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Abstract

Assume we asked to assess a real-valued variable Yp based on cer-

tain characteristics Xp = (X1
p , ..., Xm

p ), and on a database consisting

of (X1
i , ..., Xm

i , Yi) for i = 1, ..., n. Analogical reasoning suggests to

combine past observations of X and Y with the current values of

X to generate an assessment of Y is similarity-weighted averaging.

Specifically, the predicted value of Y , Ȳ s
p , is the weighted average of

all previously observed values Yi, where the weight of Yi, for every

i = 1, ..., n, is the similarity between the vector X1
p , ..., Xm

p , associated

with Yp, and the previously observed vector, X1
i , ..., Xm

i . In a previ-

ous paper we axiomatized this rule, and suggested that the similarity

function be estimated from past data. The current paper discusses

this approach as a statistical method of prediction, and studies its

relationship to the statistical literature.
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1 Introduction

Reasoning by analogies is a basic method of predicting future events based on

past experience. Hume (1748), who famously questioned the logical validity

of inductive reasoning, also argued that analogical reasoning is the fudamen-

tal tool by which we learn from the past about the future. He wrote, ”In

reality, all arguments from experience are founded on the similarity which

we discover among natural objects... From causes which appear similar we

expect similar effects. This is the sum of all our experimental conclusions.”

(Hume 1748, Section IV) Analogical reasoning has been widely studied in

psychology and artificial intelligence (see...), and it is very common in every-

day discussions of political and economic issues. Furthermore, it is a standard

approach to teaching in various professional domains such as medicine, law,

and business. However, analogical reasoning has not been explicitly applied

to statistics. The goal of this paper is to present an analogy-based statistical

method, and to explore it relationships to existing statistical techniques.

Suppose that we are trying to assess the value of a variable yt based on

the values of relevant variables, xt = (x1
t , ..., x

d
t ), and on a database consisting

of the variables (x1
i , ..., x

d
i , yi) for i = 1, ..., n. How should we combine past

observations of x and y with the current values of x to generate an assessment

of y? If we were to follow Hume’s idea, we would need a notion of similarity,

indicating which past conditions xi = (x1
i , ..., x

d
i ) were more similar and which

xi’s were less similar to xt. We would like to give the observations that were
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obtained under more similar conditions a higher weight in the prediction of yt

than those who were obtained under less similar conditions. Specifically, one

may assume that there a similarity function S : Rd×Rd → R++ = (0,∞) such

that, given a database (xi, yi)i≤n and a new data point xt = (x1
t , ..., x

d
t ) ∈ Rd,

the estimate of yt is

yS
t =

∑
i≤n S(xi, xt)yi∑
i≤n S(xi, xt)

(1)

Observe that, in case all similarity values are constant, this formula boils

down to a simple average of past observations. The sample average is ar-

guably the most basic and most widely used statistic. As such, the formula

(1) appears to be a minor variation on the averaging principle. Rather than

a simple average, we suggest to use a weighted one, where the weights reflect

the relevant similarity.

The formula (1) has been axiomatized in Gilboa, Lieberman, and Schmei-

dler (GLS, 2006) for the case that y is a real-valued variable, and in Billot,

Gilboa, Samet, and Schmeidler (BGSS, 2005) for the case that y is a multi-

dimensional probability vector. These papers do not assume that the simi-

larity function is given. Rather, they consider a certain observable measure

– such as a likelihood ordering or a probability assessment – and ask, how

this observale measure varies with the database that is supposed to be input

to the problem. The axiomatizations impose certain constraints on the way

the observable measure varies with the input database, and prove that the
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constraints are satisfied if and only if there exists a similarity function such

that (1) holds.

The interpretation of the axioms in GLS (2006), and BGSS (2005) can

be descriptive or normative. As descriptive theories, they suggest that the

formula (1) is a reasonable model of how people actually make assessments.

Normatively interpreted, these theories can be taken as an argument for the

use of (1) as a model of how people should make assessments. A statistical

method should obviously be judged on normative grounds. Indeed, how

people actually make assessments may be an empirical question of interest

to psychologists, but not necessarily a theoretical question of interest to

statisticians. Yet, taking an evolutionary perspective, one may be interested

in studying the way the human mind makes inferences, in the hope that at

least in some applications it may suggest useful ideas.

The formula above may be used with any function S : Rd × Rd → R++.

