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Abstract

In this paper we define the notions of weighted covering number and weighted separation number for
convex sets, and compare them to the classical covering and separation numbers. This sheds new light
on the equivalence of classical covering and separation. We also provide a formula for computing these
numbers via a limit of classical covering numbers in higher dimensions.
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1. Introduction

Covering numbers are a very useful tool in many mathematical fields, ranging from probabil-
ity and combinatorics to analysis and geometry. Roughly speaking, for two convex bodies K and
T (closed convex sets with non-empty interior) the covering number of K by tT as a function of
t > 0 measures the complexity of the set K in terms of T , and is defined as the minimal number
of translates of tT needed to cover K :

Definition 1. Let K,T ⊆ Rd . A sequence {xi}Ni=1 ⊂ K is called a covering of K by T if K ⊂⋃N
i=1(T + xi). The covering number of K by T is defined as the minimal N over all possible

coverings of K by T , denoted by N(K,T ).
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Remark 2. In the case of classical covering numbers, it is often allowed to use translates of
T with centers anywhere in R

d , i.e. the centers xi are not restricted to lie in K (denote this
number by N0(K,T ), though it will not be used outside this remark). We prefer to use the above
definition (sometimes denoted N̄ ) and note that there is a well-known connection between the
two definitions given, for symmetric T = −T , by

N0(K,T ) � N(K,T ) � N0

(
K,

1

2
T

)
.

[More generally, the right-hand side inequality for non-symmetric T reads N(K,T − T ) �
N0(K,T ).]

The computation of these numbers is usually extremely difficult. However, they arise very
naturally in the solution of many problems in analysis and in probability, for example in the
study of Gaussian processes; understanding their behavior is an important goal (see e.g. [1,3–5,
7,8,11] and references therein).

A closely related notion to covering numbers is the notion of separation. Roughly speak-
ing, for two convex bodies K and T , the separation number is the maximal number of non-
intersecting copies of tT (as a function of t) one can put with centers all lying inside K .

Definition 3. A sequence {xi}Mi=1 ⊂ K is called a T -separated set in K if for every i �= j in
1, . . . ,M we have (T + xi) ∩ (T + xj ) = ∅. The T -separation number in K is defined as the
maximal M possible over all T -separated sets in K , denoted by M(K,T ).

Although there are known connections between the separation number of two bodies and their
covering number, in general the two numbers can be very different. One such connection is given
by the following inequalities, which hold for two symmetric convex bodies K,T ⊆ R

n, which is
well known and easy to prove:

N(K,2T ) � M(K,T ) � N(K,T ). (1)

In fact, the proof corresponds to the following well-known geometric riddle:

Riddle. On a triangular table, 100 identical coins are placed (non-intersecting) so that no room
is left to insert another coin (without it intersecting one of the other coins). Show that the whole
table can be covered using 400 such coins.

To solve the riddle, denote the table by T and a coin by C. We are trying to show that
N(T ,C) � 400 where we know M(T,C) = 100. (Here is a slight inaccuracy: we know that
there exists a maximal separated set of size 100. There could, in general, exist a larger separated
set.) The key to the solution is to notice that the triangular table T can be seen as the union of
four identical triangles (one of which is rotated 180◦) of half the size, T/2. Then by Eq. (1) each
of these four tables can be covered by 100 coins, and so T can be covered by 400 coins.

Thus, the main part in the solution of the riddle is to show why Eq. (1) holds. This is a simple
matter of inflating the covering body by 2, and a similar argument is presented in the proof of
Proposition 9 below. We write, in short, that N ∼ M , where this stands for universal constant
inside the argument, as in (1).
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In general, equality need not hold in either side of this equation.
In combinatorics, already a couple of decades ago, the notion of a fractional covering of a

hypergraph was introduced, where the covering sets can be given weights which are different
than one, so long as the total weight on each point in the covered set is at least one. The weighted
covering number is then the total weight distributed on the covering sets (precise definitions, in
the context of convex bodies, are below). For reference see e.g. the book [10] and references
therein. Our starting point was to ask whether a similar notion exists in the continuous case,
and what can be said about it. Much to our surprise, the corresponding notion, which we call
“weighted covering”, not only exists but has much better properties than its combinatorial cousin.

