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We examine the case of a two-person repeated game played by a boundedly 
rational player versus an unboundedly rational opponent. The former is restricted 
to strategies which are implementable by connected finite automata. It is shown 
that the “rational” player has a dominant strategy, and that in some cases the 
“weaker“ (boundedly rational) player may exploit this fact to “blackmail” him. It 
is also shown that for a repeated zero-sum game, the rational player has a strategy 
which drives the automaton player’s limit payoff down to his security (maxmin) 
level, even if he may choose any finite automaton. 0 19X9 Academic Press. Inc. 

I. INTRODUCTION 

The concept of bounded rationality (or “limited rationality”), originally 
introduced by Simon (1972, 1978), and also discussed in Radner (1986), 
was recently formalized for the case of repeated games using the model of 
a finite automaton. (See Aumann (1981), Rubinstein (1986), Neyman 
(1985), Kalai and Stanford (1985, 1988), and others.) 
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The very notion of boundedness invokes quantitative and comparative 
questions. For instance, if one has a certain measure of rationality, it 
makes sense to ask which of the players in the game is “more rational.” 
We also have a particular interest in situations of asymmetric rationality, 
which were also discussed in Neyman (1985) and Ben-Porath (1985). In 
both papers, each player is restricted to choosing finite automata not 
exceeding a certain size where their bounds differ from each other (Ben- 
Porath discussed only zero-sum games). 

In this paper we examine a qualitative rather than quantitative differ- 
ence in players’ rationality, namely, a case in which one player is re- 
stricted to the choice of a finite automaton (of arbitrary size), while the 
other is not. 

We further restrict the set of strategies of the boundedly rational player: 
we shall assume that the automata among which he has to choose are only 
those which are “connected” in the following sense: for any pair of states 
of the automaton (which are to be thought of as “states of mind”) there 
exists a sequence of moves of the opponent, such that, beginning at the 
first state, the automaton will end up at the second. The intuitive meaning 
of connectedness is the absence of dramatic, irrevocable moves; regard- 
less of the past, there is always hope for any possible future. In particular, 
this assumption excludes “vengeful” strategies; however “angry” the 
automaton may be, it can always be appeased. 

We note that the set of connected automaton strategies is (strictly) 
larger than that of bounded-recall strategies studied by Aumann and Sorin 
(1989) and Lehrer (1988a,b). It turns out that, in general, the automaton 
player can exploit his weakness and use a “blackmail” strategy, thus 
gaining all the surplus of cooperation: since it is common knowledge that 
he is only boundedly rational while his opponent is “stronger” (in the 
sense of “unbounded rationality”), he can use a reliable threat, while it is 
advisable for the rational player-who is known to be “wise” enough to 
understand the threat and to be able to choose the best response to it-to 
comply with the scheme the automaton dictates. This weakness is not, 
and cannot be interpreted as, a matter of strategic choice. A player com- 
monly known to be rational cannot choose to forego a subset of his 
strategies and simulate a weaker player. 

At this point one should note that although instances of the “tyranny of 
the weak” phenomenon are well-known, our results characterize a gen- 
eral type of weakness which turns out to be beneficial in all repeated 
games. To illustrate this point, let us consider the “battle of the sexes” 
game given by the following matrix: 

Player II 

Player I 
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Note that the game is symmetric, so that there is no way to explain the 
choice of either of the two pure strategy equilibria (T,L) and (BJ?) (neither 
in the framework of one-shot games nor in that of repeated ones). How- 
ever, if we introduce rationality asymmetry, and assume that (only) one of 
the players, say, Player I, is restricted to connected finite automata strate- 
gies, there is only one “reasonable” equilibrium: the automaton player 
may safely choose an automaton which always plays T. Player II is clever 
enough to understand player I’s threat (“I’ll play T even if you play R, so 
you’d better play L”), and to realize he has no choice (but playing L). 
Player II may, of course, threaten to choose R, no matter what his oppo- 
nent does, But he has no way of making this threat reliable; it does not 
matter how loudly he promises to play R, nor how solemn are the oaths he 
takes: it will always be common knowledge that at the very last moment 
he can switch back to a more flexible strategy complying with Player I’s 
stubborn behavior. 

Indeed, “conventional wisdom” predicts the outcome (T,L) if Player I 
announced first that he would play T, provided he has some reputation for 
being “stubborn.” But this argument, which resembles ours on the intui- 
tive level, remains out of the model of the game. (See, for example, Lute 
and Raiffa (1957).) In our model we formalize the notion of “stubborn- 
ness” and we do not resort to preplay communication: the automaton 
player does not have to announce what his choice is going to be: he simply 
chooses it, and lets the rational player learn what it is. 