Which function should we choose? GLS (2006) suggest to estimate the simi-

larity function from the data. This can be done either by cross-validation, as

a curve-fitting problem, or as a statistical inference problem. For the latter,

one needs to assume a stochastic process where the formula (1), combined

with a random factor, is assumed to generate the data. (See details in Secion

2 below.) In such a model, the estimation of the similarity function becomes

a problem of statistical inference. GLS (2006) study such a statistical model,

using a particular parametrized family of similarity functions, and develop

statistical inference tools for that family. The term “empirical similarity”
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refers to the function that is estimated from the data, either by cross val-

idation, or by statistical inference techniques such as maximum likelihood

estimation.

As formula (1) itself, the empirical similarity function can also be inter-

preted descriptively or normatively. From a descriptive viewpoint, one may

argue that people learn how to judge similarity from their experience. For

example, a child may judge similarity between cars based on their color,

while an adult – based on the make and model. It is experience that tells us

that, when a car’s performance is of interest, the make and model are more

important features of similarity judgments than is the color. Gilboa and

Schmeidler (2001) refer to this process as “second-order induction”, and ar-

gue that the human mind engages in such learning. From a normative point

of view, it makes sense that this process, by which the similarity function is

learnt from the data, can be optimized and refined to obtain better analogy-

based predictions. Obviously, it is this interpretation that is the focus of this

paper.

The formula (1) is mathematically equivalent to kernel estimation of a

non-parametric function, where the similarity function plays the role of the

kernel. Thus, the axiomatic derivations in GLS (2006) and BGSS (2005)

may be viewed as axiomatizing kernel-based non-parametric methods. If

one takes GLS (2006) and BGSS as descriptive models of human reasoning,

one might argue that the statisical methods suggested by XXX and YYY

as efficient methodologies for the estimation of a function whose functional
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form is not known coincide with the way the human mind has evolved to

estimate unknown variables. Indeed, since the human mind is supposed

to be a general inference tool, capable of making predictions in unknown

environments, it stands to reason that it solves a non-parametric statistical

prediction problem.

Section 2 describes the empirical similarity statistical models. We devote

Section 3 to a more detailed discussion of the relationship between kernel

estimation and the connections between empirical similarity. We then briefly

discuss the relationship of our method to spatial models in Section 4. Section

5 discusses the case of a binary random variable, and provides some empirical

findings. In Section 6 we apply our method to the non-parametric estimation

of a density function, and provide an axiomatization of a “double-kernel” es-

timation method. Finally, Section 7 concludes with a discussion of additional

directions for future research.

2 Empirical Similarity Models

As mentioned above, finding the “best” similarity function for a given database

may be viewed as a simple cross-validation problem. The cross-validation

problem would take slightly different forms if the data are assumed to be

ordered or not. Specifically, if there is a database (xi, yi)i≤n, where, for every

i > j, (xi, yi) was realized after (xj, yj), it is natural to define, for a similarity

function S : Rd × Rd → R++,
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ŷS
i =

∑
j<i S(xj, xi)yj∑
j<i S(xj, xi)

(2)

and then to ask which function S, in a pre-specified famility, minimizes

SSE =
∑
i≤n

(
yi − ŷS

i

)2
.

Billot, Gilboa, and Schmeidler (2005) provided conditions on similarity-

weighted averages that are equivalent to the similarity function taking the

form

S(x, x′) = exp(−‖x− x′‖)

where ‖·‖ is a norm on Rd. For concreteness, we focus on the family of norms

defined by weighted Euclidean distances.

Sw (x, x′) = exp (−dw(x, x′))

where w ∈ Rd
+ is a weight vector such that the distance between two vectors

x, x′ ∈ Rd is given by

dw (x, x′) =
d∑

j=1

wj

(
xj − x′j

)2
.

Thus, minimizing the SSE by the selection of w becomes a well-defined

optimization problem with d parameters.

In the case that the order of the datapoints in (xi, yi)i≤n is arbitrary, it
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is more natural to define the estimate of yi, for a given S, to be

ŷS
i =

∑
j 6=i S(xj, xi)yj∑
j 6=i S(xj, xi)

(3)

and use these estimates for the calculation of the empirical similarity S. @As

shown by Härdle and Marron (1985), the resluting estimates of S ...[NEED A

DISCUSSION ON THE COMPUTATIONAL ASPECTS OF CV AND ITS

ROBUSTNESS TO OUTLIERS]@

Cross validation techniques have the advantage of independence of sta-

tistical assumptions. While the empirical similarity functions computed by

cross validation depend on the specific measure of the fit (such as the sum

of squared errors), they do not depend on any assumptions of a statisti-

cal model. However, in order to conduct statistical inference and to obtain

qualitative results by hypotheses tests, one would like to go beyond cross val-

idation and present a complete statistical model. The most straightforward

way to do that would seem to be to take the formulae (2) or (3) and use them

in the data generating process, such that the expression for ŷS
i becomes the

expectation of yi, with a Gaussian noise variable that is independent of past

observations. Explicitly, the ordered model gives rise to the process

yt =

∑
i<t Sw(xi, xt)yi∑
i<t Sw(xi, xt)

+ εt (4)

where εt ∼ N (0, σ2), independently of past εi’s. Similarly, the unordered
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model would induce the statistical model

yt =

∑
i6=t Sw(xi, xt)yi∑
i6=t Sw(xi, xt)

+ εt (5)

where εt ∼ N (0, σ2), independently of other εi’s.