Our main Theorem 6 asserts that usual covering numbers and our notion of weighted covering
numbers are actually, up to some universal constants (independent of the dimension, and the sets
of course), the same. Therefore, when these constants are not important, one can choose freely
whether to use the classical or the weighted notion, being able to translate a result with one
notion to the other. In combinatorics, the notion of fractional coverings plays a central role,
their main advantage being that they allow to use linear programming over R rather than Z.
However, it is interesting to note that in combinatorics it was shown by L. Lovász in [6] that
they are equivalent to usual covering numbers only up to a logarithmic factor, which cannot be
eliminated (the difference from our case being that no natural homothety is allowed).

In fact, in the “weighted-world” covering and separation numbers for convex sets are not
only equivalent but equal (whereas for the non-weighted notion there are cases where there is
a difference). This is our Theorem 7. This fact by itself demonstrates another advantage the
weighted notion has over the classical one, and one might find it easier to work with. We remark
that an alternative proof of Theorem 6, with slightly worse constants, will be presented in [9].

To state the two main theorems precisely, let us give the definition of weighted covering and
separation:

Definition 4. A sequence of pairs S = {(xi,wi): xi ∈ K, wi ∈ R
+}Ni=1 with N ∈ N of points and

weights will be called a weighted covering of K by T if for all x ∈ K

w(x) :=
N∑

i=1

wi1T +xi
(x) � 1.

Here 1A(x) denotes the indicator function of A, equal to 1 if x ∈ A and 0 otherwise. We denote by
w(S) = ∑N

i=1 wi the total weight of the weighted covering and define Nw(K,T ), the weighted
covering number of K by T , to be the infimal total weight over all weighted coverings of K

by T .

Definition 5. A sequence of pairs S = {(xi,wi): xi ∈ K, wi ∈ R
+}Mi=1 with M ∈ N of points and

weights will be called a weighted T -separated set in K if for all x ∈ K

w(x) :=
M∑
i=1

wi1T +xi
(x) � 1.

The total weight of S will be w(S) = ∑M
i=1 wi , and we define Mw(K,T ) to be the supremal total

weight over all weighted T -separated sets in K , which we will call the weighted T -separation
number of K .
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Our two main theorems are as follows:

Theorem 6. Let K and T be two convex bodies in R
d and assume T is symmetric T = −T .

Then,

N(K,2T ) � Nw(K,T ) � N(K,T ). (2)

Theorem 7. Let K and T be two convex bodies in R
d and assume T is symmetric T = −T .

Then,

Nw(K,T ) = Mw(K,T ). (3)

The third main result of this note can be viewed as an alternative definition to weighted cov-
ering number, as a limit of the classical covering numbers, given in Theorem 8. A main tool in
the proof is again Theorem 7. The alternative definition allows us to characterize the cases where
there is an actual equality between the weighted and the classical notions.

The representation is via a limit of classical covering numbers in increasing dimension. For
A ⊂ R

d and n ∈ N, denote An = {(x1, . . . , xn) ∈ (Rd)n: xi ∈ A}. We then have

Theorem 8. Let K and T be convex bodies in R
d and assume T is symmetric T = −T . Then,

Nw(K,T ) = lim
n→∞

n

√
N

(
Kn,T n

)
. (4)

The paper in organized as follows. In Section 2 we show Theorem 6. In Section 3 we prove
Theorem 7, which relies on linear programming duality. This requires several technical lemmas
and continuity results. Finally, we give the proof of Theorem 8 in Section 4, which again re-
quires some technical lemmas in addition to the study of how covering and weighted covering
interact with direct products. Some of the proofs of the more technical lemmas are included in
Appendix A.

