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Abstract

Let K be a convex body in a Euclidean spa&®, its polar body and the Euclidean unit ball. We prove that the covering
numbersN (K, tD) and N(D, tK°) are comparable in the appropriate sense, uniformly over symmetric convex lodies
overt > 0 and over the dimension of the space. In particular this verifies the duality conjecture for entropy numbers of linear
operators, posed by Pietsch in 1972, in the central case when either the domain or the range of the operator is a Hilbert spac
To citethisarticle: S. Artstein et al., C. R. Acad. Sci. Paris, Ser. | 337 (2003).
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Résumé

Dualité d’entropie métrique. Soit K un corps convexe d'un espace euclidien. Nous nofdfde polaire deK et D la
boule unité euclidienne. Nous montrons que les nombres de recouvrdni&nt D) et N(D, tK°) sont équivalents dans
un sens approprié, uniformément sur tous les corps convexes symeétriques,>p0wet pour toute dimension d’espace. En
particulier, nous confirmons la conjecture concernant la dualité des nombres d’entropie des opérateurs compacts entre espac
de Banach, conjecture formulée par Pietsch en 1972 dans le cas fondamental ou I'un des espaces estRolrecitencet
article: S. Artstein et al., C. R. Acad. Sci. Paris, Ser. | 337 (2003).
0 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

For two convex bodieX andT in R", the covering number ok by T, denotedN (K, T'), is defined as the
minimal number of translates @f needed to covek,

N(K, T):min{N: Axg,...,xyeR”, K C U xi—i—T}.
i<N

We denote byD the Euclidean unit ball ifrR”. In this paper we announce and sketch the proof of the following
duality result for covering numbers. (The details will appear elsewhere.)
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Theorem 1. There exist two universal constartand 8 such that for any dimension any convex bodi c R”
symmetric with respect to the origin and any 0, one has

N(D,atK)YP < N(K,1D) < N(D, a2t K°)" 1)
whereK° := {u € R": sup.cg (x, u) < 1} is the polar body oK .

The best constargt that our approach yields =2 + ¢ for anye > 0, with @ = «(¢) (i.e., witha depending
one and only org).

Theorem 1 resolves an old problem, going back to Pietsch ([6], p. 38) and referred to as the “duality conjecture
for entropy numbers”, in a special yet most important case. The problem can be stated in terms of covering number:
in the following way (below and in what follows we shall abbreviate “symmetric with respect to the origin” to just
“symmetric”).

Conjecture 2. Do there exist two numerical constantsh > 1 such that for any dimensiom, and for any two
symmetric convex bodigs and7T in R" one has

logN(T°,aK®) <blogN(K,T), (2)
whereA° denotes the polar body af?

Theorem 1 satisfies this conjecture in the case where one of the two bodies is a Euclidean ball or, more generally
by affine invariance of the problem, when one of the two bodies is an ellipsoid. (Note that the additional parameter
t presented in the statement of Theorem 1 does not affect the generality.) In the special casmthihedies are
ellipsoids it is well known and easy to check that there is equality in (2), avithh = 1.

The quantity logV (K, tT) has a clear information-theoretic interpretation: it is the complexit{ ¢gfneasured
in bits if the logarithm is to the base 2) at the level of resolutiomith respect to the metric associated with
(e.g., Euclidean ifr = D). Accordingly, (1) means that the complexity &f in the Euclidean sense is controlled
by that of the Euclidean ball with respect|to| - (the gauge ok °, i.e., the norm whose unit ball §°), and vice
versa, aeverylevel of resolution. While it is clear that these two complexities should be related, the universality
of the link that we establish is somewhat surprising. The covering numbers appear also in many other areas of
mathematics, for example both quantitiésk, ¢t D) and N (D, tK°) enter the theory of Gaussian processes (see,
e.g., the survey [4] and its references).

Conjecture 2 originated in operator theory, and so we restate it below in the language of entropy numbers of
operators. For two Banach spacésandY, with unit balls B(X) and B(Y) respectively, and for a linear operator
u:X — Y, thek-th entropy number of is defined by:

ex(u) == infle: N(uB(X),eB(Y)) <2871}

Considering the entropy numbers of the dual operatoy* — X* means coveringB(Y))° with (translates of)
e(B(X))°. One sees easily thai(u) = [ull,p (the operator norm), and sQ () = e1(u™*); similarly ex(u) — 0
(ask — o0) iff ex(u™) — O (iff u is a compact operator). As the sequetg&-)) quantifies the compactness of an
operator, it is natural to ask to what extéat (1)) and(ex (u*)) behave similarly. This is the context in which the
original duality conjecture was formulated, and it read as follows.

Conjecture 2A (Duality Conjecture in the language of entropy numbelx).there exist humerical constants
a, b > 1, such that for any two Banach spacésaindY, any linear operatow: : X — Y and any natural numbek,
one has

epk (™) < aer(u)?