Model (4) can be interpreted as an explicit causal model. Consider, for

example, a process of price formation by case-based economic agents. These

agents determine the prices of unique goods such as apartments or art pieces

according to the similarity of these goods to other goods, whose prices have

already been determined in the past. Thus, (4) can be thought as a model of

the mental process that economic agents engage in when determining prices.

The estmimation of Sw in such a model is thus an estimation of a simi-

larity function that presumably causally determines the observed y’s. The

asymptotic theory for this model was developed by Lieberman (2005).

Model (5) cannot be directly interpreted in the same way. Because the

distribution of each yt depends on all the other yi’s, (5) cannot be a temporal

account of the evolution of the process.

Both models (4, 5) assume that the similarity function is fixed and does

not change with the realizations of yt, nor with t itself. They rely on the

axiomatizations in GLS (2006) and in BGSS (2005). Each of these axiom-

atizations, like Gilboa and Schmeidler (2001, 2003), uses a so-called “com-

bination” (or “concatenation”) axiom, which states, roughly speaking, that,

should a certain conclusion be warranted given two disjoint databases, the
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same conclusion should be warranted given their union. Whereas axioms of

this type may appear reasonable at first, they are rather restrictive. Gilboa

and Schmeidler (2003) contains an extensive discussion of such an axiom and

its limitations, and the latter apply to all versions of the axiom, including

those that appear in GLS (2006) and in BGSS (2005). For our purposes,

it is important to note that the combination axiom does not allow one to

learn the similarity function from the data. Correspondingly, formula (1)

does not allow the similarity function to change with the accumulation of

data. But the basic idea of “empirical similarity” is precisely this, namely,

that the similarity function be learnt from the same data that are used, in

conjunction with this similarity function, for generating predictions. Hence,

the axiomatic derivations mentioned above are limited. Similarly, formula

(1) calls for a generalization that would allow it to refine the similarity as-

sessment, and the statistical models (4, 5) should be accordingly generalized.

3 Empirical Similarity and Kernel-Based Meth-

ods

For clarity of exposition, we start with the unidimensional case, that is,

when d = 1 and there is only one explanatory variable X. A nonparametric

regression model assumes a data generating process (DGP) of the following
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type

yi = m (xi) + εi, (i = 1, ..., n) , (6)

εi ∼ N
(
0, σ2

)
,

where xi is a scalar, m : R → R is the unknown function relating Y to X, and

the noise variables εi are assumed to be iid. A widely-used nonparametric

estimator of m (·) is

m̂ (x0) =

∑n
i=1K

(
xi−xt

h

)
yi∑n

i=1K
(

xi−xt

h

) , (7)

where K (x) is a kernel function, that is, a non-negative function satisfying∫
K (z) dz = 1 (as well as other conditions), and h is a bandwidth parameter.

For instance, if we choose the Gaussian kernel, then

1

h
K

(
xi − xt

h

)
=
(
2πh2

)−1/2
exp

(
−(xi − xt)

2

2h2

)
. (8)

The choice of h is central in the nonparametric literature. When h is small,

the kernel is “concentrated”, and puts higher relative weight on close obser-

vations relative to more distant ones. This would make the estimate of m(xt)

less influenced by different x values, but it would also make it largely depen-

dent on fewer observations, and thus noisier. Increasing h adds stability to

the estimation ofm(xt), reducing its dependence on the few observations that

happened to be gathered at close x values. But this more robust estimate will
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be less precise, since it estimates a smoothed version of the function m rather

than m itself. Accuracy and robustness may be traded off so as to minimine

the mean integrated squared error (MISE). This leads to an optimal optimal

bandwidth

h∗ = arg min
h

∫
Ef0 (m̂ (x)−m (x))2 dx (9)

= arg min
h
Ef0

∫
(m̂ (x)−m (x))2 dx

where the expectation is taken under the true, unknown density of y.@Is this

f0? And what about the density x?@We can also write this as

h∗ = arg min
h

∫
Ef0 (ŷ (x)− Ef0 (y|x))2 dx.

