SMT-Based Verification of Parameterized Systems

Arie Gurfinkel
SEI/CMU, USA
University of Waterloo, Canada
arie.gurfinkel@uwwaterloo.ca

Sharon Shoham
Tel Aviv University, Israel
sharon.shoham@gmail.com

Yuri Meshman
Technion, Israel
syurim@gmail.com

ABSTRACT

It is well known that verification of safety properties of sequential programs is reducible to satisfiability modulo theory of a first-order logic formula, called a verification condition (VC). The reduction is used both in deductive and automated verification, the difference is only in whether the user or the solver provides candidates for inductive invariants. In this paper, we extend the reduction to parameterized systems consisting of arbitrary many copies of a user-specified process, and whose transition relation is definable in first-order logic modulo theory of linear arithmetic and arrays. We show that deciding whether a parameterized system has a universally quantified inductive invariant is reducible to satisfiability of (non-linear) Constraint Horn Clauses (CHC).

As a consequence of our reduction, we obtain a new automated procedure for verifying parameterized systems using existing PDR and CHC engines. While the new procedure is applicable to a wide variety of systems, we show that it is a decision procedure for several decidable fragments.

CCS Concepts

• Theory of computation → Automated reasoning;
 Logic and verification; Verification by model checking;

Keywords

model checking, parameterized systems, safety verification, invariant inference

1. INTRODUCTION

Many mutual exclusion algorithms, bus protocols, distributed algorithms, telecommunication protocols, and cache coherence protocols are designed to be run by an arbitrary number of threads or processes. Such protocols give rise to parameterized systems, where the number of processes is a parameter of the system. Any value of the parameter defines an instance of the parameterized system.

In this work, we are interested in verifying safety properties of parameterized systems. Namely, we would like to verify that the system is safe for any value of the parameter. We consider parameterized systems where each instance consists of N identical processes, executing asynchronously. Safety holds if every configuration that is reachable from an initial state via an execution of the system (with any number of processes) satisfies the safety property.

Due to the unbounded number of processes, the set of possible configurations of the system is infinite. Therefore, parameterized systems are a special case of infinite-state transition systems. One of the most useful techniques for proving safety of such systems, already advocated by Floyd [13], is using inductive invariants. Given a set of initial configurations Inv, a transition relation Tr and a safety property P, we say that an invariant Inv is inductive for (Inv, Tr, P) if Inv satisfies the following conditions: (i) Inv ⇒ Inv (initiation). (ii) Inv ⇒ P (safety). (iii) Inv is closed under Tr, i.e., for every step of Tr which starts in a configuration satisfying Inv, Inv also holds after executing Tr (consecution). It is well known that P holds in all the configurations that are reachable from Inv via steps of Tr if and only if there exists an inductive invariant for (Inv, Tr, P) (in a sufficiently powerful language).

Our goal in this work is to find inductive invariants that prove safety of a parameterized system (for all values of the parameter). To do so, we model the initial configurations Inv, the transition relation Tr, and the safety property P of a parameterized system in first-order logic (modulo theory), and look for inductive invariants of the same form. Since we consider instances of the system with an arbitrary number of processes, we cannot fix the set of processes in the formulas describing Inv, Tr and P. Likewise, a typical inductive invariant will not refer to a fixed set of processes. We, therefore, model process identifiers as logical variables, and allow for quantification over process identifiers both in Inv, Tr, P, and in the invariants.

We observe that the verification condition of such a system can be written as a set of Constrained Horn Clauses (CHCs), where the invariant is given by an uninterpreted
predicate \(\text{Inv}()\). The CHCs encode the initiation, safety and consecution requirements, and contain quantified constraints. Searching for an inductive invariant then amounts to solving the set of CHCs, i.e., finding an interpretation of \(\text{Inv}()\) that satisfies all clauses. To tackle this problem, we focus our attention on universally quantified invariants (or universal invariants in short) where process identifiers are universally quantified. Despite their simplicity, universal invariants are powerful enough to prove safety of many parameterized systems.

We show that under certain natural restrictions, searching for a universal invariant with a fixed number of universal quantifiers is reducible to the problem of solving quantifier-free CHCs. This reduction allows us to use existing CHC solvers to find universal inductive invariants.

As a consequence of our reduction, we obtain a new automated procedure for verifying parameterized systems using existing PDR and CHC engines. Our procedure is applicable to a wide variety of systems, and is a decision procedure for several decidable fragments, including Petri nets.

Interestingly, in the case of one-quantifier invariants, our reduction produces Owicki-Gries proof rule [20]. For a larger number of quantifiers, our reduction generalizes Owicki-Gries.

Our main contributions are: (a) A safety verification condition (VC) for parameterized systems in the form of CHCs with quantified constraints. A solution to the CHCs is an inductive invariant that certifies safety of all instances of the system. (b) Inference of universally quantified solutions for the VC with a fixed number of quantifiers. We reduce finding a solution with \(k\) universal quantifiers to solving quantifier-free CHCs. (c) A sufficient condition for a system with infinitely many processes to soundly approximate a system with unbounded (but finite) number of processes. (d) A procedure, by combining our technique with an iterative search for a finite counterexample, for verifying safety of parameterized systems, which is complete for interesting decidable fragments. (e) An implementation and initial experience verifying interesting parameterized protocols.

2. OVERVIEW

In this section we provide a short overview of our approach for safety verification of parameterized systems.

2.1 Motivating Example

Figure 1 presents an example of a parameterized system which describes an arbitrary number of agents moving around asynchronously. All agents run the code depicted in Figure 1. Each agent has a unique identifier \(i\), and its own copy of the local variables, denoted \(v[i]\). Agent \(i\) only changes its own copies of the local variables, but its functionality also depends on the local variables of other agents via universal global guards. In this example, an agent starts in state \text{CHOOSE}. It then computes some (local) \text{desired} location and changes its state to \text{TRY}. From \text{TRY} it changes its state to \text{WAIT} and sets \text{desired} to its next location. However, this change only happens under a global universal guard which makes sure that the \text{desired} location is different than both the \text{curr} and \text{next} locations of all the agents with higher ids. Next, the agent changes to \text{MOVE}. This transition is only enabled when \text{next} is different than both the \text{curr} and \text{next} locations of all the agents with smaller ids. Finally, in \text{MOVE}, the agent changes its \text{curr} location to \text{next}. Note that the last two steps are not performed atomically: first the agent changes its state to \text{MOVE}, and only in the next step it actually moves. The safety property requires that no collisions occur.

This example has two sources of infinity which make the verification task challenging. First, the locations are taken from an infinite domain. Second, and more importantly, the number of agents is unbounded. Fortunately, the theory of Linear Integer Arithmetic allows SMT-based verifiers to deal with the first source of infinity. However, to tackle the second obstacle and verify the system for \(n\) number of agents, we need to consider quantified invariants that prove correctness of all instances of the system simultaneously, while also taking into account infinite domains of variables.

2.2 Our Approach

We view the problem of finding an invariant for the parameterized system as the problem of finding a solution to a set of Constrained Horn Clauses (CHCs) which capture the initiation, consecution and safety requirements of an inductive invariant. In order to formulate the problem in this way, we model the initial states, the transitions and the bad states using first-order logic formulas. This modeling reveals several subtle points that we discuss at length in Section 5.

