown how the use of Chernoff
bounds is useful in obtaining lower bounds, where the standard large deviation
technology was not enough. Below we will show how standard concentration on
the sphere, together with Chernoff bounds, provides an alternative proof for the
upper bound. This approach was pursued further in the paper [Ar], and one of
its merits is that it is quite robust.

We will use concentration on the sphere which states that

Lemma 13. For t > 0

σ
(
x ∈ Sn−1 : |‖x‖ −M | ≥ tM

) ≤
√

π

2
e−t2( M

b )2 n−2
2 , (21)

and is simply the case N = 1 of inequality (20).
Fix x ∈ Sn−1, and denote

Aj = {U ∈ O(n) : 2jM < ‖Ux‖ ≤ 2j+1M},
where j = t, t + 1, . . . , log( b

M ), for an integer t ≥ 2. By Lemma 13 we thus
have P(U ∈ Aj) ≤

√
π
2 e−(2j−1)2( M

b )2(n−2)/2. We also denote mj = N2−j/j2. If
out of the N transformations U1, . . . , UN , for every j ≥ t, less than mj of them
belong to Aj then

1
N

N∑

i=1

‖Uix‖ ≤ [2t +
log( b

M )∑

j=t

2j+1 mj

N
]M ≤ (2t + 2)M.

Fix some j ≥ t. We use Chernoff’s Proposition 1 to bound from above the
probability that more than mj of the N transformations are in Aj . For us now
p =

√
π
2 e−(2j−1)2( M

b )2(n−2)/2 and β = 2−j/j2, and in particular β > p since j ≥
2. Our scheme implies that this probability is bounded by (2

√
π
2 )Ne−N( M

b )2(n−2)(2j−2)/2j2
.

Adding these expressions up for j = t, t + 1, . . . we get that

P[(U1, . . . , UN ) :
1
N

N∑

i=1

‖Uix‖ > (2t + 1)M ] ≤ e−c′N( M
b )2(n−2)
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for some c′ depending only on t, as long as t is bigger than some universal
constant. (Where we use, as usual, that always (b/M) ≤ √

n.) Thus by taking
N above to be say 2 ln 5(M

b )−2/c′ we get the upper bound (2t +2)M for a whole
(1/2)-net. Successive approximation then gives the upper bound CM with
C = 2t+1 + 4. Recall that t can be chosen to be anything above some universal
constant C0. Enlarging t will make the probability better, which means we can
take N as any constant proportion, even < 1, of (M

b )−2, and have an upper
bound depending on this proportion. We have thus proved the upper bound,
using only standard concentration, and Chernoff.

4.1.3 The lower bound

One crucial point in the lower bound’s proof is estimating the probability of a
success in a specific experiment, that is, P[U ∈ O(n) : ‖Ux‖ ≥ αM ]. What we
usually need, is to be able to decrease this probability significantly by sending
α to 0. The standard concentration argument on the sphere, such as Lemma
13, gives that for α < 1 and a fixed x ∈ Sn−1

P[U ∈ O(n) : ‖Ux‖ ≥ αM ] ≥ 1−
√

π

8
e−(1−α)2( M

b )2 n−2
2 . (22)

This is enough for proving Theorem 12 with a universal C ′, but sending α
to 0 does not help to change the rate of decrease of the probability in (22), and
this is the reason for not getting the conjectured (below) optimal constant.

To complete the proof of the lower bound we take again a net on the sphere,
this time an (1/4C)-net where CM is the upper bound which we already know
from either one of the two previous subsections. We use (22) and our scheme
with α = 1/2 and β < α (small) to be specified later, and have that for a given
x in the net, with high probability, more than βN of the operators Uj satisfy
‖Ujx‖ ≥ M/2, more precisely

P[U1 . . . , UN ∈ O(n) :
1
N

N∑

j=1

‖Ujx‖ ≥ αβM ] ≥

1− 2−u(β)N

(√
π

8
e−

1
8 ( M

b )2(n−2)

)(1−β)N

.

We see that if N = C ′( b
M )2 this probability is greater than

1− 2−u(β)C′(b/M)2e−(1−β)(n−2)/8,

and so for β = β0 for some universal β0, and for large enough C ′ (which, notice,
depends on the bound C we have achieved before), we can have this probability
so big that it happens simultaneously for the whole net (and even this we can
make sure happens with exponentially high probability). Now with use of the
upper bound and the inverse triangle inequality we transfer the estimate to the
whole sphere, and the proof is complete. ¤
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4.2 With conjectured small-ball probability estimate

In this section we discuss the following conjecture which is different from The-
orem 12 by specifying the constant C ′ in that theorem.