If x is countable, then we replace the last integral and write

h∗ = arg min
h
Ef0

∑
i

(ŷi (xi)− Ef0 (yi|xi))
2 . (10)

The sum is over squared deviations of the fitted values from the expected

values of y. If we replace m (x) by y in (9), in (10) we will have the usual

sum of squared errors.

Let us compare kernel estimation to the empirical similarity approach to

this problem. As described above, the empirical similarity method suggests
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to estimate of yt by

ŷt =

∑n
i=1 Sw (xi, xt) yi∑n

i=1 Sw (xi, xt)
.

where

Sw (xi, xt) = exp (−dw)

= (π/w)1/2

[
(π/w)−1/2 exp

(
− (xi − xt)

2

2
(
1/
√

2w
)2
)]

= (π/w)1/2

[
1(

1/
√

2w
)K (xi − xt

1/
√

2w

)]
,

and K is given in (8). Then,

∑n
i=1 Sw (xi, xt) yi∑n

i=1 Sw (xi, xt)
=

∑n
i=1K

(
xi−xt

1/
√

2w

)
yi∑n

i=1K
(

xi−xt

1/
√

2w

) .

It follows that, in this setting,

h = 1/
√

2w.

Thus, we have a direct mapping from the similarity parameter to the band-

width parameter. Among other things, we can set w∗ to satisfy the MISE

criterion.

Despite the similarity between the two models, there is a fundamental

difference between them. Kernel estimation is a statistical technique that is

used for the estimation of the model (6). By contrast, in models (4, 5) we
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use the formula (1) as part of the data generating process itself.

This difference is accentuated when we focus on the ordered case. Model

(6) assumes that the data generating process is rule-based, and that the

distribution of yt is a function of xt alone. If the function m were known, xt

would have been a sufficient statistic for yt. This is not the case for model

(4). In this model, the data generating process is case-based, where the

distribution of yt depends on all past realizations of x, namely, xi’s for i > t.

In (6) past observations are used to learn the general rule. But given this

rule, they are immatierial. By contrast, in (4) directly affect the distribution

of future variables.

Observe that this difference also has an implication regarding the type

of questions that are raised about the parameter w. In (6), this parameter

selects among statistical techniques. It can thus be chosen optimally, so

as to minimize an expected loss function, or to have desirable asymptotic

properties. But in (??), w may be a subject of statistical inference. Indeed,

in GLS we develop tests for hypothesis of the form1

H0 : w = 0.

That is, in this model “what is the true value of w?” is a meaningful question,

1Under the hypothesis that w = 0, Sw (xi, xj) = 1 for all i and j. This suggests that y
is not influenced by x – past values of y are relevant to its current evaluation irrespective
of the x values that were associated with them. Mathematically, setting w = 0 yields the
same prediction as using a kernel approach with h = ∞, where for every x, y is evaluated
by a simple average of all past y’s.
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whereas in (6) one may only ask, “what is a useful value of w?”.

Despite these differences, the mathematical similarity between kernel-

based estimation of an unknown rule and a similarity-based estimation of a

case-based process may provide important insights. In particular, it is well-

known that optimal estimation by kernel methods should allow the band-

width parameter h to decrease with the size of the database. Similarly,

assume that one uses the empirical similarity approach to estimate the value

of y even though, in reality, the true DGP is (6). One would then expect that

the empirical similarity function to become “tighter” with an increase in the

database size. To consider an extreme example, assume that a database is

replicated a large number of times. For every past observation (xi, yi) there

will be many identical observations, and the similarity function that best ex-

plains existing data will be one with infinite w, that is, a similarity function

that ignores all but the identical x values.2

One may restrict attention to the empirical similarity technique only for

the estimation of DGP’s that are of the form (4) or (5).3 But if one wishes

to use the empirical similarity method also when the true model is non-

parametric regression, one would like to impose a condition that w grows

with the size of the database.

The discussion above generalizes to higher dimensions (d > 1) without

2In fact, two replications would suffice for the above argument. But a large number of
replications would have a similar impact even if the database is not replicated in precisely
the same way.