Having formulated the set of CHCs, all that remains is to solve it. However, since the solution we seek is quantified, we cannot use off-the-shelf solvers. We, therefore, develop a specialized approach targeted at finding simple universal invariant. By universal we mean that the invariant is definable by a formula with a prefix of universal quantifiers, and by simple we mean that quantifier-free body of the invariant does not use functions over the quantified variables. For example, if \(i\) is a quantified variable, then \(i+1\) is not allowed in the body.

Our solution strategy is to (a) fix the number of quantifiers expected in the invariant, (b) instantiate the quantifiers eagerly, and (c) use existing solvers for inference of quantifier-free safe inductive invariants to discover solutions of the reduced CHC system. In the rest of this section, we demonstrate this strategy on two special cases of one and two quantifiers. The general case is presented in Section 6.

One Quantifier. When applying our search strategy for
variants with one quantifier, i.e., of the form \(\forall i. I_1(i, \bar{v}) \), on a system \(T \), we obtain the set of constraints \(VC_1(T) \) depicted in Figure 2. \(VC_1(T) \) is based on a logical formulation of \(T \) that uses quantified id variables in order to refer to arbitrary agents. Technically, the initial states are constraint via a formula \(\forall i. j. Init(i, j, \bar{v}) \) which allows the initial constraint to refer to pairs of agents. The transition relation formula has the form \(\exists i. Tr(i, \bar{v}, \bar{v}') \), which reflects the property that some agent \(i \) moves in each step, and the bad states are constraint by \(\exists i, j. Bad(i, j, \bar{v}) \).

In systems with universally guarded commands, \(Tr(i, \bar{v}, \bar{v}') \) is itself a quantified formula. To complete the reduction to a set of CHCs, we additionally instantiate the quantifiers in \(Tr \). The details are presented in Section 3 which also addresses existentially guarded transitions.

\(VC_1(T) \) reduces the problem of finding a 1-quantifier solution of a set of linear CHC, to the problem of finding a quantifier-free solution of a set of non-linear CHC.

If \(Tr \) does not update any shared variable, as is the case in the collision avoidance example, then \(2 \) is unnecessary and the set of CHCs is linear.

Relation to Owicki-Gries proof rule. \(VC_1(T) \) is a parametric extension of the Owicki-Gries proof-rule for partial correctness of concurrent programs [20]. In particular, \(1 \) corresponds to invariant preservation under a set of a process, and \(2 \) to preservation under an interference.

Two Quantifiers. In practice, a one-quantifier invariant is useful only when \(Tr \) itself does not contain any global transitions (i.e., transitions guarded by quantified guards). This is not the case for the example in Figure 1 and \(VC_1(T) \) does not have a solution.

We, therefore, extend our approach to two-quantifier invariants of the form \(\forall i, j. I_2(i, j, \bar{v}) \). Figure 3 depicts the set of constraints \(VC_2(T) \) obtained by our reduction. To simplify the presentation, we again do not present additional instantiations that result from universal or existential guards in \(Tr \). These are explained in Section 4.

Similarly to \(VC_1 \), the clause \(3 \) corresponds to local preservation of the invariant, and the clauses \(4 \) and \(5 \) correspond to preservation under interference. As in \(VC_1(T) \), if \(Tr \) does not update any shared variables, as is the case in the example in Figure 1 then \(4 \) is removed and the system \(VC_2(T) \) becomes linear.

\(VC_2(T) \) captures the common self-to-other proof pattern in verification of parameterized systems. That is, it can express reasoning about arbitrary many processes that reduces to reasoning about the current process and its environment as abstracted by some other process. More refined capturing of the environment is possible with additional quantifiers. Intuitively, each additional quantifier corresponds to exposing an additional process in the environment. By solving \(VC_2(T) \), an inductive invariant with 2 universal quantifiers is found for the example in Figure 1.

Completeness. While our approach is in general incomplete, it is complete in interesting special cases. Specifically, we show that for parameterized systems that form monotonic transition systems (such as Petri nets), iterating our approach with increasing number of quantifiers is guaranteed to terminate and find an inductive invariant. This matches known decidability results for such systems.

3. BACKGROUND

In this section, we give a brief overview of notation and other key concepts used in the paper.

We write \(\bar{x} \) for a vector of elements \(\langle x_1, \ldots, x_m \rangle \), \(x_i \) for the \(i \)th element of \(\bar{x} \) and \(|\bar{x}| \) for the length of \(\bar{x} \). For a formula \(\phi \) and a variable \(x \), we write \(\phi(x) \) to denote that \(x \) is free in \(\phi \). Note that \(\phi \) might have other free variables in addition to \(x \). For a term \(a \) of array sort, we write \(a[i] \) for the \(i \)th element of \(a \), \(\{a[i] = i\} \) for an array obtained from \(a \) by replacing the \(i \)th element by \(v \) (\(\text{store } a \text{ at } v \) in SMT-LIB syntax), and \(a[i:=i] \) for an array obtained from \(a \) by replacing the \(i \)th element by \(v \) (\(\text{store } a \text{ at } v \) in SMT-LIB syntax). For a vector \(\bar{a} = \langle a_1, \ldots, a_m \rangle \) of array terms we write \(\bar{a}[i] \) as a shorthand for the vector \(\langle a_1[i], \ldots, a_m[i] \rangle \).

Constrained Horn Clauses. Let \(\mathcal{T} \) be a first-order theory over some signature including equality, and \(V \) and \(P \) be sets of variables and predicates, respectively. A Constrained Horn Clause (CHC) is a formula:

\[
\forall \bar{v} \cdot (\phi \land p_1(\bar{v}) \land \cdots \land p_k(\bar{v}) \Rightarrow h(\bar{v})), \quad k \geq 0
\]

where \(\phi \) is a (possibly quantified) constraint in \(\mathcal{T} \), \(\bar{v}, \bar{x} \subseteq V \) are (possibly empty) vectors of variables; \(p_i(\bar{v}) \) is an application \(p(t_1, \ldots, t_n) \) of an n-ary predicate symbol \(p \in P \) for first-order terms \(t_i \); and \(h(\bar{v}) \) is either defined analogously to \(p_i \) or is \(P \)-free (i.e., no \(P \) symbols occur in \(h \)).

\(h \) is called the head of the clause and \(\phi[p_1(\bar{v}) \land \cdots \land p_k(\bar{v})] \) is called the body. A clause is linear if its body contains at most one predicate symbol, and non-linear otherwise. For simplicity of presentation, we usually omit the outermost universal quantifier. Unless otherwise specified, we assume that the theory \(\mathcal{T} \) is the standard SMT combination of the theories of Linear Integer Arithmetic and Arrays.

A set \(C \) of CHCs is satisfiable modulo a theory \(\mathcal{T} \) (with a canonical model \(\mathcal{M}_\mathcal{T} \)) if there exists an extension \(\mathcal{J} \) of \(\mathcal{M}_\mathcal{T} \) that interprets all of the predicate symbols in \(P \) such that each clause \(c \in C \) is true under \(\mathcal{J} \). In this case, we say that \(\mathcal{J} \) is a solution of \(C \). In practice, we are interested in \(\mathcal{T} \)-definable solutions. For simplicity of presentation, we identify the solution with the FO formulas that define the interpretation of the predicate symbols in \(P \) (when exist). For example, we say that the solution is \(p(x, y) = x > y \),
4. SAFETY OF PARAMETERIZED SYSTEMS

In this section, we present our syntax, semantics, and the safety verification problem of parameterized systems.