2. Weighted covering is equivalent to the classical covering

Theorem 6 is a consequence of (the right-hand side of) the following inequality, which is
proved in the second part of this section:

Nw(K,2T ) � Mw(K,T ) � Nw(K,T ). (5)

This is the weighted version of inequality (1) above. This inequality is joined with the trivial
inequalities:

Nw(K,T ) � N(K,T ), (6)

M(K,T ) � Mw(K,T ). (7)

Proof of Theorem 6. Indeed,

N(K,2T ) � M(K,T ) � Mw(K,T ) � Nw(K,T ) � N(K,T ). �
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We give the proof of (5) in the next two propositions.

Proposition 9. Let K and T be two convex bodies in R
d , T is symmetric, then

Nw(K,2T ) � Mw(K,T ). (8)

More generally, for non-symmetric T

Nw(K,T − T ) � Mw(K,T ). (9)

Proof. Fix ε > 0 and let S = {(xi,wi)}Mi=1 be a weighted T -separated set in K with weight
greater than Mw(K,T )−ε. We temporarily put wT (x) to denote x’s weight in S when considered
as a weighted T -separated set, and put wT −T (x) to denote x’s weight in S when considered
as a weighted covering with T − T . Then we claim that for every x ∈ K , wT −T (x) � 1 − ε.
Suppose otherwise that there is x0 ∈ K with wT −T (x0) < 1 − ε. This means that after adding
(x0,1 − wT −T (x0)) to S, we still remain with a T -separated set in K . But since its total weight
comes up to be greater than Mw(K,T ), we get a contradiction. It is possible to complete S to
a weighted covering (of K by T − T ) by adding to it the set S1 × {ε}, where S1 is a classical
covering of K by T − T . We therefore conclude that Nw(K,T − T ) � Mw(K,T ) + Cε (with
say C = N(K,T − T )). Since ε is arbitrary the result follows. �

For the proof of the right-hand side inequality, we need two simple definitions which will also
be useful later on, of ε-covering and ε-separation numbers.

Definition 10. A sequence of pairs {(xi,wi)}Ni=1 will be called an ε-covering if it is a weighted
covering and wi = ε for all i. For a fixed ε, we denote the infimal (minimal) total weight over all
ε-coverings of K by T by Nε(K,T ).

A sequence of pairs {(xi,wi)}Ni=1 will be called an ε-separation if it is a weighted T -separated
set and wi = ε for all i. For a fixed ε, we denote the supremal (in fact, maximal) total weight
over all ε-coverings of K by T by Nε(K,T ).

In the proof we use the two following inequalities, which are simple, and are proved as
Lemma 20 and Lemma 21 in Appendix A.

Nw(K,T ) = lim
ε→0+ Nε(K,T ), (10)

Mw(K,T ) = lim
ε→0+ Mε(K,T ). (11)

Proposition 11. Let K , T be two convex bodies in R
d , where T = −T is symmetric. Then

Mw(K,T ) � Nw(K,T ). (12)

Proof. We will show that

Nε (K,T ) � Mε (K,−T ) (13)
1 2
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for any ε1 = 1/K1, ε2 = 1/K2 with K1,K2 ∈ N. Then by letting K1 and K2 tend to ∞ on both
sides, using Lemma 20 and Lemma 21 we will conclude Nw(K,T ) � Mw(K,−T ) as needed.

Assume the contrary, namely that there exist an ε1-covering of K by T ,

S1 = {
(xi, ε1)

}N

i=1

and an ε2-(−T )-separated set in K ,

S2 = {
(yj , ε2)

}M

j=1

such that Nε1 < Mε2.
S1 is covering K and {yj }Mj=1 ⊂ K , therefore for each j there exist at least K1 elements,

{xik }K1
k=1 ⊂ S1, such that T + xik contains yj for each k ∈ {1, . . . ,K1}.

We use the Pigeonhole Principle to show a contradiction. We have MK1 points (K1 points
for each yj in S2) to put in N “buckets” (points of S1). The assumption Nε1 < Mε2 implies
MK1

N
> K2, this means that there is a point x∗ ∈ S1 such that T + x∗ contains more than K2

points of S2, say {yjk
}K2+1
k=1 .