3See, for instance, Gayer, Gilboa, and Lieberman, 2006, for a model of real-estate pric-
ing where an unordered version of model (5) is assumed, with a fixed similarity function.
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any fundamental modifications. Kernel estimation is used for estimation of

a non-parametric model (6) where x is multi-dimensional, and the models

(4, 5) have also been formulated for a multi-dimensional x. Indeed, similar

relationship exist between the kernel bandwidth parameters and the weights

that determine the similarity function. Specifically,

Sw (xi, xt) = exp (−dw)

= exp

(
−

d∑
j=1

wj (xij − xtj)
2

)
= (2π)d/2 (det (W ))1/2 [(2π)−d/2 (det (W ))−1/2

× exp

(
−1

2
(xi − xt)

′W−1 (xi − xt)

)
]

= (2π)d/2 (det (W ))1/2
[
(det (W ))−1/2K (xi − xt;W )

]
, (11)

where W−1 is a diagonal matrix with elements 2wj, j = 1, ..., d, and K (·) is

the multivariate normal density with covariance matrix W . The term in the

square brackets of (11) integrates to one. In this setting

∑n
i=1 Sw (xi, xt) yi∑n

i=1 Sw (xi, xt)
=

∑n
i=1K (xi − xt;W ) yi∑n

i=1K (xi − xt;W )
.

Finding the “empirical similarity” function reduces to finding the set of

weights w that are optimal in a given sense, say, that minimize MISE. This

is equivalent to finding the “best” kernel function, provided that one varies

all bandwidth parameters of the kernel function (where the j’th bandwidth

parameter turns out to be equal to 1/
√

2wj). The bulk of the literature on
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multivariate kernels focuses only on one bandwidth parameter, but there is

no conceptual difficulty in optimizing a multi-dimensional bandwidth. This,

indeed, has been done by XXX. As in the univariate case, we find the same

conceptual differences between the empirical similarity model and kernel es-

timation. In particular, the empirical similarity model allows one to test

hypothesis of the form

H0 : wj = 0

suggesting that variable xj is immaterial in similarity judgments. Rejecting

such an hypothesis constitutes a statistical proof that the variable xj matters

for the assessment of y. By contrast, a kernel function that is not part of the

DGP does not allow us to pose or test similar qualitative questions.

4 Empirical Similarity and Spatial Models

The general spatial model can be written in at least two ways, in each case

leading to a different likelihood. Besag (1974, p 201) describes the two pos-

sibilities. First, the conditional density of xi given (x1, ..., xi−1, xi+1, ..., xn)

is specified as

pi (·) =
(
2πσ2

)−1/2
exp

− 1

2σ2

{
xi − µi −

∑
j 6=i

βi,j (xj − µj)

}2
 .
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This results in the following joint density of the x′s:

p (x) =
(
2πσ2

)−n/2 |B|1/2 exp

[
− 1

2σ2
(x− µ)′B (x− µ)

]
,

where [B]i,i = 1 and [B]i,j = −βij. Alternatively, one can assume that

E (xi|x1, ..., xi−1, xi+1, ..., xn) = µi +
∑
j 6=i

βi,j (xj − µj) .

For example, this holds for the model

xi = µi +
∑
j 6=i

βi,j (xj − µj) + εi,

where ε1, ..., εn are iid normal random variables with zero mean and variance

σ2. In this case the joint density is

p (x) =
(
2πσ2

)−n/2 |B| exp

[
− 1

2σ2
(x− µ)′B′B (x− µ)

]
.

Note that B is defined as our S and is required to be non-singular. This

model is also entitled conditional autoregression (or CAR).

These spatial models resemble models (4, 5). In fact, the latter may be

viewed as special cases of the spatial model, where the similarity function Sw

imposes certain restrictions on the coefficients βi,j (and where, in 4, βi,j =

0 for i < j). The contribution of models (4, 5) can thus be viewed as

suggesting a particular form of spatial models that focus on a small number
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of parameters (the d weight coefficients).

@Mention also Cressie (1993), which appeared in the intro?@

5 Probability Estimation

GLS (2006) also propose to use the empirical similarity approach for the

estimation of probabilities. They develop the likelihood function for the

ordered model, in which the probability that yt = 1 depends only on past

observations, yi for i < t, and it is the similarity-weighted average of these

past observations, namely, the similarity-weighted frequency of 1’s in the

past:

p̂w (yt = 1|x1, ..., xt−1, xt, y1, ..., yt−1) =

∑
i<t Sw (xi, xt) yi∑

i<t Sw (xi, xt)
. (12)

However, there are many applications in which the given data are not

ordered in any natural way. In this case, it is natural to assume that the

probability that a new data point yt equals 1 is given by

p̂w (yt = 1|x1, ..., xn, xt, y1, ..., yn) =

∑n
i=1 Sw (xi, xt) yi∑n

i=1 Sw (xi, xt)
. (13)

If p (yi) = p for all i, then p̂w (yt = 1|·) is evidently unbiased for p. To estimate

w, we can use the idea of likelihood cross-validation, as follows. First, we

19



define

p̂w,−i (yi = 1|x1, ..., xn, y1, ..., yi−1, yi+1, ..., yn) =

∑
j 6=i Sw (xj, xi) yj∑

j 6=i Sw (xj, xi)
,

for i, j = 1, .., n, which is the leave-yi-out cross-validation first step. At the

second stage of the procedure we obtain

ŵCV = arg max
w

n∑
i=1

log (p̂w,−i (yi = 1|x1, ..., xn, y1, ..., yi−1, yi+1, ..., yn)) .