4.1 Syntax

We consider parameterized systems that consist of an arbitrary number of copies of a given process \(P \) with a (global) initial condition \(\text{Init} \) and a (global) error condition \(\text{Bad} \).

Processes. A process \(P \) is defined by a set of variables \(\pi \) and a set of guarded commands, with the meaning that these guarded commands reside in a loop, where in each iteration one of the commands whose guard evaluates to true is chosen non-deterministically and is executed atomically. The process is parameterized by an identifier, denoted \(i \). Figure 4 presents the syntax of a process (explained next).

Variables. As a generalization of several interaction modes between copies of the process, we consider two classes of variables in \(P \): (i) local variables, denoted \(\text{Local}(\pi) \), and (ii) shared variables, denoted \(\text{Shared}(\pi) \). Technically, all copies of \(P \) share the same copy of the shared variables, while each copy of \(P \) has its own copy of each local variable. Local variables are accessed via a process id, e.g., \(v[i] \) or \(v[j] \).

We allow processes to read (but not write) local variables of other processes. Thus, the local variables can be further sub-divided into process-private (not read by others) and distributed-shared (written by one, read by others). However, this distinction is irrelevant for our purpose.

Each copy of \(P \) interacts with the other copies via shared variables or global guards that examine the local variables of other processes in a restricted manner, as explained below.

Universal and Existential Guards. Global guards are either existential or universal, and do not explicitly refer to specific process indices. We assume a static topology and a linear order on the process indices, where a process can only distinguish between the processes with greater or smaller indices.

Formally, a global guard has the form \(\exists j \triangleright i \cdot \varphi(i,j,\pi) \), where \(\varphi(i,j,\pi) \) is a formula over \(\text{Local}(\pi)[i] \), \(\text{Shared}(\pi) \), and \(\text{Local}(\pi)[j] \). If \(Q = \forall \), the guard is called universal, and if \(Q = \exists \), the guard is called existential. The relation \(\triangleright \) refers to the order between the copies of the process induced by the linear topology. An existential guard \(\exists j \triangleright i \cdot \varphi \) is satisfied by the \(i \)th copy of \(P \) if there exists a copy \(j \) of \(P \) that satisfies \(j \triangleright i \) and whose local state together with the local state of \(i \) satisfies \(\varphi \).

Similarly, a universal guard \(\forall j \triangleright i \cdot \varphi \) is satisfied by the \(i \)th copy of \(P \) if the local state of each of the copies \(j \) of \(P \) that satisfy \(j \triangleright i \) satisfies \(\varphi \).

Other guards are called local. In particular, if-then-else commands are written using local guards. Note that local guards can refer to shared variables. We classify guarded commands as local or global based on their guards.

Initial and Bad States. The description of a parameterized system includes a description of the initial states, as well as a description of the bad states:

\[
\text{def init}(i,j): \varphi_{\text{init}}(i,j,\pi) \quad \text{def bad}(i,j): \varphi_{\text{bad}}(i,j,\pi)
\]

where \(\varphi(i,j,\pi) \) is a formula over \(\text{Shared}(\pi) \), \(\text{Local}(\pi)[i] \) and \(\text{Local}(\pi)[j] \). Informally, the initial condition \(\varphi_{\text{init}} \) has to hold for all pairs of processes in the initial state, while a bad condition is satisfied if some pair of processes satisfy \(\varphi_{\text{bad}} \).

4.2 Asynchronous Operational Semantics

Each value \(n \in \mathbb{N} \) defines an instance of the parameterized system which consists of \(n \) copies of \(P \), which are linearly ordered. We refer to each process via an index \(0 \leq i \leq n-1 \). The semantics of the instance is given by a transition system, denoted \(T_n(P) \) (or simply \(T_n \) when \(P \) is clear from the context), defined as follows.

Let \(L \) denote the set of local states, i.e., \(L \) consists of all possible valuations of the local variables \(\text{Local}(\pi) \), and let \(G \) denote the set of global states, which consists of all possible valuations of shared variables \(\text{Shared}(\pi) \).

The states of \(T_n \) are given by configurations. A configuration of \(T_n \) is a tuple \(c \in L^n \times G \) of \(n \) local states from \(L \) and a global state in \(G \). Index \(n \) in the tuple, denoted \(c[n] \), represents the global state, shared by all the processes, and for \(0 \leq i \leq n-1 \), the \(i \)th index in the tuple \(c \), denoted \(c[i] \), represents the local state of the \(i \)th copy of \(P \). We denote the set of all configurations of \(T_n \) by \(C_n \), i.e. \(C_n = L^n \times G \).

The transitions of \(T_n \), denoted \(T_n \), correspond to the execution of guarded commands by the individual processes. Therefore, \(T_n = \bigcup_{n=0}^{n-1} T_n \), where \(T_n \subseteq C_n \times C_n \) is the set of transitions of process \(i \). Each transition of process \(i \) corresponds to the execution of a guarded command. Technically, a guarded command induces the transition \((c,c') \in T_n \) if \(c \) satisfies the guard at \(i \) (as defined below), \(c'[i] \) and \(c'[n] \) are updated based on the command, and \(c'[j] = c[j] \) for every \(j \neq i \). Satisfaction of local guards by process \(i \) is defined as usual: \(c \) satisfies a local guard \(\varphi \) at \(i \) if \((c[i],c[n]) \) satisfy \(\varphi \) (where \(c[i] \) is an interpretation for \(\text{Local}(\pi)[i] \) and \(c[n] \) is an interpretation for \(\text{Shared}(\pi) \)).

A satisfies a global guard \(\exists j \triangleright i \cdot \varphi \) at \(i \) if

- \(Q = \forall \) and for every \(0 \leq j \leq n-1 \) s.t. \(j \triangleright i \), \((c[i],c[j],c[n]) \) satisfy \(\varphi \), or
- \(Q = \exists \) and there exists \(0 \leq j \leq n-1 \) s.t. \(j \triangleright i \) and \((c[i],c[j],c[n]) \) satisfy \(\varphi \).

where \(c[i] \), \(c[j] \), and \(c[n] \) are interpretations of \(\text{Local}(\pi)[i] \), \(\text{Local}(\pi)[j] \), and \(\text{Shared}(\pi) \), respectively.

| (proc) ::= def proc(t) : do (gcmds) |
| (gcmds) ::= (guard) : (cmd) guarded command |
| (guard) ::= \(\varphi(i,\pi) \) local guard |
| (cmd) ::= \(\ell \) assignment to local variable |
| (cmd) ::= b := expr assignment to shared variable |
| (cmd) ::= (cmd) \(\triangleright \) sequential composition |
We define the set of initial configurations of T_n, denoted C^I_n, as the set of all configurations $c \in C_n$ such that $(c[i], c[j], c[n])$ satisfy φ_{init} for every $0 \leq i, j \leq n - 1$, and similarly, we define the set of bad configurations, denoted C^B_n, as the set of all configurations $c \in C_n$ such that $(c[i], c[j], c[n])$ satisfy φ_{bad} for some $0 \leq i, j \leq n - 1$.

Parameterized Systems as Infinite State Transition Systems. The semantics of a parameterized system defined by P is the infinite-state transition system $T(P) = (C, TR)$, where $C = \bigcup_{n \geq 1} C_n$ is the set of configurations of all instances and $TR = \bigcup_{n \geq 1} TR_n$ is the set of transitions of all instances. We lift the definition of initial and bad states to $T(P)$ similarly: $C^I = \bigcup_{n \geq 1} C^I_n$ and $C^B = \bigcup_{n \geq 1} C^B_n$. When P is clear from the context, we simply write T instead of $T(P)$.