It will turn out to be a dominant strategy for the rational player to find 
out what automaton he is playing against since this automaton is known to 
be forgiving (i.e., connected). Otherwise, the experimentation itself may 
be a fatal mistake, an offense never to be condoned by the automaton. 
Therefore, in the absence of connectedness, the results described above 
do not have to hold. 

The remainder of this paper is organized as follows. In Section 2 we 
introduce the formal model and state the results. The proofs of these are 
to be found in Section 3. Finally, Section 4 contains some brief remarks 
regarding extensions to mixed strategies spaces. 

2. FRAMEWORK AND RESULTS 

We consider two-person games with players denoted as Player a (for 
automaton) and Player r (for rational). A stage game consists of two finite 
and nonempty action sets S, and S, and two payofffunctions u,, u,: S -+ Iw 
where S = S, x S,. The infinitely repeated game G” consists of two 
strategy sets x:,” and x: and two payoff functions, 7~, and mTTr, which we 
now proceed to define. 

A history of player i of length k for i E {a, r} and k 2 1 is an element of 
the Cartesian product Sf. We define a unique history (of either player) of 
length zero denoted by A. A strategy for player i (i E {a, r}) is a function u 
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from the set of all histories of the other player into S;. c? will be the set of 
all strategies of Player r. However, Player a will be restricted to “automa- 
ton strategies.” In order to define these, we first define an automaton: 

An automaton A of Player a is a quadruple, A = (Q, qO. 6, A), where: 

(1) Q is a finite and nonempty set of states; 
(2) q. E Q is the initial state: 
(3) 6: Q x S, -+ Q is the transition function; 
(4) A: Q -+ S, is the behauiorfunction. 

The transition function 6 can be extended (in a natural way) to the set of 
all pairs (q, h,)-where q E Q and h, is a history of Player r-as follows: 
6(q, A) = q for all q E Q, and for k 2 1 and h, = (s:, s?, . . . , ~3 let 6(q, 
($7 . * . 5 sf)) = 6(6(q, (sf, . . . 1 sf-’ )), s!). It follows from this definition 
that for each j < k, 6(q, (sf, . . . , s:)) = 6(6(q, (sf, . . . , s’,>), (sj,“, 
. . . ) d>>. 

An automaton strategy induced by the automaton A = (Q, qo, 6, A) is 
the strategy (YA (for Player a) defined by aA = h@(qo, h,)) for each 
history h, of Player r. (We also say that (YA is computed or defined by A.) 

We now define connected automata. Given an automaton A = (Q, qo, 6, 
h), and given two states q, 4 E Q, we say that q is accessible from q (and 
write q += 4) if there exists a history h, such that 6(q, h,) = 4. (Note that 
accessibility is a reflexive and transitive binary relation on Q.) Two states, 
q and 4, are mutually accessible (denote by q t) S) if both q + 4 and S --j 
q. (Note that mutual accessibility (*) is an equivalence relation on Q.) 
The automaton A is said to be connected if all the states in Q are mutually 
accessible. (That is, Q is an equivalence class of *.> In this case, the 
strategy (YA will also be said to be “connected.” 

The set of strategies of Player a, xz is the set of connected strategies, 
i.e., those defined by connected automata. 

We now define the payoff functions rra and 7~~. We begin with the 
following definition: a path p in G” is a sequence (s&t where sk E S for 
each k. Any two strategies, oa and ur of Players a and r, respectively, 
define a path in G”, denoted by P(aa, CJ = (Pk(~,, ur))kkl, as follows: 
P,((Y,, or) = (u,(A), a,(h)) and for k > 1 let P~(cT~, CT,) = (a,((sj,>fL{), 
u,((s~)jk_;) where (sj,, s() = Pj(u,, uJ for 1 ‘j < k. We now define 7~,, 7~~: 
x:xCy+Rby 

niTi((Y, U) = liminf (Ilk) i u;(Pj(a, u)) 
j=l 

for i E {a, r}. This completes the definition of G”. 
A strategy u E 2: is dominant if T~((Y, CT) 2 v~((Y, a’) for each a E x$ 

and u’ E Cf’. 
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We are now equipped to phrase our first result: 

THEOREM A. For each game G there is a dominant strategy of the 
rational player, (Td E xy, such that for each a E cf, limk+,, (Ilk) x;=i 
Ui(Pj(a, (Td)) exists for i E {a, r} (hence equaling ~T;((Y, ad)). Moreouer, 
there exists an algorithm computing (Td as a function of G. 

We next turn to study the equilibria resulting when the rational player 
uses one of his dominant strategies defined above. 

