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Abstract. In this paper we show that the euclidean ball of radius 1 in R
n can

be approximated up to ε > 0, in the Hausdorff distance, by a set defined by
N = C(ε)n linear inequalities. We call this set a ZigZag set, and it is defined to
be all points in space satisfying 50% or more of the inequalities. The constant
we get is C(ε) = C ln(1/ε)/ε2, where C is some universal constant. This should

be compared with the result of Barron and Cheang (2000), who obtained
N = Cn2/ε2. The main ingredient in our proof is the use of Chernoff’s
inequality in a geometric context. After proving the theorem, we describe
several other results which can be obtained using similar methods.

The aim of this paper is to demonstrate how the well-known Chernoff estimates
from probability theory can be used in a geometric context for a very broad spec-
trum of problems, and how they lead to new and improved results. We will briefly
describe Chernoff bounds, and then present the motivation for, and the proof of,
the following theorem:

Theorem 1. There exist universal constants C, c such that for every dimension n,
and every 0 < ε < 1, letting N = [Cn ln(1/ε)/ε2], if z1, . . . , zN are random points
with respect to Lebesgue measure σ on the sphere Sn−1, then with probability greater
than 1 − e−cn, the set

K = {x ∈ R
n : ∃i1, . . . , i[N/2] with |〈x, zij

〉| <
c0√
n
}

satisfies
(1 − ε)Dn ⊂ K ⊂ (1 + ε)Dn,

where c0 denotes the constant (depending on n, but converging to a universal con-
stant as n → ∞) for which σ(u ∈ Sn−1 : |〈θ, u〉| ≤ c0√

n
) = 1/2 for some θ ∈ Sn−1.

This theorem improves on a result of Barron and Cheang [CB], as we discuss
further on in this note.

After proving this theorem, we will state several other theorems which can be
proved using similar methods, and whose proofs, along with more theorems, will
appear in [AFM]. This probabilistic approach was already used in our field in the
paper [MP], a paper which is closely related to the proof of Theorem 1.
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We will, throughout, omit the notation [·] of integer values, and assume the
numbers we deal with are integers when needed, to avoid notational inconvenience.

The probabilistic approach

The following lemma, which is a version of Chernoff’s inequalities, gives an
estimate for the probability that at least βN trials out of N succeed, when the
probability of a success in one trial is at least p (see e.g. [HR]).

Lemma 2. Let Zi be independent Bernoulli random variables with mean 0 < p < 1
(that is, Zi takes value 1 with probability p and value 0 with probability (1 − p)).
Then for every β < p we have

P[Z1 + · · · + ZN ≥ βN ] ≥ 1 − e−NI(β,p),

and for every β > p we have

P[Z1 + · · · + ZN > βN ] ≤ e−NI(β,p),

where I(β, p) = β ln β
p + (1 − β) ln 1−β

1−p .

A ZigZag approximation for balls

We address the question of approximating the euclidean ball by a simpler set. In
many contexts, polytopes are considered to be the simplest sets available, being the
intersection of some number of half-spaces, or in other words the set of all points
satisfying some list of N linear inequalities. However, it is well known and easy
to check that to construct a polytope which is ε-close, in the Hausdorff metric,
to the euclidean ball Dn ⊂ R

n, one needs to use exponentially many half-spaces,
N ≥ eCn ln(1/ε). (This can be seen by assuming the polytope is inscribed in Dn,
and estimating from above the volume of the cap that each half-space cuts off the
sphere Sn−1.) This is a huge number, and so a different kind of approximation was
suggested, first used by Cybenko, and by Hornik, Stinchcombe, and White; see [C],
[HSW].

The first good bounds in such an approximation result (we describe the approx-
imating set below) were given by Barron; see [B]. These sets are implemented by
what is called single hidden layer neural nets or perception nets, and we will use
the simplest version of such sets, for which we suggest the name “ZigZag approxi-
mation”.

The approximating set is the following: It is no longer convex, but is still de-
scribed by a list of linear inequalities. Given a set of N inequalities, and a number
k ≤ N , the set consists of all points satisfying no less than k of the N inequalities.
We learned of this approximation from a paper by Barron and Cheang [CB], where
they showed that there exists a universal constant C such that for any dimension n,
one can find N = C(n/ε)2 linear inequalities, such that the set of points satisfying
at least k of the N inequalities is ε-close, in the Hausdorff metric, to Dn (where k is
some proportion of N). This is already a huge improvement, from a set described
by an exponential number of inequalities to a polynomial number.