Equivalently, x∗ ∈ −T + yjk
for each k ∈ {1, . . . ,K2 + 1}. Then in the ε2-(−T )-separated set

S2, w(x∗) > 1, which is a contradiction. We then conclude that Nε1(K,T ) � Mε2(K,−T ) for
any ε1, ε2 of the above form. �
3. Duality: weighted covering is equal weighted separation

In this section we prove Theorem 7. The main tool for the proof of Theorem 7 is the well-
known duality theorem of linear programming, which we next quote.

Theorem 12. Let A be a real m × d matrix, b ∈ R
m, c ∈ R

d . If at least one of the extreme
sup{〈c, x〉: Ax � b, x � 0} and inf{〈y, b〉: yA � c, y � 0} is attained, then so is the other and

max
{〈c, x〉: Ax � b, x � 0

} = min
{〈y, b〉: yA � c, y � 0

}
,

where 〈·,·〉 is the standard Euclidean inner product.

For reference see any standard Linear Programming book, for example [2]. To use the above
theorem, we need to “discretize” our notions. Note that in the definition of weighted covering
and separation, the covering and covered set can be any set, not necessarily convex. We thus may
define, for Λ ⊂ K (which will later be chosen to be some net)

Nw(K,T ,Λ) := Nw(K ∩ Λ,T ),

Mw(K,T ,Λ) := Mw(K ∩ Λ,T ).

We claim that for the discretized notion, linear programming duality translates to equality of
covering and separation.
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Theorem 13. Let K,T ⊆ R
d with T = −T and let Λ ⊂ K be a finite subset of K . Then

Nw(K,T ,Λ) = Mw(K,T ,Λ). (14)

More generally, for non-symmetric T

Nw(K,T ,Λ) = Mw(K,−T ,Λ). (15)

The proof will be a direct translation of the assumptions of the theorem to the language of
vectors and matrices in which Theorem 12 can be applied.

Proof. Assume Λ = {xi}ni=1. Let M be the n × n matrix given by

Mi,j =
{

1, xi ∈ xj + T ,

0, otherwise.

Assigning weights w = {wj }nj=1 to the columns, the condition of covering is translated to
(Mw)i � 1 for all i. The weighted cover N(K,T ,Λ) is thus the infimum over all such (non-
negative) w of

∑
j wj .

Using Theorem 12, we get that N(K,T ,Λ) is equal to the maximum of
∑

i wi under the
condition wi � 0 and (wT M)j � 1 for all j . This, in turn, means assigning weights wj to the
rows, and summing, for each column xj , the weights of the rows xi so that xi ∈ xj + T which
is the same as xj ∈ xi − T . All these summed weights must add up to at most 1. So we take the
maximal −T separated set in K ∩ Λ. �

In order to use the discretized version, we need two simple lemmas regarding nets. A set
Λ(δ) ⊆ K is called a δ-net of K if for every x ∈ K there exists xi ∈ Λ such that |x − xi | � δ. In
other words, if K ⊆ Λ + δD where D is the Euclidean ball.

Lemma 14. Let K and T be convex bodies in R
d , T = −T , and let Λ(δ) be a δ-net for K then

Nw(K,T + δD) � Nw

(
K,T ,Λ(δ)

)
. (16)

Indeed, using well-known inequalities for covering numbers (which translate directly to
weighted covering) we see that

Nw

(
K,T ,Λ(δ)

) = Nw

(
K ∩ Λ(δ),T

)
� Nw

(
K ∩ Λ(δ) + δD,T + δD

)
� Nw(K,T + δD).