Conjecture 14. For every δ there exists a constant c(δ) depending only on δ,
and universal constants c′ and C, such that for every symmetric convex body
K ⊂ Rn satisfying 1

b D ⊆ K, and with M = M(K) there exist N = (1 + δ)( b
M )2

orthogonal transformations U1, . . . , UN ∈ O(n) such that

c(δ)M |x| ≤ 1
N

N∑

i=1

‖Uix‖K ≤ CM |x|. (23)

Remark For large δ > 0, this is Theorem 12. Also, we may assume δ < δ0

for some universal δ0 since if we prove Conjecture 14 for such δ it will then
follow from standard arguments that the same holds for all δ > 0. Finally, this
is the best we can hope for in the general case, in the sense that using less
than N = ( b

M )2 transformations Ui, we cannot expect the average always to be
isomorphic to euclidean, as is implied by the example of a cylinder with basis
of dimension (M/b)2n (see a parallel local version in [GMT]; the local version
also follows from an earlier result by Gordon [Go]).

To achieve such an estimate for N we need a stronger estimate than (22).
Such an estimate was conjectured (for different applications) by Vershynin, and
reformulated by LataÃla and Oleszkiewicz with an extra non-degeneration condi-
tion, as follows (see [LO], Conjecture 1 and its Corollaries). Below we formulate
a variant of their conjecture, which was originally formulated in the Gaussian
context, but the translation is straightforward. Notice that we formulate a vari-
ant with M being the mean of the norm whereas in [LO] the median is used;

Conjecture 15. For every constant κ < 1 there exists universal constants
C ′ = C ′(κ), c0 = C0(κ) and w0 = w0(κ) > c0(κ) such that if for some norm we
have (b/M)2 ≤ n/w0 then for any α < 1,

σ(x ∈ Sn−1 : ‖x‖ < αM) < (C ′α)κ( M
b

√
n−c0)

2
+ . (24)

Notice that this estimates precisely the same quantity as in (22). Here we
see that as α → 0, the estimates improve significantly.
Proof of the implication Conjecture 15 → Conjecture 14 We will first prove the
implication in the non-degenerate case. Assume that Conjecture 15 is true. We
start with a given δ > 0, and first prove that the statement of Conjecture 14
must hold for bodies K with b(K)/M(K) ≤

√
n/w0, where w0 = min(w0(1 −

δ/10), c0/(10δ)) comes from the constants in Conjecture 15. We then show why
knowing the conjecture in these cases implies all other cases.

So, let δ > 0 and define κ = (1 − δ/10). By Conjecture 15, for every body
satisfying b(K)/M(K) ≤ √

n/w0 we have that

σ(x ∈ Sn−1 : ‖x‖ < αM) < (Cα)(1−δ/10)( M
b

√
n−c0)

2
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(where C, c0 and κ, now depend δ). We choose β small enough so that (1 −
β)N(M

b )2(1− δ/10)2 ≥ (1 + δ/2), so for example β = δ/10 is small enough.
We now repeat the proof from Section 4.1, using the new estimate on the

probability. Since β is very small (having assumed δ < δ0), the term u(β) from
(2) has hardly any effect. We thus have an estimate 2u(β)N (C ′α)(1+δ/2)n for the
probability that for a single x a lower estimate in (23) of order βαM does not
hold. We work the same way as in Section 3.1, having some choice of α = α(δ)
for which this probability is small enough to take care of a whole αβ/2C-net of
the sphere, where C is from the upper bound CM which we have already shown.
This α will, as usual, be exponentially bad in δ, even before taking into account
that C ′ = C ′(1 − δ/10) can itself have a bad dependency on δ. Notice that in
this case we get not only the existence of operators Ui satisfying the inequality
(23), but that (23) is true with high probability on the choice of operators (the
probability coming from Chernoff, so, at least 1− e−cn).

We turn to the case where, after specifying δ, we have a body for which
b(K)/M(K) >

√
n/w0 where w0 was indicated above and depends only on δ.

This means in effect that K is very degenerate. We then do a preliminary
“regulating” procedure. We pick randomly k operators Ui, i = 1, . . . , k, for
k = 2(b/M)2w0/n. This is a small number depending on δ, since k < 2w2

0. We
now define K ′ to be the unit ball of the norm

‖x‖K′ =
1
k

k∑

i=1

‖Uix‖K .

Of course, since M is simply the average of the norm on the sphere, we have
that M(K) = M(K ′). However, it is well known that the diameter of the
average of k random rotates of a body is smaller by a factor about 1√

k
than

the diameter of the body. Since we are speaking about norms, this means
that b(K ′) ' b(K)/

√
k. We will need the more precise result, namely that

the diameter decreases almost isometrically by 1/
√

k, provided k is not large
compared to b/M , which is our case since K is degenerate. We formulate the
lemma we need in its more familiar, dual form:

Lemma 16. For any 0 < ε < 1 there exist constants cε and c(ε) such that for
a symmetric body T , if k < (c(ε)(diam(T )/M∗(T ))1/2 and k ln k ≤ nε2/8 then
for random U1, . . . , Uk ∈ O(n) we have with probability greater than 1−e−cεn/k2

that

diam

(
1
k

k∑

i=1

UiT

)
≤ (1 + ε)√

k
diam(T ).