In this section we improve their estimate to N = Cn ln(1/ε)/ε2 linear inequal-
ities, and we use k = N/2. The formulation of our result is given in Theorem
1.

To make the exposition clearer, we will first prove a different theorem, Theorem 3,
which gives a weaker estimate, but is still in some cases a considerable improvement
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of the result from [CB], and in the case of ε not too small gives that N = Cn lnn/ε2

linear inequalities are enough. This result has a rather straightforward proof. We
will then employ more involved techniques from [MP] to prove the stronger version.

As before, denote by c0 the constant (depending on n, but converging to a
universal constant as n → ∞) for which for some (or any) θ ∈ Sn−1,

(1) σ(u ∈ Sn−1 : |〈θ, u〉| ≤ c0√
n

) = 1/2.

We first prove that

Theorem 3. There exist universal constants c1, C, c such that for every dimension
n, and every c1√

n
< ε < 1, letting N = Cn lnn/ε2, if z1, . . . , zN are random points

on Sn−1, then with probability greater than 1 − 2e−n ln(2n+1), the set

K = {x ∈ R
n : ∃i1, . . . , iN/2 with |〈x, zij

〉| <
c0√
n
}

satisfies (1 − ε)Dn ⊂ K ⊂ (1 + ε)Dn.

Proof. We build two nets, N1 a 1
n -net on (1−ε)Sn−1 and N2 a 1

n -net on (1+ε)Sn−1.
It is well known that their cardinalities are smaller than en ln(2n+1). We define two
bodies,

K1 = {x ∈ R
n : ∃i1, . . . , iN/2 with |〈x, zij

〉| <
c0√
n
− 1

n
},

K2 = {x ∈ R
n : ∃i1, . . . , iN/2 with |〈x, zij

〉| <
c0√
n

+
1
n
},

and show that with probability greater than 1−e−n ln n, N1 ⊂ K1 and N2∩K2 = ∅.
This will already imply that (1− ε)Dn ⊂ K ⊂ (1 + ε)Dn, since for y ∈ (1− ε)Sn−1

there will be some x ∈ N1 with |y − x| < 1
n , and so if |〈x, zi〉| < c0√

n
− 1

n for some
subset of indices i, then for the same set of indices we also have |〈y, zi〉| < c0√

n
.

Similarly, every y ∈ (1 + ε)Sn−1 will have an x ∈ N2 with |y − x| < 1
n , and for this

x there will be at least N/2 indices i for which |〈x, zi〉| ≥ c0√
n

+ 1
n . This implies that

for y, for these indices, |〈y, zi〉| ≥ c0√
n
, and hence y 
∈ K. Since K is star-shaped,

this would complete the proof.
Let xj ∈ N1. Then, since |xj | = 1 − ε,

P[z ∈ Sn−1 : |〈z, xj〉| ≤
c0√
n
− 1

n
] = σ(u ∈ Sn−1 : |〈θ, u〉| ≤

c0√
n
− 1

n

(1 − ε)
) =: pε.

Since ε > c1/
√

n, and provided we choose c1 > 1/c0, it is easily seen that
c0√

n
− 1

n

(1−ε) >
c0√
n
, and so pε > 1/2. We will later show that pε −1/2 � ε, but for this stage of the

proof it is enough to notice that pε is some probability greater than 1/2, and this
will give an estimate for C(ε) depending on pε. We use Chernoff’s Lemma 2, which
says that for at least 1/2 of the N experiments {|〈zi, xj〉| ≤ c0√

n
− 1

n} to succeed (xj

is fixed and zi are random, i = 1, . . . , N), when the probability of success is pε, the
chances are high, greater than

1 − e−NI(pε,1/2) = 1 − e−N ln( 1
4pε(1−pε) ).

Therefore the chances that this will happen simultaneously for all xj ∈ N1 are
greater than 1−en ln(1+2n)e−N ln( 1

4pε(1−pε) ). For this to be greater than 1−e−n ln(2n+1)

it suffices that N > 2n ln(1 + 2n)/ ln( 1
4pε(1−pε) ).
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We now turn to the other side, which is surprisingly similar. Let xj ∈ N2. Then,
since |xj | = 1 + ε,

P[z ∈ Sn−1 : |〈z, xj〉| ≤
c0√
n

+
1
n

] = σ(u ∈ Sn−1 : |〈θ, u〉| ≤
c0√
n

+ 1
n

(1 + ε)
) := qε.