Lemma 15. Let K and T be two convex bodies in R
d , and let Λ(δ) be a δ-net for K then

Mw(K,T ) � Mw

(
K,T + δD,Λ(δ)

)
. (17)

Indeed, let S be a (weighted) separated set for K ∩Λ by T + δD. Then it is easy to check that
S also forms a weighted T -separated set in K , for if there is too much weight on a point x ∈ K ,
there would have been too much weight on the closest net-point.
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Proof of Theorem 7. We use the two above lemmas, together with Theorem 13, as follows: Let
Λ(δn) be a sequence of δn-nets for K with δn → 0+. For each n we have

Mw(K,T ) � Mw

(
K,T + δnD,Λ(δn)

)
= Nw

(
K,T + δnD,Λ(δn)

)
� Nw(K,T + 2δnD). (18)

Thus

Mw(K,T ) � lim
n→∞Nw(K,T + 2δnD). (19)

To complete the proof of Theorem 7 we need the following continuity result, which is proved
in Proposition 22 in Appendix A.

lim
δ→0+ Nw(K,T + δD) = Nw(K,T ). (20)

Taking Eqs. (19) and (20) into account, together with Proposition 11, the proof of Theorem 7
is thus complete. �
4. An alternative definition to weighted covering

In this section we prove Theorem 8. For the proof we use the next proposition.

Proposition 16. Let K1, T1 ⊂ R
d1 , K2, T2 ⊂ R

d2 be convex bodies. Then we have

Nw(K1 × K2, T1 × T2) = Nw(K1, T1)Nw(K2, T2), (21)

Mw(K1 × K2, T1 × T2) = Mw(K1, T1)Mw(K2, T2). (22)

Proof. We first show the two inequalities

Nw(K1 × K2, T1 × T2) � Nw(K1, T1)Nw(K2, T2), (23)

Mw(K1, T1)Mw(K2, T2) � Mw(K1 × K2, T1 × T2). (24)

The two simply follow from the fact that the direct product of two covers is a cover, and the
direct product of two separated sets is a separated set. Indeed, given S1 = {(xi,wi)}N1

i=1 which a

weighted covering of K1 by T1 and S2 = {(yj , uj )}N2
j=1 a weighted covering of K2 by T2, it is

easy to check that the set

S = {(
(xi, yj ),wiuj

)}
i,j

is a weighted covering of K1 × K2 by T1 × T2, with total weight w(S) = w(S1)w(S2). Similarly
for separated sets. This proves both inequalities. Finally, using Theorem 7, we get
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Nw(K1 × K2, T1 × T2) � Nw(K1, T1)Nw(K2, T2)

= Mw(K1,−T1)Mw(K2,−T2)

� Mw

(
K1 × K2, (−T1) × (−T2)

)
= Nw

(
K1 × K2,−

(
(−T1) × (−T2)

))
= Nw(K1 × K2, T1 × T2). (25)

Implying that all inequalities in (25) are equalities. The statement then follows. �
We will also use the next lemma which is proved (in a more general setting) in Appendix A

(Corollary 25 there).

Lemma 17. Let S be a weighted covering of K by T . Then there exists a finite set K ′ ⊂ K ,
such that for every x ∈ Kn there exists y(x) ∈ (K ′)n such that for any sub-covering S̄ ⊂ Sn, x is
covered by S̄ if and only if y(x) is.

Proof of Theorem 8. We first note that the limit exists and is equal to the infimum over n.
Indeed, it is easy to see that N(Kn+m,T n+m) � Nn(K,T )Nm(K,T ) (as in the first part of
the proof of Proposition 16, with the weights now all being 1), and using the property of sub-
multiplicative sequences, the limit limn→∞ n

√
N(Kn,T n) exists and is equal to the infimum of

the sequence.
The fact that this limit is at least the weighted covering number is easy. Indeed, Proposition 16

yields that for every n,

Nw(K,T ) = n

√
Nw

(
Kn,T n

)
� n

√
N

(
Kn,T n

)
.

For the opposite inequality, fix ε > 0 and let S be an ε-covering of K by T . Fix δ > 0 (arbi-
trarily small) and choose a set M ⊂ Sn of cardinality

L = �
(
w(S)(1 + δ)

)n�

by selecting elements from Sn, randomly and independently, according to the uniform distribu-
tion (assigning probability [ε/(w(S))]n to each element in Sn).