Finally, we replace (13) by

p̂ŵCV
(yt = 1|x1, ..., xn, xt, y1, ..., yn) =

∑n
i=1 SŵCV

(xi, xt) yi∑n
i=1 SŵCV

(xi, xt)
.

Note the difference between this procedure and the one discussed in Silverman

(1986, pp 124-125). In our notation, Silverman’s equation (6.7) reduces to

p̂ (yt = 1) =
λ

n

n∑
i=1

(
1− λ

λ

)(yi−yt)
2

(14)

where λ is a parameter, assumed to lie n [1/2, 1], to be estimated by likelihood

cross-validation. That is,

λ̂CV = arg max
λ

log (p̂−i (yi = 1))
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with

p̂−i (yi = 1) =
λ

n

∑
j 6=i

(
1− λ

λ

)(yj−yi)
2

.

Unlike the case of nonparametric estimation of m (x) with unordered data,

it is not apparent how we can map λ into w. Also, with the ‘right’ choice

of S, it is possible to find a similarity- based predicted probability which

outperforms (14).

6 Double Kernel Density Estimation

Suppose that one wishes to estimate the density function of a real-valued

variable y. This density is assumed to depend on the values of other real-

valued variables x = (x1, ..., xd). Assume that each past observation j is a

vector (x1
j , ..., x

d
j , yj) ∈ Rd+1, j = 1, ..., t − 1. A new datapoint xt ∈ Rd is

given. How should we estimate the density of y given xt?

Assume that there exists a function S : Rd × Rd → R++, where S(xt, xj)

measures the degree to which data point xt ∈ Rd is similar to data point

xj ∈ Rd, and a kernel function K : R → R+, i.e., a symmetric density

function which is non-increasing on R+. For a database
(
(x1

j , ..., x
d
j , yj)

)
j<t

,

consider the following formula,

ft(y) =

∑
j<t S(xj, xt)K(y − yj)∑

j<t S(xj, xt)
(15)

This formula is a (S-)similarity-weighted average of the kernel functions
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K(yj − y). Thus, each observation yj is thought of as inducing a density

function Kyj
(y) = K(yj−y) centered around yj. These density functions are

aggregated so that the weight of K(yj − y) in the assessment of the density

of yt is proportional to the degree that the data point xj is similar to the

new data point xt.

Two special cases of (15) may be of interest. First, assume that S is

constant. This is equivalent to suggesting that all past observations are

deemed equally relevant. In this case, (15) boils down to classical kernel

estimation of the density f (ignoring the variables x = (x1, ..., xd)). Another

special case is given by S(xt, xj) = 1{xt=xj}.
4 In this case, (15) becomes a

standard kernel estimation of f given only the sub-database defined by xt.

Thus, formula (15) may be viewed as offering a continuous spectrum between

the unconditional kernel estimation and conditional kernel estimation given

xt.

In this section we justify the formula (15) on axiomatic grounds and

develop a procedure for its estimation. We start with the axiomatic model,

considering the estimated density as a function of the database. We then

proceed to interpret the formula we obtain as a data-generating process.

This implies that the functions S and K, whose existence follows from the

axioms, can be viewed as unknown parameters of a distribution, and thus

4We assume that the function s is strictly positive. This simplifies the analysis as one
need not deal with vanishing denomintaors. Yet, for the purposes of the present discussion
it is useful to consider the more general case, allowing zero similarity values. This case is
not axiomatized in this paper.
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as the object of statistical inference. We proceed to develop the statistical

theory for the estimation of these functions.

6.1 Axiomatization

Let F be the set of continuous, Rieman-integrable density functions on R.5

Let C = Rd+1 be the set of possible observations. C may be an abstract set

of arbitrarily large cardinality. A database is a sequence of cases, D ∈ Cn for

n ≥ 1. The set of all databases is denoted C∗ = ∪n≥1C
n. The concatenation

of two databases, D = (c1, ..., cn) ∈ Cn and E = (c′1, ..., c
′
t) ∈ Ct is denoted

by D ◦ E and it is defined by D ◦ E = (c1, ..., cn, c
′
1, ..., c

′
t) ∈ Cn+t. Observe

that the same element of C may appear more than once in a given database.