We will later show also that 1/2 − qε � ε, but for this stage it is enough to notice
that it is some probability smaller than 1/2, and this is true provided that c1 > 2/c0

(similar to the case of pε−1/2). We use again Lemma 2, which says that for at least
1/2 of the N experiments {|〈zi, xj〉| ≤ c0√

n
+ 1

n} to succeed, when the probability
of success is qε, the chances are low, smaller than

e−NI(qε,1/2) = e−N ln( 1
4qε(1−qε) ).

Hence the chances that this will not happen, simultaneously for all xj ∈ N2, are
greater than 1 − en ln(1+2n)e−N ln( 1

4qε(1−qε) ). We will thus assume also that N >
2n ln(1 + 2n)/ ln( 1

4qε(1−qε)).
All that is left is to estimate (pε−1/2) and (1/2−qε). The quantity (pε−1/2) is

twice the volume, on the sphere, between two parallel hyperplanes, one at distance
c0√
n

from the origin and one at distance ( c0√
n
− 1

n )/(1−ε). The quantity (1/2−qε) is
twice the volume, on the sphere, between two parallel hyperplanes, one at distance
c0√
n

from the origin and one at distance ( c0√
n

+ 1
n )/(1+ε). To estimate these volumes

from below, we use the fact that ε > c1/
√

n to obtain that the distance between the
two hyperplanes is bounded from below in both cases by (c1c0/2 − 1)/n. We now
use Fubini’s theorem and the volume of a section of the sphere to see that (pε−1/2)
and (1/2−qε) are bounded from below by c2ε for some universal c2 (which depends
linearly on our choice of c1 > 2/c0). Using this to analyze the estimates for N , we
arrive at the desired result. �
Proof of Theorem 1. As before, we define

K = {x ∈ R
n : ∃i1, . . . , iN/2 with |〈x, zij

〉| <
c0√
n
},

however this time N = C(ε)n, with C(ε) = C ′ ln(1/ε)/ε2, where C ′ is a universal
constant.

We first show that with high probability K ⊂ (1 + ε)Dn. We abbreviate C(ε) =
C. Cover (1+ε)Sn−1 by balls of radius δ to be determined later. As is well known,
such a covering exists with cardinality less than (1+ 2(1+ε)

δ )n. Consider one of these
balls, B(x0, δ), with |x0| = (1 + ε). Let c1(η) be the constant such that

P[z ∈ Sn−1 : |〈z,
x0

|x0|
〉| < c1(η)

1√
n

] = 1/2 − η.

This constant will depend on n. However, similar to c0 in (1), asymptotically as
n → ∞, it depends only on η. Also, clearly, as η tends to 0, the constant c1(η)
tends to c0. After tossing N points zi in Sn−1, there is a high probability that more
than (1/2 + η/2)N of them will satisfy {|〈z, x0〉| ≥ (1 + ε)c1

1√
n
}. More precisely,

P[z1, . . . , zN ∈ Sn−1 : for (1/2 + η/2)N of the

indices i, |〈zi, x0〉| ≥ (1 + ε)c1(η)
1√
n

] ≥ 1 − c(η)N ,

where c(η) = e−[(1/2−η/2) ln( 1/2−η/2
1/2−η )+(1/2+η/2) ln( 1/2+η/2

1/2+η )].
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If we think of the random zi as the rows of a matrix, a concentration result for
the norm of such a matrix applies. We know that (see [MP], Lemma 1 (ii): the
same proof applies for this version)

(2) P[∀y, |y| ≥ 1
3(
√

C + 1)
(

N∑
i=1

〈zi, y〉2)1/2] ≥ 1 − e−N .

If x ∈ K, then for half of the indices i one has |〈x, zi〉| < c0√
n
. In particular,

there are Nη/2 indices i for which, at the same time, we also have |〈zi, x0〉| >
(1 + ε)c1(η) 1√

n
, and thus

〈zi, x0 − x〉2 ≥ ((1 + ε)c1(η) − c0)2/n.

Joining these two facts together, one can use (2) to see that for a specific x0, with
probability 1 − c(η)N − e−N , for all x ∈ K

|x0 − x| ≥ 1
3(
√

C + 1)

√
(η/2)N((1 + ε)c1 − c0)2/n ≥

√
η

9
((1 + ε)c1(η) − c0).

Since c1(η) → c0 as η → 0, for each ε there is an η = η(ε) such that (1+ε)c1(η)−
c0 = θ(ε) > 0. The above implies that for this η

K ∩ B(x0,

√
η

9
θ(ε)) = ∅.