Denote by K ′ ⊂ K the finite set given by Lemma 17. We next show that with positive prob-
ability, M is a (classical) covering of (K ′)n by T n (and thus, by Lemma 17, also a covering
of Kn).

Let x = (x1, . . . , xn) ∈ (K ′)n and s̄ = (s1, . . . , sn) ∈ M . We have for every i, as xi is covered
by at least 1/ε elements in S, that

Pr(xi ∈ T + si) � 1

ε

ε

w(S)
= 1

w(S)

and therefore

Pr
(
x ∈ T n + s̄

)
�

(
1

)n

.

w(S)
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For a fixed x, the probability that no point in M gives a translation that covers x is then bounded
by

[
1 −

(
1

w(S)

)n]L

�
(

1

2

)(1+δ)n

where the last inequality is true for sufficiently large n (because limt→0(1 − t)1/t = 1/e < 1/2).
Since we have (|K ′|)n elements to cover, the probability that M doesn’t form a covering of

K ′n is less than

(|K ′|)n
2(1+δ)n

which is less than 1 (and actually goes to 0) for n large enough (and depending on δ and |K ′|).
For such an n the probability that M is a covering of (K ′)n is positive and hence at least one
such a covering exists. Lemma 17 gives us that M is then a covering of Kn. We thus found, for
sufficiently large n, a classical covering of Kn by T n with L elements, and hence

lim n

√
N

(
Kn,T n

)
� w(S)(1 + δ)

with δ > 0 arbitrary small. This gives us

lim
n→∞

n

√
N

(
Kn,T n

)
� w(S)

for every ε-covering S of K by T , with any ε > 0.
Finally, the continuity-type result Lemma 20 from Appendix A implies that, taking the limit

as ε → 0+, we get

lim
n→∞

n

√
N

(
Kn,T n

)
� Nw(K,T )

as needed. �
To end this section, we give a corollary of the above reasoning, giving a criterion for when

there is equality of covering and fractional covering. It turns out that in such cases, the classical
covering numbers have a multiplicativity (rather than just sub-multiplicativity) property.

Corollary 18. Let K and T be convex bodies in R
d , T symmetric T = −T . Then

Nw(K,T ) = N(K,T ) (26)

if and only if, for any m ∈ N and any two convex bodies G1 and G2 in R
m with G2 = −G2

symmetric,

N(K × G1, T × G2) = N(K,T )N(G1,G2). (27)
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The proof of this inequality follows from the following inequality, which is in itself quite
interesting, as it is of a super-multiplicativity type (usual covering number exhibit only sub-
multiplicativity result).

Proposition 19. Let K1, T1 ⊂ R
d1 , K2, T2 ⊂ R

d2 be convex bodies. Then

N(K1 × K2, T1 × T2) � Nw(K1, T1)N(K2, T2). (28)

Proof. Let

S1 = {
(xi, yi)

}N

i=1

be a (classical) covering of K1 × K2 by T1 × T2. We claim that

S = {
(xi,wi): N(K2, T2)wi = ∣∣{y: (xi, y) ∈ S1

}∣∣}

(no multiple elements here) forms a weighted covering of K1 by T1. Indeed, let x ∈ K1, then
{x} × K2 is covered, say by Sx = {(xik , yik )}|Sx |

k=1 ⊂ S1. In particular {yik }|Sx |
k=1 forms a covering of

K2 by T2. Hence, |Sx | � N(K2, T2) and w(x) � 1. This means that S is a covering and its total
weight is

w(S) = |S1|
N(K2, T2)

� N(K1 × K2, T1 × T2)

N(K2, T2)
. �

Proof of Corollary 18. We first prove that (27) implies (26). Indeed, let G1 = Kn, G2 = T n,
then by (27) we have

N
(
K × Kn,T × T n

) = N(K,T )N
(
Kn,T n

)

with arbitrary n ∈ N. This implies that for any n

N
(
Kn,T n

) = Nn(K,T ).