Safety. Traces in a transition system are defined in the usual way, as sequences of states (configurations) where each two consecutive states are connected by the transition relation. A transition system (e.g., T_n or T) is safe if there is no trace from an initial state to a bad state. T is safe if and only if T_n is safe for every $n \geq 1$.

5. VERIFICATION CONDITIONS FOR PARAMETERIZED SYSTEMS

In this section, we provide verification conditions for verifying the safety of a parameterized system in the form of sets of Constrained Horn Clauses (CHC), such that the verification condition is satisfiable iff the system is safe. Further, a solution of the CHCs provides a witness of safety in the form of an inductive invariant.

We present two variants of the verification condition. One, called N-aware, explicitly encodes the number of processes via a logical variable. Another, called N-oblivious, ignores this number, and can be thought of as encoding a system with infinitely many processes.

In the following, we denote formulas used in the N-aware formulation by F^*, and formulas used in the N-oblivious formulation by F°. We write F^* to denote either of them.

Logical Variables. Given a process P, to model the parameterized system using logical formulas, we introduce a logical variable for every variable $v \in \mathcal{V}$ and adopt the same notation for it. The variables that correspond to $v \in \mathcal{Local}(\mathcal{V})$ are of sort array, and the shared variables $v \in \mathcal{Shared}(\mathcal{V})$ inherit their sorts from the program. For the N-aware verification condition, we add to the set of variables a variable N of sort integer that captures the (arbitrary) number of processes. We denote by \mathcal{V} the set of variables which consists of both \mathcal{V} and N in the N-aware formulation, and consists of \mathcal{V} only in the N-oblivious formulation. We introduce variables (e.g., i, j) of sort integer to refer to process identifiers.

Arrays conveniently represent configurations of instances of the parameterized system with any number of processes.

Transition Relation Formula. As usual, formulas representing transitions are defined over two copies of the variables, where the first (unprimed) copy refers to the state before the transition and the second copy (primed) refers to the “next” state obtained after the transition. We denote by \mathcal{V}' the copy of \mathcal{V} used to describe the next-state variables. A next-state copy of N is not needed, since we consider static topologies. Therefore, in the N-aware formulation, \mathcal{V}' stands for (\mathcal{V}', N).

Figure 5: Quantified formulas representing transitions, initial states and bad states of parameterized systems. F^* stands for either F^*, representing the N-aware formulation, in which case \mathcal{V} stands for (N, \mathcal{V}), or for F°, representing the N-oblivious formulation, in which case \mathcal{V} stands for \mathcal{V}.

<table>
<thead>
<tr>
<th>notation</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varphi_{\text{cmd}}(i, j, \mathcal{V})$</td>
<td>$\varphi_{\text{cmd}}(i, j, \mathcal{V})$</td>
</tr>
<tr>
<td>$\varphi_{\text{init}}(i, j, \mathcal{V})$</td>
<td>$\varphi_{\text{init}}(i, j, \mathcal{V})$</td>
</tr>
<tr>
<td>$\varphi_{\text{bad}}(i, j, \mathcal{V})$</td>
<td>$\varphi_{\text{bad}}(i, j, \mathcal{V})$</td>
</tr>
</tbody>
</table>

Note that N does not appear in these formulas since commands do not explicitly refer to N. Thus, these formulas are the same both in the N-aware and in the N-oblivious case.

From the command formulas, a transition relation formula, denoted $Tr_{cmd}(i, j, \mathcal{V})$. The formula Tr_{cmd}, defined over i, j, \mathcal{V}, captures the semantics of the command when executed by process i while all other processes are idle. That is, $Tr_{cmd}(i, j, \mathcal{V})$ encodes the values of $Local(\mathcal{V})[i]$ and $Shared(\mathcal{V})$ based on the update performed by cmd, and implies that for every $v \in Local(\mathcal{V})$ and for every $j \neq i$, $v'[j] = v[j]$. For example, for the command $next[i] := desired[i]; pc[i] := WAIT$ from Figure 4, Tr_{cmd} is

$$next' = next[i := desired[i]] \wedge pc' = pc[i := WAIT] \wedge curr' = curr \wedge desired' = desired$$

Note that N does not appear in these formulas since commands do not explicitly refer to N. Thus, these formulas are the same both in the N-aware and in the N-oblivious case.

Figure 6: Quantifier-free formulas used in the logical formulation of parameterized systems. In the N-aware formulation, $range^c(i) \equiv i \in [0, N)$, while in the N-oblivious formulation, $range^c(i) \equiv \top$.

<table>
<thead>
<tr>
<th>role</th>
<th>formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>local transition</td>
<td>$\exists i, j. \varphi_{\text{cmd}}(i, j, \mathcal{V}) \wedge Tr_{cmd}(i, j, \mathcal{V})$</td>
</tr>
<tr>
<td>universal transition</td>
<td>$\exists i. \forall j. \varphi_{\text{cmd}}(i, j, \mathcal{V}) \wedge Tr_{cmd}(i, j, \mathcal{V})$</td>
</tr>
<tr>
<td>existential transition</td>
<td>$\exists i. \exists j. \varphi_{\text{cmd}}(i, j, \mathcal{V}) \wedge Tr_{cmd}(i, j, \mathcal{V})$</td>
</tr>
<tr>
<td>initial condition</td>
<td>$\forall i. \forall j. Init^c(i, j, \mathcal{V})$</td>
</tr>
<tr>
<td>error condition</td>
<td>$\exists i. \exists j. Bad^c(i, j, \mathcal{V})$</td>
</tr>
</tbody>
</table>
Note that the N-oblivious formulation corresponds to removing the range constraints on id variables in Tr, Inv and Bad. For example, it does not require that $i \in [0, N)$ in the definition of Tr and that $j \in [0, N)$ in the formulas for global guards. Intuitively, the N-oblivious formulas encode a transition system whose configurations consist of infinite sequences of local states. This can be thought of as letting infinitely many processes interact.

5.1 Verification Conditions for Safety

Let T be a parameterized transition system, and let π, $\text{Init}^o(\pi)$, $\text{Tr}^o(\pi, \pi')$, $\text{Bad}^o(\pi)$ be defined as above, where $o \in \{*, \omega\}$. π is defined accordingly.

Definition 5.1. For $o \in \{*, \omega\}$, the verification condition $\text{VC}^o(T)$ for T is defined via the following set of CHCs over variables π, π' and over the predicate $\text{Inv}(\pi)$.

\[
\text{Init}^o(\pi) \Rightarrow \text{Inv}(\pi) \\
\text{Inv}(\pi) \land \text{Tr}^o(\pi, \pi') \Rightarrow \text{Inv}(\pi') \\
\text{Inv}(\pi) \Rightarrow \neg \text{Bad}^o(\pi)
\]

The N-aware verification condition, denoted $\text{VC}^o(T)$, is obtained when $o = *$ and π is $\pi(N)$. The N-oblivious verification condition, denoted $\text{VC}^o(T)$, is obtained when $o = \omega$ and $\pi = \pi$. We omit T when it is clear from the context.

Note that VC^o is defined over a set of variables which includes N, while the set of variables of VC^ω excludes N.