A pair of strategies, (a, V) E x:,” x x:, is an E-equilibrium for E 2 0 if 
for each o? E x.,” it is true that T~((Y, g) 2 ~,(a!‘, a) - E, and for each g’ E 
Ef we have T&(Y, a) 2 ~,.(a, a’) - E. A O-equilibrium will also be called an 
equilibrium. 

Now denote by u, the individually rational payoff Player r in pure 
strategies, that is: 

ur = min max u,(s,, s,). 
s&s, &ES, 

Let C be the convex hull of the set of cooperatively feasible payoffs 
&4+(sL 4(s))Is E Sl. 

Let w, denote the maximal payoff for Player a (in mixed strategies), 
which is feasible, subject to the restriction that his opponent is kept above 
his individually rational payoff, i.e., 

w, = max(x(3 y s.t. (x, y) E C and y 2 u,}. 

We now have: 

THEOREM B. Assume thatfor some s E S, u,(s) > vF. Then for any E > 

0 and any dominant strategy of Pluyer r, Cd, there exists an E-equilibrium 
(a, Ud) in G” and for each such s-equilibrium 

Moreover, $for some s E S, u,(s) = w, and u,(s) > t..+, then for each 
dominant strategy of Player r, ud, there exists an equilibrium (a, ad) in 
G”, and for each such equilibrium ~T,((Y, (Td) = w,. 

We now turn to the case in which the automaton player is not restricted 
to connected automata. Let x: be the set of all strategies induced by the 
finite automata, and denote by cm the repeated game in which Player a’s 
strategy set ‘cf is replaced by xz. As we noted in the Introduction, there 
are no dominant strategies for the rational player in this case. Yet Player r 
has a “strong” strategy which guarantees him his individually rational 
payoff for any strategy of his opponent. Moreover, that strategy is recur- 
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sive and the algorithm that computes it does not depend on the stage 
game. 

THEOREM C. There exists an algorithm which computes, for euch 
gume G given as datum, a strategy ur E 2: such that ~~(a’, a,) L u, for 
each (Y E Ef. Moreover, the sequences of uverage payoffs (for both 
players) generated by (Y und CT, converge.for any LY. 

We shall use this result in the analysis of the cases in which there are no 
mutual benefits from cooperation, i.e., the case of zero-sum games. Note 
that for this class of games, the individually rational payoff of Player r (v,) 
is exactly the security level of Player a in pure actions. In other words, 
this is the minimal loss Player a can assure himself by choosing a pure 
action. We therefore obtain the following result: 

THEOREM D. If G is a zero sum game, then the values of the games 
G” and e exist, and they are both equal to the security level of Player a 
in pure actions (v,). 

Clearly, the lack of cooperation opportunities is detrimental to the au- 
tomaton player, since his weakness cannot be exploited in a purely com- 
petitive game. 

Results similar to Theorem D were obtained by Ben-Porath (1985) for 
two-automaton players (in a zero-sum game), where each player has a 
bound on the number of states his automaton uses, and the bound of one 
of them is relatively large enough. 

We note that our results do not extend to n-person games. Of course, if 
more than one player is unboundedly rational, there is no reason for us to 
expect that any of them will have a dominant strategy. However, even if 
we assume only one of the players to be a rational player (while all the 
others are restricted to connected automata), our results no longer hold. 
Indeed, (n - 1) finite automata may be simulated by a single one, thus 
reducing the n-person game to a two-person game. But the simulating 
automaton need not be connected. In fact, one may easily find examples 
of connected automata which, playing together against another player, 
implement a “vengeful” strategy. 

3. PROOFSOFTHETHEOREMS 

For brevity, we will only sketch the proofs. More complete versions are 
to be found in Gilboa and Samet (1987). 

3.1. Proof of Theorem A. We begin with two simple observations 
which will be given without proof. 

Given two automata, A = (Q, qo, 6, X) and A’ = (Q’, q& a’, A’) (for 
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player a in G”), and a history h, of Player r, A and A’ are equivalent with 
respect to (w.r.2.) h, if for any other history h, we have h(6(qo, h, 0 h,)) = 
h’(6’(q& h, 0 h,)) where 0 denotes string concatenation. 

LEMMA 1. Let A = (Q, q,,, 6, A) and A’ = (Q’, q;1, 6’, A’) be two 
automata and let h, be a history of Player r. If A and A’ are not equivalent 
w.r.t. h,, then there exists a history of Player r, h,., of length Max(lQl, [Q’l) 
or less, such that h(6(q0, h, 0 h,)) f A’(6’(q& h, 0 6,)). 