Fix a prediction problem, xt ∈ Rd. We suppress it from the notation

through the statement of Theorem 1. For each D ∈ C∗, the predictor has a

density f(D) ∈ F reflecting her beliefs over the value of yt in the problem

under discussion. Thus, we study functions f : C∗ → F , and our axioms will

take the form of consistency requirements imposed on such functions.

For n ≥ 1, let Πn be the set of all permutations on {1, ..., n}, i.e., all

bijections π : {1, ..., n} → {1, ..., n}. For D ∈ Cn and a permutation π ∈ Πn,

let πD be the permuted database, that is, πD ∈ Cn is defined by (πD)i =

Dπ(i) for i ≤ n.

We formulate the following axioms.

A1 Order Invariance: For every n ≥ 1, every D ∈ Cn, and every

5Our results can be extended to Rm with no major complications.
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permutation π ∈ Πn, f(D) = f(πD).

A2 Concatenation: For every D,E ∈ C∗, f(D ◦ E) = λf(D) + (1 −

λ)f(E) for some λ ∈ (0, 1).

Almost identical axioms appear in Billot, Gilboa, Samet, and Schmeidler

(2004). They deal with probability vectors over a finite space, rather than

with densities. In their model, for every database D there exists a probability

vector p(D) in a finite-dimensional simplex, and the axioms they impose are

identical to A1 and A2 with p playing the role of f .

The Order Invariance axiom states that a permuted database will result

in the same estimated density. This axiom is not too restrictive provided

that the variables x = (x1, ..., xd) specify any relevant information (such as

the time at which the observation was made). The Concatenation axiom

has the following behavioral interpretation. Assume that, given database D,

an expected utility maximizer has to make decisions, where the state of the

world is y ∈ R, and assume that her beliefs are given by the density f(D).

The Concatenation axiom is equivalent to saying that, for any integrable

bounded utility function, if act a has a higher expected utility than does act

b given each of two disjoint databases D and E, then a will be preferred

to b also given their union D ◦ E. Equivalently, the Concatenation axiom

requires that, for any two integrable bounded functions ϕ, ψ : R → R, if the

expectation of ϕ(y) is at least as large as that of ψ(y) given each of two

disjoint databases D and E, then this inequality holds also given their union

D ◦ E. This axioms is a variation of the Combination axiom in Gilboa and
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Schmeidler (2003), where it is extensively discussed.

The following theorem is an adaptation of the main result of Billot et al.

(2005) to our context.

Theorem 1 Let there be given a function f : C∗ → F . The following are

equivalent:

(i) f satisfies A1 and A2, and not all {f(D)}D∈C∗ are collinear;

(ii) There exists a function f : C → F , and a function S : C → R++

such that, for every n ≥ 1 and every D = (c1, ..., cn) ∈ Cn,

f(D) =

∑
j≤n S(cj)f(cj)∑

j≤n S(cj)
.

∗ (16)

Moreover, in this case the function f is unique, and the function S is

unique up to multiplication by a positive number.

Recall that the discussion has been relative to a new datapoint xt, and

that cj = (x1
j , ..., x

d
j , yj). Abusing notation, we write (xj, yj) for (x1

j , ..., x
d
j , yj).

Thus, an explicit formulation of (∗) would be

f(D, xt)(y) =

∑
j≤n S ((xj, yj), xt) f((xj, yj))(y)∑

j≤n S ((xj, yj), xt)
. (17)

We interpret this formula as follows. Let S ((xj, yj), xt) be the degree to

which past observation (xj, yj) is considered to be relevant to the present
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datapoint xt. We would like to think of this degree of relevance as the

similarity of the past case to the present one. Let f((xj, yj))(y) be the value

of the density function, given a single observation (xj, yj), at the point y.

Then, given database D, the estimated density is y is a similarity-weighted

average of the densities f((xj, yj))(y) given each past observation, where

more similar observation get proportionally higher weight in the average.

We now make the following additional assumptions: (i) the similarity

function depends only on the variables x = (x1, ..., xd), thus, S ((xj, yj), xt) =

S (xj, xt); (ii) the density function f((xj, yj))(y) does not depend on xj, i.e.,

f((xj, yj))(y) = f(yj)(y); and (iii) the density f(yj)(y) is a non-increasing

function of the distance between yj and y, that is, f(yj)(y) = K(yj −y) for a

kernel function K ∈ F .6 Under these assumptions, (16) boils down to (15).

6.2 Statistical Analysis

In this sub-section we consider a data generating process that is governed

by the similarity function S : Rd × Rd → R++ and the kernel function

K ∈ F . Assume that (x1
1, ..., x

d
1, y1) has been observed, and consider n ≥ 1.