Together with Theorem 8 we get (26). For the other direction let G1 and G2 be any two convex
bodies with G2 = −G2. By Proposition 19 and (26) we have

N(K × G1, T × G2) � Nw(K,T )N(G1,G2) = N(K,T )N(G1,G2).

The opposite inequality

N(K × G1, T × G2) � N(K,T )N(G1,G2)

follows by the simple fact that for S1, S2 coverings of K by T and of G1 by G2 respectively,
S1 × S2 is a covering of K × G1 by T × G2 (with |S1||S2| elements). �
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Appendix A

The first two propositions deal with a continuity type result, stating that the limit of ε-covering
or separation numbers are weighted covering or separation numbers.

Lemma 20. Let K , T be two convex bodies in R
d . Then for every 1 > r > 0, 0 < ε <

r/2Nw(K,T )

Nw(K,T ) � Nε(K,T ) � Nw(K,T ) + 2r. (29)

In particular,

Nw(K,T ) = lim
ε→0+ Nε(K,T ) (30)

and the limit exists.

Lemma 21. Let K , T be two convex bodies in R
d , where T = −T is symmetric. Then

Mw(K,T ) = lim
ε→0+ Mε(K,T ) (31)

and in particular the limit exists.

Proof of Lemma 20. Clearly,

Nw(K,T ) � Nε(K,T ) (32)

because an ε-covering is in particular a weighted covering. Let r > 0. We take S = {(xi,wi)}Ni=1
a weighted covering of K by T with w(S) � Nw(K,T ) + r . Then for every ε < r/N =: ε0 we
may take {w̄i}Ni=1 where w̄i = miε for some mi ∈ N and 0 � w̄i − wi � r/N (for every x ∈ R

and ε > 0, one of the intervals [0, ε] + mε with m ∈ N contains x, and therefore exists mx,ε ∈ N

such that mx,εε is close to x, say from the right, up to ε). Then the sequence

S1 = {
(xi, w̄i)

}N

i=1

is an ε-covering of K by T , because we only enlarged some of the weights in S, and also all the
weights are multiples of ε. In addition, w(S1) � w(S)+ r because

∑N
i=1(w̄i −wi) � r . Thus for

every r > 0 we found an ε0 > 0 such that 0 < ε < ε0 implies

Nw(K,T ) � Nε(K,T ) � Nw(K,T ) + 2r. �
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Proof of Lemma 21. The proof is similar to the one of Lemma 20. Clearly, Mw(K,T ) �
Mε(K,T ) because T -ε-separated set is in particular a weighted T -ε-separated set. Let r > 0.
We take S = {(xi,wi)}Mi=1 to be a weighted T -separated set in K with Mw(K,T ) − r < w(S).
Then for every ε < r/M =: ε0 we may take {w̄i}Mi=1 where w̄i = miε for some mi ∈ N and
0 � wi − w̄i � r/M . Then the sequence

S1 = {
(xi, w̄i)

}M

i=1

is a T -ε-separated set in K , because we only reduced some of the weights in S and also all the
weights are multiples of ε. In addition, w(S) − r � w(S1) because

∑M
i=1(wi − w̄i) � r . Then

for every r > 0 we found an ε0 > 0 such that 0 < ε < ε0 implies

Mw(K,T ) − 2r � Mε(K,T ) � Mw(K,T ).

That is, by definition,

lim
ε→0+ Mε(K,T ) = Mw(K,T ). �

Proposition 22. Let K , T be two convex bodies in R
d , and let D denote, as usual, the Euclidean

unit ball in R
d . Then

lim
δ→0+ Nw(K,T + δD) = Nw(K,T ). (33)

For the proof we need the following lemma, which is a version of Proposition 22 for ε-
covering.

Proposition 23. Let K , T be two convex bodies in R
d , and let D denote the usual Euclidean unit

ball in R
d . Then

lim
δ→0+ Nε(K,T + δD) = Nε(K,T ). (34)

Proof. Let δn → 0. For each n, let us choose an ε-covering of K by T + δnD of weight
Nε(K,T + δnD). This simply means choosing Nε(K,T + δnD)/ε centers of covering. Note
that this number is bounded by N = Nε(K,T )/ε. It is easy to see that we may choose a subse-
quence of this sequence of coverings which converges in the sense that the location of the kth
center converges, for k = 1, . . . ,N .