The proof of this fact follows from standard considerations, see [AM] for the
case k = 2 which generalizes directly. In fact c(ε) can be taken linear in ε and
cε to be linear in ε2.

Applying Lemma 16 to K◦ we get that for k < min(C(ε)(b/M)2, nε2/8 ln n)
we have b(K ′) ≤ (1 + ε)b(K)/

√
k. For our choice of k (and for a fixed δ > 0)

clearly the condition holds for n large enough, since w0 doesn’t depend on n.
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This means that (b(K ′)/M(K ′)) ≤ (1+ ε)
√

n/2w0, so as long as ε ≤ √
2− 1 we

may apply the proof of the first part to get that there exist rotations V1, . . . , VN ′ ,
for N ′ = (b(K ′)/M(K ′))2(1 + δ) so that

1
N ′

N ′∑

j=1

‖Vjx‖K′ ' |x|,

with constants of isomorphism depending only on δ. Taking the N = N ′k
rotations UiVj we have that

1
N ′k

N ′∑

j=1

k∑

i=1

‖VjUix‖K ' |x|.

From our choice of k and the estimate on N ′ we see that

N = N ′k = k(b(K ′)/M(K ′))2(1 + δ) ≤ (1 + ε)(1 + δ)(b(K)/M(K))2.

For ε of the same order as δ, we have the desired result.
We remark that although we have proved the existence of a set of rotations,

we provided rotations with a certain structure and did not show that for random
N rotations (23) is satisfied.

Remark A weakening of Conjecture 15 was proved by LataÃla and Oleszkiewicz,
see Theorem 3 in [LO]. It states that for every symmetric K one has

σ(x ∈ Sn−1 : ‖x‖ < αM ′) < (12α)(
M′
b

√
n−6)2+/4

, (25)

where M ′ is the median of the norm (which, in the non degenerate case, is known
to be close to the mean of the norm, M). This estimate can be used instead of
(22), in the same way that (24) was used in the proof of the implication above,
to prove Conjecture 14 with instead of constant (1+ δ), constant (4+ δ) for any
δ > 0. We omit the details.

4.3 Improvements in some special cases

From our method of proof it is obvious that the parameter which plays the
leading role in the lower bound is not (M/b)2 but rather

1
n

log σ(x ∈ Sn−1 : ‖x‖ > αM).

(This parameter, for α = 1/2, is very similar to the one introduced in [KV] to
study local Dvoretzky type theorems.) To be precise, let us denote

f(α) =
1
n

log(1/σ(x ∈ Sn−1 : ‖x‖ > αM)).
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Then for any proportion β < σ(x ∈ Sn−1 : ‖x‖ > αM), that is, β < 1−e−nf(α))
we have by Chernoff (2) that for a single x

P[U1 . . . , UN ∈ O(n) :
1
N

N∑

i=1

‖Uix‖ ≥ βαM ] ≥ 1− e−nf(α)N(1−β)e−Nu(β).

If we want this probability to suffice for a βα/2C-net of the sphere (where C is
from the upper bound), we need to have

e−Nu(β)e−nf(α)N(1−β)en log(1+4C/(αβ)) < 1.

This gives us the bound on N , namely that for every α < 1 and 0 < β <
1− e−nf(α), we may choose

N = 2
log(1 + 4C/(αβ))

f(α)(1− β) + u(β)/n

and have a lower bound (αβ/2)M on the norm defined in (23), where CM is
the upper bound we have on this norm defined in (23). In other words, we can
take N as close as we want to

inf
α<1,0<β<1−e−nf(α)

log(1 + 4C/(αβ))
f(α)(1− β) + u(β)/n

,

getting that for the average of this number of rotations, assuming an upper
bound CM , is isomorphic to euclidean, paying only with the isomorphism con-
stants.

In many special cases the estimates for f(α) are better than what is given
above, see examples in [KV]. The question remains whether one can give a
general condition under which there are estimates for f(α) significantly better
than (22) and (25).

Notice, however, that this is just the N for the lower bound, assuming an
upper bound. It is well known that one always need to take at least N =
λ(b/M)2 for some constant λ > 0, to get the right order upper bound in (23).
In particular, we need the upper bound so that we can transform the bounds on
the net to bounds on the whole sphere. Thus, the improvement in the special
cases where one computes f(α) and sees that it is larger than expected, i.e.,
that the infimum above is o((b/M)2), will be that averaging over N = λ(b/M)2

rotations for a proportion 0 < λ is enough to get a norm isomorphic to euclidean.
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