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Abstract

Continuing our search for dualities in different classes of functions, which usually turn out to have an essentially unique form,
depending on the class, we exhibit a natural class of functions for which there are exactly two different types of duality transforms.
One is the well known Legendre transform, and the other is new. We study the new transform, give a simple geometric interpretation
for it, and present some applications. To cite this article: S. Artstein-Avidan, V. Milman, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une nouvelle transformée de dualité. Dans le cadre de notre étude de la dualité pour différentes classes de fonctions, sou-
vent déterminée d’une façon unique par la classe, on exhibe une classe naturelle pour laquelle il y a exactement deux types de
transformés de dualité. Une est la transformée de Legendre, et l’autre est nouvelle. Ces deux transformées ont des interprétations
géométriques simples. On donne plusieurs applications des résultats. Pour citer cet article : S. Artstein-Avidan, V. Milman, C. R.
Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

On introduit le concept de « dualité abstraite » par :

Definition (Dualité Abstraite). On dira qu’une transformée T génère une transformée de dualité sur un ensemble S
de fonctions sur R

n si on a les proprietés suivantes :

1. Pour toute f ∈ S on a T T f = f .
2. Pour tout couple de fonctions f,g ∈ S telles que f � g, on a T f � T g.

Cette definition est motivée par des résultats récents. Dans [3] on a demontré que sur une classe de fonctions
convexes semi-continues sur R

n, il y a, essentiellement, une seule dualité – la transformée de Legendre qui est bien
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connue. Plus précisement, on désigne la classe des fonctions convexes s.c.i. φ : R
n → R ∪ {±∞} par Cvx(Rn). On

note 〈·,·〉 le produit scalaire usuel sur R
n. On rappelle la definition classique de la transformée de Legendre pour des

fonctions φ : R
n → R ∪ {±∞} par :

(Lφ)(x) = sup
y

(〈x, y〉 − φ(y)
)
. (1)

On a demontré dans [3] :

Theorème A Supposons qu’une transformée T : Cvx(Rn) → Cvx(Rn) (définie sur tout Cvx(Rn)) satisfait les condi-
tions de Dualité Abstraite. Alors, T est essentiellement la transformée de Legendre classique, c.a.d. qu’il existe une
constante C0 ∈ R, un vecteur v0 ∈ R

n et une transformation symétrique B ∈ GLn tels que

(T φ)(x) = (Lφ)(Bx + v0) + 〈x, v0〉 + C0.

Des résultats du analogues ont été demontrés très récemment. Avant d’avoir achevé la démonstration du Théo-
rème A, Böröczky et Schneider [5] ont demontré que sur une classe de corps convexes dans R

n il y a (essentiellement)
une seule dualité (classique). Plus précisément, notons K(0)(R

n) la classe des corps convexes et compacts dans R
n

dont l’intérieur contient 0. On a :

Theorème B (Böröczky–Schneider). Soit n � 2. Supposons qu’on ait une transformée T : K(0)(R
n) → K(0)(R

n)

(définie sur tout K(0)(R
n)) satisfaisant :

1. T T K = K .
2. K1 ⊂ K2 implique T K1 ⊃ T K2.

Alors, T est essentiellement la transformée de polarité (·)◦ habituelle qui envoie le corps K sur le corps polaire K◦
défini par K◦ = {x: supy∈K 〈x, y〉 � 1}. Plus précisément, il existe une transformation symétrique B ∈ GLn, telle que
pour tout K , T K = BK◦.

Dans [4] nous avons demontré la même résultat pour la classe plus grande des corps convexes fermés qui
contiennent 0 (peut-être sur la frontière). On remarque qu’aucun de ces deux theorèmes n’implique l’autre. Si on
note K0(R

n) la classe des ensembles convexes fermés dans R
n qui contiennent 0, on a

Theorème C (Voir [4].) Soit n � 2. Supposons qu’on ait une transformée T : K0(R
n) → K0(R

n) satisfaisant (1.) et
(2.) du Theorème 2 ci-dessus, alors il existe B ∈ GLn, symétrique telle que pour tout K , T K = BK◦.