By splitting the disjunction in $\text{Tr}^o(\pi, \pi')$ into multiple clauses and pulling out quantifiers when possible, the verification condition $\text{VC}^o(T)$ can be equivalently rewritten into the set of UHCs depicted in Figure 9 (note that Init^o and ϕ_{guard} might contain universal quantifiers).

The following lemma shows that VC^o captures the safety of the parameterized transition system.

Lemma 5.1. $\text{VC}^o(T)$ is satisfiable iff T is safe.

It is tempting to claim (and is often implicitly assumed in other works) that $\text{VC}^\omega(T)$ is SAT iff T is safe. Unfortunately, this is incorrect, as demonstrated by the following examples.

Example 1 (Unsoundness). Consider the process P from Figure 8. Initially, all copies of the process are in location I (“initial”). From location I the process makes an unconditional move to location T (“trying”). If all other processes are in T, the process moves to E (“error”). The bad states are a process in an error location. Clearly, the system is unsafe for any number of processes. However, VC^ω is SAT. A satisfying interpretation for Inv includes all infinite configurations where a finite prefix consists of I and T locations, while the infinite suffix (which is of course nonempty) consists of I locations, thus blocking the universal transition that leads to error. As a side note, we point out that in this example no interpretation for Inv that satisfies VC^ω is expressible by a universally quantified formula.

Example 2 (Unsoundness). Consider the process from Figure 9. The process has a Boolean variable b. Initially, each copy of the process nondeterministically selects a Boolean value for b. If all processes have completed their selection and in addition $\forall i, j \cdot i \neq j \Rightarrow b[i] \neq b[j]$, then process i can move to an “error” location. If two processes reach an “error” location, a bad state is encountered. Clearly, T is unsafe since T_2 is unsafe (whereas T_n for every $N > 2$ is safe). However, VC^ω is SAT. Specifically, the solution is:

\[
\text{Inv} = (\forall i, j \cdot i \neq j \Rightarrow (pe[i] \neq E \lor pe[j] \neq E)) \land \\
(\forall i \cdot pe[i] \neq b[i] \in [0, 1]) \land \\
(\forall i, j \cdot (pe[i] = E \land i \neq j) \Rightarrow (pe[j] \neq I \land b[i] \neq b[j])).
\]

These examples show that in the general case, the N-aware and N-oblivious variants of the verification conditions do not coincide. Specifically, the N-oblivious formulation might be satisfiable even though the system is not safe.

One way to fix the unsoundness is to restrict the system.

Definition 5.2 (Weak Monotonicity). We say that T is weakly monotonic if there exists a quantifier free formula $\psi(i, \text{Local}(T))$ such that $(\forall i, \phi_{\text{init}}(i, j, \pi)) \models \psi(j, \text{Local}(T))$, and for every formula $\phi_{\text{guard}}(i, j, \pi)$ that appears in a global universal guard, $\psi(j, \text{Local}(T)) \models \phi_{\text{guard}}(i, j, \pi)$.

Intuitively, T is weakly monotonic if no universal guard can be blocked by a process in an initial state (as witnessed by the formula $\psi(j, \text{Local}(T))$). For example, if processes have an initial location, then $\psi(i, \text{Local}(T))$ can state that process i is in its initial location.

Weak monotonicity ensures that adding additional processes which remain in their initial state does not disable any global universal transition. In particular, if there are no universal guards, then T is weakly monotonic. Note that the classical notion of monotonicity [1, 12] is stronger as it would require that adding additional processes in any local state would not disable any global universal transition, which essentially forbids universal guards altogether.

Lemma 5.2. If T is weakly monotonic, then $\text{VC}^\omega(T)$ is satisfiable iff T is safe.

Proof. (\Rightarrow): Consider a solution (model) J for $\text{VC}^\omega(T)$. We need to show that T is safe. Assume to the contrary that it is unsafe. Then there exists $n \in N$ such that there exists an error trace in T_n. We construct a corresponding trace over infinite configurations, where each infinite configuration in the trace agrees with the corresponding finite one on the prefix of the configuration of length n, and the suffix of the infinite configuration corresponds to processes that have not moved since their initialization. The existence of such a trace contradicts the fact that J satisfies $\text{VC}^\omega(T)$. We construct the corresponding trace inductively. The first configuration consists of an arbitrary extension of the initial configuration that satisfies the initial condition. To extend the trace we consider the guarded command that is being executed. If it is a local or an existential command, then the same command is enabled also in the infinite configuration. If it is a universal command, then weak monotonicity ensures that it is also enabled in the infinite configuration where the additional processes remained in their initial state.

(\Leftarrow): Suppose T is safe. To show that $\text{VC}^\omega(T)$ is SAT it suffices to show that the system defined over infinite configurations is safe. Assume to the contrary that it is not. Then there is a (finite) error trace which consists of infinite configurations. We use it to construct an error trace for T_n for some $n \in N$, in contradiction. To define the value n for which T_n is unsafe, we consider the indices of processes that move along the trace, as well as the indices of all the witnesses to existential guarded commands. We define n to

\[\text{Init}^\nu(\pi) \Rightarrow \text{Inv}(\pi) \]

\[\text{Inv}(\pi) \land \varphi_{\text{grad}}(i, \pi) \land \text{Tr}_{\text{cmd}}(i, \pi, \pi') \Rightarrow \text{Inv}(\pi') \] for every local guarded command

\[\text{Inv}(\pi) \land (\forall j . \varphi_{\text{grad}}(i, j, \pi)) \land \text{Tr}_{\text{cmd}}(i, \pi, \pi') \Rightarrow \text{Inv}(\pi') \] for every universal guarded command

\[\text{Inv}(\pi) \land \varphi_{\text{grad}}(i, j, \pi) \land \text{Tr}_{\text{cmd}}(i, \pi, \pi') \Rightarrow \text{Inv}(\pi') \] for every existential guarded command

\[\text{Inv}(\pi) \Rightarrow \neg \text{Bad}^\omega(\pi) \]

Figure 7: Verification condition for safety of a parameterized system.

```plaintext
def proc(i):
    do
        pc[i] := T;
        \forall j \neq i . pc[j] := E;
    def init(i, j):
        pc[i] := I;
    def bad(i, j):
        pc[i] := E;
```

Figure 8: Parameterized system demonstrating unsoundness of VC^ω.

```plaintext
def proc(i):
    do
        pc[i] := I;
        \forall j \neq i . pc[j] := 1;
        pc[i] := D;
        \forall j \neq i . pc[j] := 0;
        (\forall j \neq i . pc[j] = D \land pc[j] \neq 1 \land b[j] \neq b[i]) = E;
    def init(i, j):
        pc[i] := I;
    def bad(i, j):
        i \neq j \land pc[i] = E \land pc[j] = E;
```

Figure 9: Parameterized system demonstrating unsoundness of VC^ω.

be the maximum over all these indices. With this choice of \(n \), we can now consider the trace which consists of the infinite configurations truncated to configurations of length \(n \).

This is a legal trace of \(T_n \), as every local and universal guard that was enabled in the infinite configuration is clearly enabled in its sub-configuration, and every existential guard that was enabled is still enabled since the witness process is also present in the configuration.

Corollary 5.1. Under the weak monotonicity condition, VC^ω(T) is satisfiable if and only if VC^ω(T) is satisfiable.

Note that the systems described in Example[1] Example[2] and Figure[1] are not weakly monotonic.