We claim that the limiting points in K form an ε-covering of K by T . Indeed, suppose that
x ∈ K is not covered, then there exists a positive distance, say r > 0, between x and all the
translations of T (since T is closed). By choosing N0 large enough, we get that the distance
between x and the cover of K , using the same set of centers (the limiting points) by T + δnD

is also bounded from below, say by r/2, for all n � N0. However, using the fact that the centers
are the limits of the centers of covering in the subsequence, we have that for n large enough,
the distance between the actual centers of the covering and these limit-centers in less than r/2,
which means that x is also not covered by T + δnD with the original centers, and this is, of
course, a contradiction. �
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Proof of Proposition 22. We immediately have

lim
δ→0+ Nw(K,T + δD) � Nw(K,T )

since Nw(K,T +δD) � Nw(K,T ) for every positive δ. For the opposite inequality, suppose that
there is a constant c > 0 such that

lim
δ→0

Nw(K,T + δD) � Nw(K,T ) − c. (35)

Then, by (29), for every r > 0, 0 < δ < 1 and every ε � r
Nw(K,T )

Nε(K,T + δD) � Nw(K,T + δD) + r.

By choosing r = c/2, we get by (35) that for all 0 < δ < 1

Nε(K,T + δD) � Nw(K,T ) − c + c/2,

taking δ to 0 using Proposition 23, we get

Nε(K,T ) � Nw(K,T ) − c/2,

for any ε � c/2
Nw(K,T )

which is a contradiction. �
Lemma 24. Let S be a covering of K by T . Then there exists a finite subset K ′ ⊂ K (depending
on S) such that for every x ∈ K there exists y(x) ∈ K ′ such that for a translated copy of T in S,
say s + T , we have that

x ∈ T + s if and only if y(x) ∈ T + s.

Proof. Let N be the number of elements in S. For every x ∈ K we match a vector vx ∈ {0,1}N
with ith coordinate 1 if T translated to the ith element in S intersects x, and 0 otherwise. We
define an equivalence relation for x, y ∈ K by x ∼ y if vx = vy . Since vx has only 2N − 1
possibilities (every element is covered, so that no x is mapped to the all-0 vector), the quotient
set of K by ∼ is finite. Now take K ′ to be a set containing exactly one element from each non-
empty equivalence class. By the definition of ∼, for a given translation T + s in S, x ∈ T + s

implies y ∈ T + s for every y ∈ [x], and the proof is complete. �
Corollary 25. Let Si be a covering of Ki by Ti where i = 1, . . . , n. Then there exist finite sets
K ′

i ⊂ Ki , i = 1, . . . , n, depending only on Si and Ki , such that for every x ∈ K1 ×· · ·×Kn there
exists y(x) ∈ K ′

1 × · · · × K ′
n such that for any subcover S̄ ⊂ S1 × · · · × Sn we have that x is

covered by S̄ if and only if y(x) is covered by S̄.

Proof. We choose K ′
i by Lemma 24. We then define for x = (x1, . . . , xn) ∈ K1 × · · · × Kn the

point y(x) = (y1(x1), . . . , yn(xn)) ∈ K ′
1 ×· · ·×K ′

n where yi is the function from Ki to K ′
i given

in Lemma 24. Assume that x ∈ T1 × · · · × Tn + s̄ with s̄ = (s1, . . . , sn) ∈ S1 × · · · × Sn then for
every i we have xi ∈ Ti + si . By Lemma 24 this happens if and only if yi(xi) ∈ Ti + si , which
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implies that y(x) = (y1(x1), . . . , yn(xn)) ∈ s̄ +T1 ×· · ·×Tn. Thus, x is covered by S̄ if and only
y(x) is. �
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