If, to begin with, we choose δ =
√

η

9 θ(ε), then having this for all of the balls in the
covering will imply that K does not intersect (1+ ε)Sn−1, and thus K ⊂ (1+ ε)Dn.

We have to calculate the probability of this event and show that it is large (and in
particular, positive) for our choice of C = C(ε). The probability of the complement
event is at most

(3)

(
1 +

2(1 + ε)
√

η

9 θ(ε)

)n

(c(η)Cn + e−Cn).

Since all the constants (η, c(η), θ(η)) depend only on ε, it is clear that if C is big
enough (depending only on ε), this probability is very small. What is left is to
compute the dependency of C = C(ε) on ε. We begin by considering η(ε), which
has to satisfy that (1 + ε)c1(η) − c0 = θ(ε) > 0. The same reasoning as in the last
paragraph of the proof of Theorem 3 shows that we need to take η = c2ε (where c2 is
a universal constant; remember that so is c0) and then get that θ(ε) ≥ c3ε. Taking
the second order in η we see that c(η) = e−η2/2+O(η3). Therefore, for η = c2ε, we
have c(η) ≤ e−c4ε2

. The probability in (3) can thus be bounded by( c5

ε3/2

)n

(e−Cc4ε2n + e−Cn)

for universal c4, c5. We can see that the dependency of C on n and ε which we get
with this method is C = C ′ ln(1/ε)/ε2 for a universal C ′.

We now have to verify the other side of the statement in the theorem, which is
that (1 − ε)Dn ⊂ K. We again abbreviate C(ε) = C. This time cover (1 − ε)Sn−1

by (1 + 2(1−ε)
δ )n balls of radius δ. Consider one of these balls, B(x0, δ), with

|x0| = (1 − ε). Let c1(η) this time denote the constant (depending asymptotically
only on η, and tending to c0 as η → 0) such that

P[z ∈ Sn−1 : |〈z,
x0

|x0|
〉| < c1(η)

1√
n

] = 1/2 + η.
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Then, after tossing N = Cn points zi in Sn−1, there is a high probability that no
more than 1/2 − η/2 of them will satisfy |〈z, x0〉| ≥ (1 − ε)c1

1√
n
. More precisely,

P[z1, . . . , zN ∈ Sn−1 : for 1/2 + η/2 of the

indices i, |〈zi, x0〉| ≤ (1 − ε)c1(η)
1√
n

] ≥ 1 − c(η)N ,

where as before c(η) = e−[(1/2−η/2) ln( 1/2−η/2
1/2−η )+(1/2+η/2) ln( 1/2+η/2

1/2+η )].
We again use that P[∀y, (

∑N
i=1〈zi, y〉2)1/2 ≤ 3(

√
C + 1)|y|] ≥ 1− e−N . If x 
∈ K,

then for half of the indices i one has |〈x, zi〉| > c0√
n
. In particular, there are Nη/2

indices i for which, at the same time, we also have |〈zi, x0〉| < (1− ε)c1(η) 1√
n
, and

thus
〈zi, x − x0〉2 ≥ (c0 − (1 − ε)c1(η))2/n.

Thus, for a specific x0, with probability 1 − c(η)N − e−N , for all x 
∈ K√
(η/2)N(c0 − (1 − ε)c1)2/n ≤ 3(

√
C + 1)|x − x0|.

In particular, x 
∈ B(x0, (
√

η/9)(c0 − (1 − ε)c1)). Since c1(η) → c0 as η → 0,
for each ε there is an η = η(ε) such that c0 − (1 − ε)c1(η) = θ(ε) > 0. The above
implies that for this η

K ⊃ B(x0,

√
η

9
θ(ε)).

We choose δ =
√

η

9 θ(ε) and then having this for all of the balls in the covering
implies that K includes the whole of (1 − ε)Dn.

We should calculate the probability of this event and show that it is large, and
then check the dependency of C on ε. Both things are done in exactly the same
way as in the proof of the first part, and we omit the details. �

Some other results which can be obtained by this method

The same method of proof can be used in many other applications. We list below
several other theorems which can be proven using Chernoff bounds in a geometric
context. Most of them share the same basic idea: If one looks for a lower bound for
1
N SN = 1

N

∑N
i=1 Xi, one can define the Bernoulli random variables Zi to equal 1 if

Xi ≥ ε and 0 otherwise. If Xi are positive random variables, then the probability
that 1

N SN ≥ βε is at least the probability that βN of the Zi’s are 1. When
β < P[Xi ≥ ε], this probability can be estimated using Chernoff’s Lemma 2. We
remark that upper bounds for such sums are usually much easier.