6. INFERRING UNIVERSAL INVARIANTS

In this section, we present an approach for determining whether the verification condition VC(T) has a model definable by a universally quantified FO-formula (or, equivalently, whether there is a safe inductively universally quantified invariant for \(T \)). More precisely, we consider models definable by *simple* universally quantified formulas:

Definition 6.1. A formula \(\varphi(\pi) \) is a simple \(k \)-universal formula if \(\varphi(\pi) \equiv \forall i_1, \ldots, i_k . \varphi_{\text{QF}}(i_1, \ldots, i_k, \pi) \), where \(\varphi_{\text{QF}} \) is a quantifier-free formula such that the variables \(i_1, \ldots, i_k \) are not used as arguments of functions in \(\varphi_{\text{QF}} \).

Our strategy for determining the existence of a simple universal invariant is to (a) fix the number of quantifiers expected in the invariant, (b) instantiate the quantifiers eagerly, and (c) use existing solvers for inference of quantifier-free safe inductive invariants to discover models of the reduced system. The two special cases of one and two-quantifiers were already discussed in Section 2.

We now present the general case, prove its soundness and investigate its completeness.

Let \(k \geq 1 \) be the number of universal quantifiers in the (simple) universal invariant we seek. That is, we consider solutions where Inv(\(\pi \)) is of the form

\[\text{Inv}(\pi) = \forall i_1, \ldots, i_k . \text{Inv}_k(i_1, \ldots, i_k, \pi). \]

To reduce the search for a quantified solution to a search for a quantifier-free one, we define an operator \(U^k \), parameterized by a number \(k \), that takes a UHC system \(VC \) (e.g., \(VC = VC^* \) or \(VC = VC^ω \)) and returns a CHC system \(U^k(VC) \) such that \(U^k(VC) \) has a quantifier-free solution if \(VC \) has a simple \(k \)-universal solution. \(U^k \) performs three transformations: restriction, case splitting, and instantiation, which are described next.

We describe each transformation on each individual clause of \(VC \) separately. We show the case of the consecution clauses only. The initiation and safety clauses are handled similarly (when applicable). Let \(gcmd \) be a guarded command with the corresponding consecution clause

\[\text{Inv}(\pi) \land \rho_{\text{cmd}}(i, \ldots) \Rightarrow \text{Inv}(\pi) \] (6)

where \(\rho_{\text{cmd}} \) is defined as \(\varphi_{\text{grad}}(i, \pi) \land \text{Tr}_{\text{cmd}}(i, \pi, \pi'), \forall j . \varphi_{\text{grad}}(i, j, \pi) \land \text{Tr}_{\text{cmd}}(i, \pi, \pi'), \varphi_{\text{grad}}(i, j, \pi) \land \text{Tr}_{\text{cmd}}(i, \pi, \pi'), \) whenever \(gcmd \) is local, universal, or existential, respectively (see Figure 7).

Restiction. The first transformation replaces the predicate \(Inv \) by a predicate \(Inv_k \) that is universally quantified with \(k \) quantifiers. Formally, the result of the restriction transformation of (6) is

\[(\forall i_1, \ldots, i_k . \text{Inv}_k(i_1, \ldots, i_k, \pi)) \land \rho_{\text{cmd}}(i, \ldots) \Rightarrow \text{Inv}_k(i_1, \ldots, i_k, \pi) \] (7)

Clearly, (7) has a quantifier-free-definable model iff (6) has a model definable using \(k \) universal quantifiers.

Case Splitting. Recall that in the formula \(\rho_{\text{cmd}}(i, \ldots), \) the next-state variables \(\pi' \) are indexed only by \(i \) (whereas, in a global guard, the current-state \(\pi \) variables might also be indexed by another variable). Intuitively, this captures that local variables of a process are changed only by its own moves. The case-splitting transformation splits the consecution premise (7) for \(gcmd \) into \(k+1 \) premises. Intuitively, each new premise represents a different process making a transition and changing its state. The first \(k \) premises consider the steps of the processes that the invariant refers to.
(hence, they can change local and shared variables), while the \(k + 1 \) premise considers an interference from another different interfering process. Note that the interfering process can only affect the shared variables.

Formally, case-splitting transforms the clause \(\square \) into \(k \) clauses, for \(1 \leq j \leq k \):

\[
(\forall i_1, \ldots, i_k . \text{Inv}_k(i_1, \ldots, i_k, \overline{w})) \land \rho_{\text{gcdm}}(i_j, \ldots) \Rightarrow \text{Inv}_k(i_1, \ldots, i_k, \overline{w})
\]

(8)

Additionally, if gcmd might update a shared variable, case-splitting adds the \((k + 1)\)st interference clause:

\[
(\forall i_1, \ldots, i_k . \text{Inv}_k(i_1, \ldots, i_k, \overline{w})) \land \\
\rho_{\text{gcdm}}(i_{k+1}, \ldots) \land \\
_1 \leq j \leq k \rightarrow \\
i_j \neq i_{k+1} \Rightarrow \\
\text{Inv}_k(i_1, \ldots, i_k, \overline{w})
\]

(9)

The case-split VC has a quantifier-free solution iff the restricted VC has a quantifier-free solution. This follows from the logical equivalence between the two sets of CHCs. In particular, whenever gcmd does not update any shared variables, the interference clause \(\square \) is unnecessary. Intuitively, this means that gcmd can cause no interference when executed by some other process.

Case-splitting is motivated by obtaining clauses with fewer free variables. This is beneficial for the instantiation step performed next, since the set of possible instantiations depends on the free variables.

Instantiation. The restriction and case-splitting transformations result in a VC that contains universal quantifiers in the body. The instantiation transformation applies a finite eager instantiation to the remaining universal quantifiers. The result is a quantifier-free CHC VC that can be solved by existing CHC solvers.

We begin with the following definitions:

Definition 6.2 (Instantiation Elements). Given a clause \(c \), the set of instantiation elements for \(c \), denoted \(C(c) \), is the smallest set \(X \) that contains (i) the variables \(i_1, \ldots, i_k \) whenever \(\text{Inv}_k(i_1, \ldots, i_k, \overline{w}) \) is the head of \(c \), (ii) every term \(x \) that appears as subindex to some array logical variable corresponding to a local program variable in \(c \), and (iii) every term \(y \) such that \(y \bowtie x \) (or \(x \bowtie y \)) is in \(c \) for \(x \in X \).

Intuitively, \(C(c) \) includes all variables that are used to index an array or compared with a variable already in \(C(c) \). Note that in the \(N\)-aware formulation, 0 and \(N \) are in \(C(c) \).

Definition 6.3 (Full Instantiations). Let \(k \in \mathbb{N} \) and let \(C \) be a finite set of instantiation elements. We define finite instantiations \(\text{FI}(k, C) = C^k \) to be the set of all \(k \)-tuples constructed from \(C \).

Note that \(\text{FI}(k, C) \) also contains tuples in which the same term appears multiple times.

Definition 6.4 (Reduced Instantiations). Let \(k \in \mathbb{N} \), \(C \) be a finite set of instantiation elements, and \(\prec \) be an arbitrary total order on terms. We define reduced instantiations \(\text{RI}(k, C) = \{ y_1, \ldots, y_k \in C^k | \forall i : j < i \Rightarrow y_i \prec y_j \} \) to be the set of all strictly \(\prec \)-increasing \(k \)-tuples constructed from \(C \).