Le même énoncé est vrai dans la classe des espaces normés sur R
n (voir [6] et [5]), pour des cônes convexes [8] et

de nombreux autres cas (voir [2]). On remarque que dans tous les théorèmes ci-dessus on peut remplacer la condition
d’involution par la condition plus faible que la transformée est inversible et que l’inverse renverse également l’ordre,
et on obtient le même resultat modulo des termes linéaires.

Il est assez evident de dire que sur une classe naturelle de fonctions il existe (essentiellement) une unique transfor-
mée de dualité. Il est donc surprenant de constater qu’un changement très “naturel” de la classe de fonctions introduit
une (nouvelle !) dualité supplémentaire.

Soit Cvx0(R
n) la classe des fonctions convexes s.c.i. f : R

n → [0,∞], qui prennent la valeur 0 en 0. La transfor-
mée de Legendre opère de façon invariante sur cette classe et ainsi représente une dualité sur la classe (conformément
à la définition de dualité abstraite donnée ci-dessus). On considère la transformée suivante :

(Af )(x) =
{

sup{y∈Rn: f (y)>0}
〈x,y〉−1

f (y)
si x ∈ {f (y) = 0}◦,

+∞ si x /∈ {f (y) = 0}◦
(avec la convention sup∅ = 0).

Il est évident que A préserve l’ordre, et on peut démontrer que A est une involution (cela se déduit par exemple
de l’interprétation géométrique de la transformée ci-dessous). C’est donc encore une “dualité abstraite” sur cette
classe. On observe d’autres propriétés de cette dualité. Pour toute norme ‖ · ‖, on a (A‖ · ‖)(y) = ‖y‖∗, où ‖x‖∗ =
sup{〈x, y〉: ‖y‖ � 1} est la norme duale. En fait, pout tout puissance p � 1 on a A(‖ · ‖p) = 1

p−1 (‖x‖∗)p .

p·q
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On peut montrer que cette deuxième dualité dans la classe Cvx0(R
n) est la seule autre possibilité, plus précisement

on a :

Theorème 1. Soit n � 2. Toute involution sur Cvx0(R
n) qui renverse l’ordre est soit de la forme f �→ (Lf ) ◦ B soit

ou de la forme f �→ C0(Af ) ◦ B pour un B ∈ GLn symétrique et C0 > 0.

1. Introduction

The concept of “abstract duality” was introduced by the authors as follows (see [2]):

Definition (Abstract Duality). We will say that a transform T generates a duality transform on a set of functions S
on R

n if the following two properties are satisfied:

1. For any f ∈ S we have T T f = f .
2. For any two functions in S satisfying f � g we have that T f � T g.

The definition was motivated by a few recent results, which demonstrated that in several classes of functions, there
is essentially only one duality transform (we quote some of these results below). In this note we present a natural class
of functions (non-negative, convex lower-semi-continuous functions on R

n with f (0) = 0) for which there are exactly
two essentially different duality transforms. One of these transforms is the well known Legendre transform (2), and
the other is new, and we call it A. Its definition is given in (3) below, and a simple geometric interpretation of it
is given in Section 4. Some interesting consequences follow, such as the existence of an involutive order preserving
transformation which is not the identity, and the extension of some geometric operations for functions.

Let us begin by citing some earlier results. In [3] we proved that on the class of lower-semi-continuous convex
functions on R

n there is, essentially, only one duality: the well-known Legendre transform. More precisely, denote the
class of lower-semi-continuous convex functions φ : R

n → R∪{±∞} by Cvx(Rn). Denote by 〈·, ·〉 the standard scalar
product on R

n. Recall the definition of the classical Legendre transform L defined for functions φ : R
n → R ∪ {±∞}

by

(Lφ)(x) = sup
y

(〈x, y〉 − φ(y)
)
. (2)

We proved in [3] that a transform T : Cvx(Rn) → Cvx(Rn) (defined on the whole domain Cvx(Rn)) which satisfies
“abstract duality” must be essentially the classical Legendre transform (Theorem A above). Namely, there exist a
constant C0 ∈ R, a vector v0 ∈ R

n, and a symmetric transformation B ∈ GLn such that

(T φ)(x) = (Lφ)(Bx + v0) + 〈x, v0〉 + C0.