The first theorem we wish to mention is in the spirit of [S1], and shows how little
randomness is needed to realize an n-dimensional euclidean section of �

(1+δ)n
1 by a

sign-matrix.

Theorem 4. There exist universal constants c1, c′ and C such that the following
holds. Let n = 2m, δ > 0, and denote N = (1 + δ)n and c(δ) = c1δ/(ln(1/δ)). If
we denote by A the n(1+ δ)×n matrix whose first n rows are a Walsh sign matrix
and the last δn rows are random sign-vectors ε(j) ∈ {−1, 1}n, then, with probability
1 − e−c′δn, we will have for every x ∈ R

n

(4) c(δ)|x| ≤ ‖Ax‖L1 ≤ (1 +
√

δC)|x|,

(where |x| = (
∑n

i=1 x2
i )

1/2 and ||y||L1 = 1
N

∑N
i=1 |yi|).
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These types of questions can be viewed in two ways. One is as realizing a eu-
clidean section of �1 with a sign matrix and the second is as getting a form of
Khinchine’s inequality which does not involve all 2n sign-vectors but just (1 + δ)n
of them. The first result in this direction was by Schechtman [S2], where he showed
that for δ bigger than some universal constant this probability is exponentially
large. Then, together with Johnson in [JS] they showed that for any δ > 0 there
exists a sign-matrix with this property, which means that the probability is pos-
itive. The question remained whether this probability, for any δ > 0, is large,
i.e., does a random sign matrix satisfy inequality (4) with, perhaps, a different de-
pendency of the constants on δ. In a recent theorem of Litvak, Pajor, Rudelson,
Tomczak-Jaegermann and Vershynin [LPRTV], they showed (following develop-
ments described in [LPRT]) a general result for bodies with finite volume ratios,
a particular case of which is that there exists a constant 0 < c(δ), such that for
N = (1 + δ)n random sign vectors ε(1), . . . , ε(N) ∈ {−1, 1}n, with probability
greater than 1 − e−c′n, one has for every x ∈ R

n

(5) c(δ)|x| ≤ 1
N

N∑
j=1

|〈ε(j), x〉| ≤ C|x|.

Both C and c′ are universal constants. (In their general result the middle �1 norm
was replaced by an arbitrary norm with bounded volume ratio, and the constants
can depend on the volume ratio.)

With the method using Chernoff-type estimates we are also able to prove (5).
Our proof provides a constant c(δ) ≥ (c1δ)1+1/δ, where c1 is an absolute constant.
The proof from [LPRTV] (while optimal in the general context) gives only a slightly
better behavior of the constant: c(δ) ≥ c

1+1/δ
1 . This exponentially bad dependence

should be compared with the good, polynomial, behavior of the constant in Theo-
rem 4.

The direction of constructing good euclidean sections of �1, which are random
in some sense, can be continued in a different way. With the method we described
we can prove the following theorem, in which the condition of independence of the
different random matrix coefficients is relaxed. We use the notion of an “isotropic
body”: A body K is called isotropic if it satisfies V ol(K) = 1,

∫
K

x = 0 and, most
importantly, for every θ ∈ Sn−1 the integral

∫
K
〈x, θ〉2 is a constant independent of

θ, depending only on K, which is called the (square of the) isotropic constant of K
and denoted L2

K . (It is easy to check that every body has a linear image which is
isotropic. In other words, saying that the body is in isotropic position only means
that we identify the right euclidean structure.)

We can prove the following theorem, in which the random matrix of signs is
replaced by a random matrix whose rows are random points in an isotropic convex
body.

Theorem 5. For any δ > 0 there exist constants 0 < c(δ), depending only on δ
and universal constants 0 < c′, C < ∞ such that for any convex body K in isotropic
position, with probability greater than 1 − e−c′n we have that

c(δ)LK |x| ≤ 1
N

N∑
j=1

|〈zj , x〉| ≤ CLK |x|,

where N = (1 + δ)n, and where zj are chosen independently and uniformly inside
the body K.
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Again, the constant c(δ) = (c1δ)1+1/δ, for a universal c1.
The motivation and the details of proofs for these theorems, and other applica-

tions of the method, will appear in [AFM].
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