Given observations
(
(x1

j , ..., x
d
j , yj)

)
j≤n

, and (x1
n+1, ..., x

d
n+1), assume that yn+1

is distributed according to the density

fn+1(y) =

∑
j≤n S(xn+1, xj)K(y − yj)∑

j≤n S(xn+1, xj)
(18)

6These simplifying assumptions can be written in terms of axioms on f : C∗ → F .
However, this translation is straightforward and therefore omitted.
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We take a parametric approach to the estimation of (17). Specifically,

assume that

S(xt, xj) = e−dw(xt,xj)

where, as above,

dw(xt, xj) =
∑
l≤d

wl(x
l
t − xl

j)
2

for weights wl > 0.

Assume further that

K(ξ) =
1√
2πσ

e−( ξ
σ )

2

for σ > 0.

It follows that, given the first observation (x1
1, ..., x

d
1, y1), we may write the

likelihood function defined by (17), and this function will depend on d + 1

parameters, (w1, ..., wd, σ).

7 Discussion
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8 Appendix: Proof of Theorem 1

The necessity of the axioms is straightforward. We now prove sufficiency.

Consider the sequence of partitions of R defined by

Πm = {(−∞,−m), [m,∞)} ∪

{ [T +
l

2m
, T +

l + 1

2m
|

−m ≤ T ≤ m− 1,

0 ≤ l ≤ 2m − 1 }

Thus, Πm contains m2m+1 +2 intervals, of which two are infinite. For f ∈ F ,

let fm be the distribution induced by f on Πm. Specifically, for A ∈ Πm,

fm(A) =
∫

A
f(y)dy. Observe that, for every f ∈ F , max{fm(A) |A ∈ Πm} →

0 as m→∞.

Fix Πm and consider fm(D) for D ∈ C∗. Observe that fm satisfies the

axioms of Billot et al. (2004). Hence for every m ≥ 1 there exists a function

Sm : C → R++ such that, for every n ≥ 1, every D = (c1, ..., cn) ∈ Cn, and

every A ∈ Πm,

fm(D)(A) =

∑
j≤n Sm(cj)fm(cj)(A)∑

j≤n Sm(cj)
. (19)

It follows that (18) holds also for every event A that is Πm-measurable.

Consider two consecutive partitions, Πm and Πm+1. Since every event A ∈

Πm is also Πm+1-measurable, we conclude that , for every n ≥ 1, every
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D = (c1, ..., cn) ∈ Cn, and every A ∈ Πm,

fm+1(D)(A) =

∑
j≤n Sm+1(cj)fm+1(cj)(A)∑

j≤n Sm+1(cj)
. (20)

However, fm+1(D)(A) = fm(D)(A) =
∫

A
f(D)(y)dy and fm(cj)(A) =

fm+1(cj)(A) =
∫

A
f(cj)(y)dy. Combining these with (18) and (19) we con-

clude that Sm+1 can replace Sm in (18). By the uniqueness result of Billot

et al. (2004), Sm+1 is a multiple of Sm. Without loss of generality, we may

assume that Sm+1 = Sm. Thus, these exists a function S : C → R++, and,

for each c ∈ C, a density f(c) ∈ F , such that, for every m ≥ 1, for every

n ≥ 1, every D = (c1, ..., cn) ∈ Cn, and every A ∈ Πm,

fm(D)(A) =

∑
j≤n S(cj)f(cj)(A)∑

j≤n S(cj)
. (21)

Next consider an arbitrary finite interval (u, v) (where −∞ ≤ u < v ≤

∞). Observe that, for every n ≥ 1 and every D = (c1, ..., cn) ∈ Cn,

f(D)((u, v)) = lim
m→∞

∑
{A∈Πm|A⊂(u,v)}

fm(D)(A)

= lim
m→∞

∑
{A∈Πm|A⊂(u,v)}

∑
j≤n S(cj)f(cj)(A)∑

j≤n S(cj)

= lim
m→∞

∑
j≤n

S(cj)∑
j≤n S(cj)

∑
{A∈Πm|A⊂(u,v)}

f(cj)(A)
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=
∑
j≤n

S(cj)∑
j≤n S(cj)

lim
m→∞

∑
{A∈Πm|A⊂(u,v)}

f(cj)(A)

=
∑
j≤n

S(cj)∑
j≤n S(cj)

f(cj)((u, v))

hence (∗) is proved.

Finally, the uniqueness of f is obvious, and the uniqueness of S (up to

multiplication by a positive number) follows from the uniqueness result in

Billot et al. (2004). �
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