Note that the definition of \(\text{RI}(k, C) \) is parameterized by the choice of the term order \(\prec \). For example, if \(C = \{ x, y \} \) and \(x \prec y \), then \(\text{RI}(2, C) = \{ (x, y) \} \).

The instantiations transformation is applied on each clause \(c \) of the VC that contains universal quantifiers. All occurrences of \((\forall i_1, \ldots, i_k . \text{Inv}_k(i_1, \ldots, i_k, \overline{w})) \) are replaced by \((\bigwedge_{c \in \text{RI}(k, C)} \text{Inv}_k(i, \overline{w})) \); and all other universally quantified formulas \(\forall t \cdot \varphi(t, \overline{w}) \) are replaced by their complete instantiations \((\bigwedge_{c \in \text{RI}(k, C)} \varphi(t, \overline{w})) \). The latter include (a) the transition relation formulas for universal guarded commands, where only one variable is instantiated (and therefore the full instantiations are the same as the reduced ones), and (b) the initial states formula, where pairs of variables are instantiated.

Example 3. Consider the conclusion clause \(\square \) obtained from \(VC^\omega \) after case splitting. If the clause corresponds to a universal guarded command, we obtain from it the following clause in \(U^k(VC^\omega) \):

\[
\text{Inv}_k(i_1, \ldots, i_k, \overline{w}) \land \bigwedge_{1 \leq h \leq k} \text{Tr}_{\text{gcdm}}(i_j, i_h, \overline{w}, \overline{w}) \Rightarrow \\
\text{Inv}_k(i_1, \ldots, i_k, \overline{w})
\]

where \(\text{Tr}_{\text{gcdm}}(i_j, i_h, \overline{w}, \overline{w}) = (i_h \bowtie i_j \Rightarrow \varphi_g(i_j, i_h, \overline{w})) \land \text{Tr}_{\text{cmd}}(i_j, i_h, \overline{w}, \overline{w}). \) Here, reduced instantiations are used for \(\text{Inv}_k \), resulting in one instantiation, and full instantiations are used for the transition relation formula (in fact the instantiation where \(i_j = i_h \) can be removed since it simplifies to true due to the structure of \(\text{Tr}_{\text{gcdm}}(i_j, i_h, \overline{w}, \overline{w}) \)). Note that the obtained clause is linear.

From a conclusion clause that corresponds to an existential command, we obtain the following clause in \(U^k(VC^\omega) \):

\[
\bigwedge_{c \in \text{RI}(k, C)} \text{Inv}_k(i, \overline{w}) \land \text{Tr}_{\text{gcdm}}(i_j, i, \overline{w}, \overline{w}) \Rightarrow \text{Inv}_k(i_1, \ldots, i_k, \overline{w})
\]

where \(C(c) = \{ i_1, \ldots, i_k, x \} \), hence there are \(k + 1 \) instantiations in \(\text{RI}(k, C(c)) \), and \(\text{Tr}_{\text{gcdm}}(i_j, x, \overline{w}, \overline{w}) = x \bowtie i_j \land \varphi_g(i_j, x, \overline{w}) \land \text{Tr}_{\text{cmd}}(i_j, \overline{w}, \overline{w}). \) In this case, the obtained clause is non-linear.

Lemma 6.1. The fully and reduced instantiated VCs are equi-satisfiable.

Proof. Since the reduced instantiations are a subset of the full instantiations, one direction follows trivially.

For the other direction, consider a quantifier-free solution \(M(\overline{w}, \overline{w}) \) for \(\text{Inv}_k \) of the fully instantiated VC with \(\overline{w} = (x_1, \ldots, x_k) \). To transform \(M \) into a solution \(H \) of the reduced instantiated VC, we define

\[
Y = \{ \overline{w} = (y_1, \ldots, y_k) | \forall 1 \leq i \leq k . \exists 1 \leq j \leq k . y_i = x_j \}
\]

and \(H(\overline{w}, \overline{w}) = \bigwedge_{\overline{w} \in Y} M(\overline{w}, \overline{w}) \). That is, \(Y \) is the set of all \(k \)-tuples constructed from \(x_1, \ldots, x_k \) (including tuples that have repetitions, i.e., \(y_i = y_j \)), and \(H \) is the reflexive symmetric closure of \(M \). We have that \((\bigwedge_{c \in \text{RI}(k, C)} H(\overline{w}, \overline{w})) \equiv (\bigwedge_{c \in \text{FI}(k, C)} H(\overline{w}, \overline{w})) \).

Each conjunct of \(H(\overline{w}, \overline{w}) \) corresponds to \(M(\overline{w}, \overline{w}) \) for \(\overline{w} \in Y \), whose permutations are all part of \(\bigwedge_{c \in \text{FI}(k, C)} M(\overline{w}, \overline{w}) \). Therefore, each premise with the head \(M(\overline{w}, \overline{w}) \) and body \((\bigwedge_{c \in \text{RI}(k, C)} H(\overline{w}, \overline{w})) \land \text{gcdm}(i, \ldots) \) follows by a proper renaming of the variables in \(\overline{w} \). Hence, \(H \) is a solution of the reduced instantiated VC.
If the instantiated VC has a quantifier-free solution, then the original VC has a k-universal solution. However, the opposite direction is not true in general.

The reduced instantiations of Inv reduce an exponential number of instantiations, \(|C(c)|^k = |\mathcal{F}(k, C(c))|\), to \(|C(c)|^k = |\mathcal{I}(k, C(c))|\). In the typical case, \(|C(c)|^k = O(1)\) which makes the number of reduced instantiations \(|C(c)|^O(1)\). For example, if \(C(c) = \{i_1, \ldots, i_k\}\), then the number of instantiations is just 1, resulting in linear constraints. This is the case for all the clauses that correspond to local guarded commands and for all the clauses that correspond to universal guarded commands in \(VC^e\), except for the interference clauses. The interference clauses have an additional instantiation element, resulting in \(k + 1\) instantiations. Clauses corresponding to existential guarded commands also have additional instantiation elements.

Example 4. Having presented the general reduction for k-universal invariants, we now revisit the special cases of one-quantifier and two-quantifier invariants that were presented in Section 3. The sets of constraints displayed in Figure 2 and Figure 3 correspond to \(U^1(VC^e)\) and \(U^2(VC^e)\) respectively, for the case where all transitions in \(T\) have local guards (but may update shared variables). Universal and existential guards would be handled by \(U(VC^c)\) as demonstrated in Example 4. For example, for a universal guarded command, the constraint \((3)\) in Figure 4 would become

\[
\text{Inv}_2(i, j, \overline{\nu}) \land \text{Tr}(i, j, \overline{\nu}, \overline{\nu}') \Rightarrow \text{Inv}_2(i, j, \overline{\nu}').
\]

For an existential command, constraint \((3)\) would become

\[
\text{Inv}_2(i, j, \overline{\nu}) \land \text{Inv}_2(j, k, \overline{\nu}) \land \text{Inv}_2(k, i, \overline{\nu}) \land \\
\text{Tr}(i, k, \overline{\nu}, \overline{\nu}') \Rightarrow \text{Inv}_2(i, j, \overline{\nu}').
\]

In the rest of the section, we establish the soundness and relative completeness of the transformation \(U^k(VC)\).