More results in this spirit were proved during the last year. Still before we finished our proof of Theorem 1, and
answering our question, Böröczky and Schneider [5] proved that for n � 2, on the class of compact convex bodies
in R

n, with 0 in the interior, (denoted K(0)(R
n)) there is (again essentially) only one duality, the classical one, defined

by K◦ = {x: supy∈K〈x, y〉 � 1} (see Theorem B above). In [4] we proved the same for the larger class of all closed
convex sets containing 0, possibly at the boundary (denoted K0(R

n)), which is given as Theorem C above. The same
is also true for the class of normed spaces in R

n, i.e. for symmetric convex bodies (combining results of Gruber [6]
and Böröczky–Schneider [5]), for convex cones [8] and in many other examples (see [2]). We remark that in all above
theorems the condition of involution can be replaced by the weaker condition that the transform is invertible and its
inverse is also order reversing, with the same result except for several extra linear changes.

It already seemed almost routine that on natural classes of functions there exists (essentially) one unique duality
transform. However, to our surprise, it turned out that a very “natural” change of the class of functions brought with it
an additional (new!) duality.
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2. Another duality

Let Cvx0(R
n) denote the class of convex l.s.c. f : R

n → [0,∞], which take the value 0 at 0. Clearly, the Legendre
transform acts invariantly on this class, and so represents a duality on it (with respect to our definition of “abstract
duality” given above). Consider the following transform:

(Af )(x) =
{

sup{y∈Rn: f (y)>0}
〈x,y〉−1

f (y)
if x ∈ {f (y) = 0}◦,

+∞ if x /∈ {f (y) = 0}◦ (3)

(with the convention sup∅ = 0). Note that although A implicitly depends on the dimension n, we do not complicate
notation and use the same letter A for all dimensions.

Obviously, A is order reversing, and one may show (it follows e.g. from the geometric interpretation below) that it
is an involution. So, it is again an “abstract duality” on Cvx0(R

n). Let us observe some other properties of A. For any
norm ‖ · ‖, we have that (A‖ · ‖)(y) = ‖y‖∗, where ‖x‖∗ = sup{〈x, y〉: ‖y‖ � 1} is the dual norm. The same is true
also when ‖ · ‖ is a generalized norm, that is, it need not be symmetric and may assume the values 0 and +∞. From
here onwards we let ‖ · ‖ stand for such a “generalized norm”, that is, a positively-homogeneous convex function with
values in R�0 ∪ {+∞} (so that its unit ball is some closed convex set K , possibly unbounded, containing 0, possibly
at its boundary, and ‖ · ‖ = ‖ · ‖K is called the Minkowski functional of the body K).

In fact, for every power p � 1 we have that A(‖ · ‖p) = 1
p·qp−1 (‖x‖∗)p, where 1

p
+ 1

q
= 1 (and where ∞0 = 1).

In particular, since for a > 0, A(af )(y) = (1/a)(Af )(y), we have that and A(‖ · ‖2/2)(y) = (‖y‖∗)2/2 for any
generalized norm. That is, A coincides with L on the subclass of 2-homogeneous functions, but for p-homogeneous
functions p �= 2 there is a dramatic difference between the two duality transforms.

We also remark that for a convex function f (t) on R
+, f (0) = 0 and for any norm ‖ · ‖ we have that

A(f (‖ · ‖)) = (Af )(‖ · ‖∗) where the first transform is on R
n and the second is the one-dimensional one, on the

half-line R
+ (one may define A on a cone instead of on the full linear space). Note that the same is true for L, namely

L(f (‖ · ‖)) = (Lf )(‖ · ‖∗).
It turns out that this second form of duality for the class Cvx0(R

n) is the only other option:

Theorem 1. Let n � 2. Any order reversing involution of Cvx0(R
n) is either of the form f �→ (Lf ) ◦ B or f �→

C0(Af ) ◦ B for some symmetric B ∈ GLn and C0 > 0.

The condition of involution may be replaced by the weaker condition that both A, which we assume to be 1-1
and onto, and its inverse, are order reversing, in which case we get the same conclusion but where B need not be
symmetric.