Our Theorem 1 verifies thus the duality conjecture (when expressed in terms of entropy humbers) in the case
when one of the two spaces, either the domain or the range of the operetarHilbert space. (The passage from
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finite- to infinite-dimensional setting is achieved by a straightforward approximation once dimension-free estimates
are available.) Some special cases of the problem have been studied before, and some particular results we
established, see [2] for references. The known results which we need for our proof are those from [1,3,5] and [7].

Our proof consists of three main steps. The first is a duality result involving the diameter of the set. In fact
we have two alternative first steps, the first of which was shown in [2]: dengtig = Co(logx)3 for some
appropriate numerical constafig > 0, we have:

Lemma3.If K € RD c R" is a convex symmetric body, then
N(D,¥(R)K°) < N(K, D), 3)
N(K, D) < N(D, (1/¢(R))K°)°. (4)
The other alternative for the first step is the following fact, the proof of which is significantly easier than the

proof of Lemma 3. However, there is a price to pay for simplifying the argument: instegd=02 + ¢ in the
exponentin (1), we get some other, perhaps huge, universal constant.

Lemma 4. There exist universal constantgand C4 such that for any dimension and for any symmetric convex
bodyK c RD c R", we haveN(K, D) < N(D, csK°)C+R* and N(D, K°) < N(K, cgD)C+R?.

With Lemma 4 (or 3) at hand, we come to the second step which is an iteration procedure. At each step of the
iteration we truncate the body at a certain radius, and use elementary geometric inequalities for covering numbers
(In the dual inequality at each step we add a small ball to the body.) We thus bound a covering number by a product
of such numbers, where for each factor in the product we have control on the diameter of the respective body.

Lemma 5. For any symmetric convex bodyy C R" and any sequencky < R1 < --- < Ry,
s—1

N(D, RoK°) <N(D,RSK°)1_[N<D, R—ZJ(KﬂRH_lD)O), (5)
j=0
s—1

N(K,RoD) < N(K,R;D) [ N2K N Rj+1D. R; D). (6)
j=0

We choose the sequenRe to be a geometric progression of the foRp= Clcé, for big enough (but universal)
constantg”1 andC». Lemmas 4 and 5 imply now the following:

Corollary 6. With the above choice of the sequeliRe) we have, for every symmetric convex batly

s—1 3 4C,4C2
N(D,RoKO)gN(D,RSKO)HN<KﬂRj+1D,ERjD) R (7)
j=0
s—1 )
N(K.RoD) < N(K, RyD) [ [ N(D. csR; (2K N R;41D)°) . (8)
j=0

If we use Lemma 3 instead of Lemma 4 and an appropriate seqignees can prove a similar corollary with
better constants in the exponent, 2 and 3 respectively, which — with still more work — can be improved o 1
both inequalities.

In the third and last step we collapse the long products of covering numbers appearing in (7) and (8) to products
consisting of just several terms. The largRstwill be chosen to exceed the diameter of theeand so the terms
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N(K, RyD) andN (D, R;K°) will both equal to 1. We use the following two super-multiplicativity properties of
covering numbers.

Lemma7.LetR >r > 55 > bs. Then

N(KNRD,rD)N(K NSD,sD) gN(ImRD, %D), 9)
N(D,r(KNRD)°)N(D,s(K NSD)°) < N(D, %(K N RD)"). (10)

We successively apply Lemma 7 to the long productsin (7) and (8). However, since for two neighboring factors
in the products the hypothesis of Lemma 7 does not hold, an additional trick is required. We split the product
into two parts, by grouping separately the factors corresponding to the odd and th¢'svérihe growth of
(R;) (which depends on the choice 6%) is fast enough, the conditions of Lemma 7 are satisfied for each two
consecutive odd factors, and for each two consecutive even factors. We thus arrive at

N(D,C1K°) < N(K,D)s and N(K,CiD) < N(D, K°)s,

whereCs = 8C4C§ and (1 are universal constants, which clearly yields (1). As indicated earlier, a (much) more
careful analysis leads to a better constamt2in the exponent, withC1 = C1(¢).

In fact, the last two steps of the proof give rise to the following proposition, valid for general symmetric
convex bodies. It identifies the point in our scheme that is needed for generalizations beyond the Euclidean case
(Our decision to include this statement in the form below was influenced by discussions with Nicole Tomczak-
Jaegermann.)

Proposition 8. Let T be a convex symmetric body in a Euclidean space such that, for some constant9, the
following holds if K is a convex symmetric body with C 4T, then

N(K,T) < N(T®°, cK°)FC.

Then, for some other constartsC’ > 0 (depending only on, C) andany convex symmetric body
N(K,T) < N(T°, K%,

Dually, if K is fixed and the hypothesis holds for @lk verifying K C 4T, then the assertion holds fany 7.
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