The second lemma states that there exists an algorithm which, given an 
automaton (as input datum), computes a best strategy against it in the 
repeated game. To be both more specific and more precise, let us define 
for an automaton A = (Q, qn, 6, A) in a game G” a cycle of length k to be 
the ordered pair ((s;, . . . , st), (q,, . . . , q”)) where (s:, . . . , sf) is a 
history of Player r and (q,, . . . , q/‘) is a sequence of disjoint states in Q, 
such that S(q’, sj,) = qj+, for I ~j 5 k and 6(qx, s:) = q,. Clearly, a length 
of a cycle cannot exceed lQ[. We may now state 

LEMMA 2. There exists an algorithm which, given a stage name G and 
an automaton A = (Q, qo, 6, A) as data, computes a cycle ((sf, . . . , sf), 
(q’, . . . ? 4”)) such that maxVEx:; T~((Y~, (T) = (Ilk) xj=, u,(A(qj), s’,). 

We now turn to describe the algorithm of Theorem A. Let there be 
given a stage name G, and let {A,},,, be an effective enumeration of 2,“. 

Our algorithm operates as follows. There are infinitely many phases, 1, 
2 . . . At phase n the algorithm has a putative opponent x,(x, = A,); 
it’plays against it optimally (according to Lemma 2) for k, stages of the 
repeated game (where k, will be specified in the sequel) and considers the 
next automaton, A,,,. It compares A, and A,,,. If A,+, is inconsistent 
with the history played so far, denoted h,, or is equivalent w.r.t. h, to A,,, 
it sets A,,, = A,,. Otherwise it plays a sequence of moves that would 
distinguish between the two (according to Lemma I). If A, is inconsistent 
with Player a’s moves it sets A,+, = A,,+,, otherwise A,+, = A,,. 

It is only left to set k, to be n . H,, where Hn is the number of stages 
played until now (i.e., the length of h,), plus the number of stages that will 
be required to distinguish between the current guess, A,,, and the next 
candidate, A,,+, . 

It is obvious that this algorithm obtains the maximal payoff (and that 
the sequence of payoffs converges) for every actual opponent. n 

3.2. Proof of Theorem B. Given E > 0 construct an &-equilibrium as 
follows: choose a cycle of moves with an average payoff (x, y) where x z- 
W, - E and y > u,. Consider an automaton that plays this cycle if Player r 
does, but otherwise retaliates by long (but finite) punishment moves, 
yielding the payoff u, to Player r. Thus, an automaton may be connected 
even though it threatens to punish Player r for long enough periods for 
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Player r to comply with the dictated cycle. Since Player a may choose 
strategies that yield him a payoff arbitrarily close to w, (for any dominant 
strategy of his opponent), it follows that any e-equilibrium (CX, ud) must 
satisfy w, - F i 7rJf-1, cd) 5 w,. 

As for the “moreover” part, assume that there is a s E S such that U,(S) 
= \v, and U,(S) > u,. Choose a cycle consisting of s alone. The automaton 
defined by this one-element sequence will be in equilibrium with any 
dominant strategy (TV, and will yield Player a the average payoff, w,. n 

The proof of Theorem C is very similar to that of Theorem A, and 
Theorem D follows immediately. 

4. POSSIBLE EXTENSIONS TO MIXED STRATEGIES 

In the previous analysis we assumed that the boundedly rational player 
is restricted to choose a pure strategy implementable by a connected finite 
automaton. One may wonder to what extent do the results depend on the 
pure strategy assumption. 

First, we note that the results hold even if the automaton player is 
allowed to randomize over connected automata: a dominant strategy ud of 
the rational player will still be dominant, since whatever is the automaton 
chosen by the opponent’s mixed strategy, o’d will end up playing optimally 
against it. 

The analysis becomes more sophisticated if we allow the automata to 
be random themselves. This can be done by introducing random behavior 
functions, random transition functions, or both. We will assume that ran- 
dom behavior and/or transition functions are defined by rational probabili- 
ties, so that the set of automata remains countable. 

If the transition function is deterministic, the results may be easily 
adapted: when a dominant strategy compares two possible automata it 
may not necessarily be able to exclude one of them, but it can do so with 
arbitrarily small probability of being wrong. Thus c-dominant strategies 
surely exist. In fact, by reconsidering “excluded” automata with a de- 
creasing sequence of “arbitrarily small” probabilities one can also 
achieve optimality. 

The case of a random transition function is more complicated. Without 
loss of generality one may assume that the behavior function is determi- 
nistic, since a random-behavior automaton may be simulated by a deter- 
ministic-behavior one (with more states). However, the comparison of 
such automata is more complicated because the comparing algorithm 
does not know at which state each automaton is (assuming it is the actual 
opponent); rather, it has a distribution over the automaton’s states. Also, 
the computation of an optimal strategy (against a specific opponent) is no 
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longer straightforward. We conjecture that our results have natural equiv- 
alents in this case as well, but this analysis is beyond the scope of this 
paper. 
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