A few more remarks are in order:
First, the one dimensional version is true as well, however by trivial reasons there are eight possible dualities, with

two “free” positive constants.
Secondly, the complete description of order reversing maps on Cvx0 provides also the complete description of

order preserving maps, and, again, there are (in dimension > 1) exactly two essentially different order preserving
maps. One is the ‘identity’, namely of the form f �→ C0f ◦ B and the second is f �→ C0 L Af ◦ B for some B ∈ GLn.
To prove this we take any order preserving transform and compose it with the Legendre transform. We get an invertible
transformation which is order reversing, and so is its inverse. Thus, by the remark after Theorem 1 it must be essentially
either the Legendre transform (in which case the original transform must have been essentially the identity) or the
new A transform, in which case the original transform is essentially of the form f → L Af . The formula for this order
preserving transform can be then computed, and has the following form (we give it for a convex l.s.c. f : R

n → [0,∞),
with f (0) = 0 which is not identically 0; the constant function 0 is mapped to 0, and for a function with values which
are +∞, simply approximate it by an increasing sequence). The function g = L Af is given as follows:

g(y) = inf
{
1/f (x): y = tx/f (x), 0 � t � 1

}
.

(Here the infimum of an empty set is +∞, and 0/f (0) is understood in limit sense.)
Note that this transform, although very different from the identity, still has the very special property, that it acts

‘ray-wise’, i.e., its values on a given ray depend only on the values of f on the ray. It might not be a-priori clear why
the resulting function g is convex. This will, however, be immediate from the geometric interpretation below.

Our third remark (which actually follows from the second) is that our two dualities commute: L A = A L.
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3. The second duality on a subclass of Log-Concave functions

The Legendre transform L led to a duality transform on LC(Rn) (the class of upper semi-continuous log-concave
functions) in a very natural way (see [1]): for f ∈ LC(Rn) we defined f ◦ = e−L(− logf ) to be the dual function. (By
Theorem A this is essentially the only transform satisfying abstract duality for this class.)

The transform A leads to a new (second) duality on an important subclass. Let us define the subclass

LC1
(
R

n
) = {

f ∈ LC
(
R

n
)
: f (0) = 1 and 0 � f (x) � 1

}
.

Note that for f ∈ LC1(R
n) also f ◦ ∈ LC1(R

n), and satisfies, of course, abstract duality. The second duality on this
class is given by:

f � = e−A(− logf ), i.e. − logf � = A(− logf ).

Then we get, naturally, that (f �)� = f and that (·)� is order reversing. Also, from the third remark in the previous
section, A(− logf ◦) = L(− logf �) so that (f �)◦ = (f ◦)�.

For a closed convex set K , with 0 ∈ K we have the property (1K)� = 1K◦ , which means that this is indeed an
extension of standard duality, a desired property which, it follows from Theorem 1, cannot hold on the whole class
LC(Rn). For any (generalized) norm ‖ · ‖ and p � 1,(

exp
(−ap‖x‖p

))� = exp
(−ap

(‖x‖∗)p)
where ap = ( 1

p·qp−1 )1/2, 1
q

+ 1
p

= 1.

4. Geometric interpretations

There are two different ways to associate to a function in Cvx0(R
n) a closed convex set in R

n+1 which is contained
in the upper half-space R

n × R�0, and contains the ray 0 × R�0. One natural way is to consider the epi-graph of the
function epi(f ) = {(x, r): r � f (x)}. Another is to extend f from the hyperplane {(x,1): x ∈ R

n} homogeneously
for (x, r) with r > 0, and to take the closure of the unit ball of the generalized norm obtained by this procedure. This
gives:

Kf = {
(x, y) ∈ Rn × R: 0 < y and f (x/y) � 1/y

}
.

Note that duality-and-reflection acts invariantly on this class of convex subsets of R
n+1, namely if K is in the class

then so is D(K) = {(x,−r): (x, r) ∈ K◦}.
It is an easy exercise to verify that the reflection of the polar of epi(f ) with respect to R

n is the epi-graph of Af ,
that is

epi(Af ) = {
(x,−r) ∈ R

n × R�0: (x, r) ∈ (
epi(f )

)◦}
.