Soundness. The soundness of the transformation \(U^k(VC)\) follows directly from the soundness of each of the steps. The proof of Lemma 6.2 is straightforward: If \(H(\overline{\tau}, \overline{\nu})\) is a solution of \(U^k(VC)\), then \(\forall \overline{\tau}. H(\overline{\tau}, \overline{\nu})\) is a solution for \(VC\).

The proof of Lemma 6.2 is straightforward: If \(H(\overline{\tau}, \overline{\nu})\) is a solution of \(U^k(VC)\), then \(\forall \overline{\tau}. H(\overline{\tau}, \overline{\nu})\) is a solution for \(VC\).

Corollary 6.1. If \(U^k(VC^e)\) has a quantifier-free solution, then \(VC^e\) has a k-universally quantified solution.

This allows us to verify the example in Figure 4 with \(VC^e\), even though it is not weakly monotonic.

Relative completeness. While the soundness of our approach does not rely on the restriction to simple universal invariants, completeness does.

Lemma 6.4. If \(VC^e\) has a k-universal simple solution, then \(U^k(VC^e)\) has a quantifier-free solution.

The proof of this lemma follows from the fact that the syntax of processes ensures that \(Init\), \(Tr\) and \(Bad\) do not use identifier variables as arguments to functions. This and the restriction to simple invariants is sufficient to guarantee that our set of instantiations is complete.

7. **SAFETY VERIFICATION**

Safety verification of parameterized systems is in general undecidable. In this section, we extend the technique of Section 5 to a semi-algorithm for the problem (i.e., our procedure might not terminate). We show that for certain classes of systems (e.g., Petri nets), our procedure is in fact a decision procedure.

Our procedure is shown in Algorithm 1. It combines a search for a simple k-universal safe inductive invariant with a search for a counterexample in a k-process instance of the system. Initially, \(k = 1\) and it is increased in each iteration. The search for a simple k-universal invariant is done as described in Section 6 based on \(VC^e\). The search for a counterexample is done by an off-the-shelf model checker. In practice, we use CHC solver for both steps.

Termination. Algorithm 1 might not terminate due to several reasons. First, solving the CHCs generated by \(U^k\) might
k := 1 ;
while true do
 $Inv_k(i_1, \ldots, i_k) := \text{Solve}(U^k(VC^{-}(T)))$;
 if $Inv_k(i_1, \ldots, i_k) \neq \text{null}$ then
 return “inductive invariant found: $\forall i_1, \ldots, i_k. Inv(i_1, \ldots, i_k, \tau)”
 \text{res} := \text{ModelCheck}(T_k) ;
 if res = \text{cex} then
 return “counterexample found for }k\text{ processes”}
 k := k + 1
\textbf{Algorithm 1}: Procedure for safety verification of parameterized systems.

be undecidable. Second, even safety verification of a single instance of the system might be undecidable. These issues are alleviated if we restrict ourselves to finite state processes. However, even if both inner steps of Algorithm 1 are decidable, the procedure might not terminate. The reason is that it is possible that a parameterized system is safe (i.e., no counterexample exists in any instance), but it has no simple universal invariant. In this case, both searches performed by Algorithm 1 diverge. Fortunately, there are classes of systems for which this phenomenon is impossible. In such cases, we obtain a decision procedure for safety verification.

An example of such a class of systems is when the parameterized system forms a \textit{monotonic transition system} with respect to the subsequence ordering over configurations 1. In particular, parameterized systems with local and existential transitions (but no universal transitions) meet the monotonicity condition 2. An important subclass of such systems is Petri nets.

8. \textbf{IMPLEMENTATION AND EVALUATION}

We have implemented a prototype of our technique in Python. The input is a description of a parametric system as a collection of guarded commands. The output is an inductive invariant or a counterexample. Our input language is similar to the input language of CUBICLE 9 and is more liberal than the syntax of Figure 4 used for the formal presentation in the paper. Given a parametric system, our implementation computes a verification condition as a set of UHCs, reduces it to CHCs using the transformations described in Section 6 and solves them using SPACER 19.

We have experimented with several small but challenging protocols including the collision avoidance protocol from Figure 1, dining philosophers, and several variants of Lamport’s bakery mutual exclusion algorithm. In all these cases, we were able to successfully compute a 2-universal inductive invariant in a few seconds. Further work is necessary to tune our implementation for more challenging benchmarks.

9. \textbf{RELATED WORK}

There is a large body of work on verification of concurrent, distributed, and parameterized systems. We refer the reader to 5 for a recent survey. Below, we compare our approach only with the most closely related work.

Our technique can be seen as an adaptation of the \textit{view abstraction} of Abdulla et al. 2 (and, in this, similar to dynamic cut-off of Kroening et al. 17, invisible invariants of Zuck et al. 21, and environment abstraction of Clarke et al. 8). When our procedure converges, the constructed invariant is a view abstraction of the original system, where the size of the view is determined by the number of quantifiers. However, the details of the technique are very different. In particular, our approach naturally extends to infinite-state processes, such as processes with integer local and shared variables without the need for a separate finite-state abstraction. While such variables might not appear directly in the protocol, they are convenient for verification purposes. For example, it is common to abstract the number of processes in a particular state by an integer counter, which introduces a shared integer variable in the model.

Our reduction from universal Horn clauses to CHC is inspired by the eager quantifier instantiation of Bjørner et al. 4. Our key insight is in the use of problem-specific restrictions to dramatically reduce the number of the necessary instantiations, while maintaining completeness. In particular, we require exponentially fewer instantiations than 4. In that, our formulation is similar to that of Hojjat et al. 16.

In the paper, we reduce verification of parameterized systems to CHC satisfiability and leave the choice of the CHC solver open. In the evaluation, the resulting CHCs are solved by a CHC solver SPACER 19 18. This combination is similar to the MCMT 14 approach, and, in particular, to the BARB algorithm 10 of CUBICLE 9. The key similarities and differences are highlighted below. SPACER is a CHC solver based on the generalization of the IC3 model checking algorithm 6. Similar to BARB, it combines abstract backward and concrete forward reachability computations. Unlike BARB, the backward reachability is under-approximated using Model Based Projection 19 and is generalized using interpolation and over-approximation of forward reachable states 5 15. This makes our algorithm less susceptible to the syntactic description of the model under analysis. For example, generalizations are not restricted to the predicates that are obtained by quantifier elimination in the computation of backward reachability. As an added bonus, when the problem is safe, SPACER always produces an easy-to-validate certificate. On the other hand, CUBICLE requires a non-trivial certificate generation procedure 11. So far, we have used SPACER as a black-box. We leave exploring the many possible optimizations of the SPACER algorithm for this domain for future work.

10. \textbf{CONCLUSION}

In this paper, we present an SMT-based approach for verifying parameterized systems – systems consisting of asynchronous composition of \(N\) identical processes. We show that a verification condition of a parameterized system is captured by a first-order formula as a conjunction of constrained Horn clauses with constraints in the combined theory of Linear Integer Arithmetic and (quantified) theory of Arrays. Since satisfiability of such CHCs is undecidable, we develop a technique for inferring universally quantified solutions. Our approach yields a novel procedure for automated verification of parameterized systems using existing SMT-based CHC solvers such as SPACER 19. Interestingly, the constraints, that we derive systematically, match and extend the well-known Owicki-Gries proof rules to the parameterized setting. While the paper is focused on asynchronous composition of identical process, the main ideas extend to process groups and to synchronous composition.
11. REFERENCES