It is also not difficult to check that the same is true for the second description, that is,

K(Af ) = {
(x,−r) ∈ R

n × R�0: (x, r) ∈ (Kf )◦
}
.

In particular, the involution property of A follows immediately.
This understanding also gives a description for the order-preserving transformation, namely the relation

epi(ϕ) = Kf gives an order preserving correspondence f ↔ ϕ (which is an involution), and this is precisely
ϕ = L Af . That is,

L Af = epi−1(Kf ) and K(L Af ) = epi(f ).

5. The Support map and the Minkowski map

In this section we show how two central operations of classical convexity, namely the support functionals and the
Minkowski functionals, which are very geometric constructions, may be uniquely defined in the language of “order
preserving”/“order reversing” maps. Through this understanding they can be extended to the functional class LC(Rn)
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(or its subclass LC1(R
n)) in a natural way. It has been realized recently that the extension of geometric notions and

results is an important goal in Asymptotic Geometric Analysis and is now called “Geometrization of Probability”
(see [7]). We start with analyzing the support-operator S.

It is classical and well known that for a body K ∈ K0(R
n) there corresponds a convex positively-homogeneous

function on R
n which is its support function hK := ‖ · ‖∗

K . We denote S(K) = hK so that S : K(Rn) → Hn is an order
preserving transformation (with respect to the partial order of inclusion for sets and the partial order of point-wise
inequality on functions). Here K(Rn) can stand for either K0(R

n) or K(0)(R
n), and Hn will stand for either convex

positively-homogeneous functions on R
n with values in R

+ or such functions with values in R
+ ∪ {+∞}.

The Minkowski operator M is similarly defined M : K(Rn) → Hn. It maps the body K to the positively-
homogeneous function ‖ · ‖K . (Thus we have of course M(K) = S(K◦) and vice-versa). The Minkowski map is,
thus, an order reversing transformation. Both S and M are essentially unique (in the following theorem notation is
slightly abused).

Theorem 2. Any mapping T : K(Rn) → Hn which preserves the (partial) order must be, up to a linear change, the
‘support’ map S defined above.

Any mapping T : K(Rn) → Hn which reverses the (partial) order must be, up to a linear change, the Minkowski
map M defined above.

We note that in fact two theorems are stated here, one for K(0)(R
n) for which the above result follows directly by

Theorem B and [5], and another for K0(R
n) for which the above holds by Theorem C and other results of [4].

Next, one may extend the operation of support function from the class K0(R
n) to the class LC(Rn) (where the

embedding K(Rn) ⊂ LC(Rn) is simply K → 1K ). The extension is given by S(f ) = L(− logf ). Again this is an
essentially unique order preserving mapping, this time between LC(Rn) and Cvx(Rn) as follows from Theorem A and
its relatives. More interestingly, our theorems imply that M does not admit an order reversing extension to LC(Rn),
and has a unique extension to a transform from LC1(R

n) to Cvx0(R
n) which reverses the order of functions.

Indeed, by Theorem 1 there are essentially only two transforms between LC1(R
n) and Cvx0(R

n) which preserve
order, one of them is f → L(− logf ), and the other is f → A(− logf ). Thus, an order reversing transformation
between LC1(R

n) and Cvx0(R
n) is either essentially of the form f → L L(− logf ) = − logf , which does not extend

the operation M from the class of convex sets, or essentially of the form f → L A(− logf ), which restricted to
indicator functions of bodies in K0(R

n), is equal to M (and also equals AS(f )). Similarly by Theorem A the only
order reversing transform between Cvx(Rn) and LC(Rn) is f → − logf , which does not extend M .

We end with a few more examples of the behavior of these transforms:

(i) S(1K) = L(− log 1K) = ‖ · ‖∗
K , and M(1K) = ‖ · ‖K ,

(ii) S(e−‖·‖) = − log(1K◦) and M(e−‖·‖) = − log(1K).
(iii) In general, M(f ) = AS(f ) = A L(− logf ) = L A(− logf ) = Sf �.
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