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1. Introduction

The iterative elimination of strongly dominated strategies can be justified by
common knowledge of rationality. Rationality in this context means that players
do not play strategies which are strongly dominated in a game they know they
play. Indeed, each iteration of elimination of strongly dominated strategies seems
to correspond to an iteration of mutual knowledge, that is, an iteration of “all know
that”. Thus, the first round of elimination is justified by rationality. The second
is justified by mutual knowledge of rationality, the third, by mutual knowledge of
mutual knowledge of rationality and so on.

The example in Section 2 demonstrates that for games with an infinite number
of strategies the said correspondence may fail to hold. For common knowledge, only
the infinitely many finite iterations of “all know that” are required. In contrast,
elimination of strongly dominated strategies may require transfinite iterations, that
is, eliminations made after all the finite rounds of elimination. This result is puz-
zling. On one hand, it seems plausible that common knowledge of rationality cannot
hold if the transfinite process of elimination is not completed. On the other hand,
the finite iterations of “all know that” culminate in common knowledge of rational-
ity before the task of elimination is exhausted. Common knowledge of rationality
seems to sluggishly follow the process of elimination of strongly dominated strate-
gies, which is carried on vigorously beyond all finite rounds.1

One is tempted to continue transfinitely the iteration of mutual knowledge. In-
deed, Barwise (1988) showed that in a non-well-founded set theoretic model, com-
mon knowledge is reached after transfinite iterations of mutual knowledge. Also,
Heifetz (1999) showed that in infinitary logic common belief requires a transfinite
sequence of iterations of mutual belief. However, the puzzling phenomenon demon-
strated here and in Lipman (1994) is presented in standard set theoretic terms and
simple finitary language. In such a setup mutual knowledge of rationality of all
finite order does define common knowledge of rationality, and no transfinite steps
are required.

We show that the failure to derive the transfinite process of iterative elimination
of strongly dominated strategies by the finite iterations of “all know that” is due to
the inadequacy of the proof and not to the notion of common knowledge. Common
knowledge of rationality is perfectly captured by the finite iterations of mutual
knowledge on one hand, and on the other hand it does imply the transfinite process
of elimination of strongly dominated strategies.

1Lipman (1994) presented a similar phenomenon in the more elaborate probabilistic context of

rationalizability, where strategies that are not best response are eliminated iteratively (Bernheim,
1984; Pearce, 1984).

1



2 DOV SAMET

0 1 2 3 4 · · · a b
0 0 0 0 0 0 · · · 0 0
1 1 1 1 1 1 · · · 1 1
2 0 2 2 2 2 · · · 2 2
3 0 0 3 3 3 · · · 3 3
4 0 0 0 4 4 · · · 4 4
...

...
...

...
...

...
...

...
...

a 1 2 3 4 5 · · · 0 0
b 0 1 2 3 4 · · · 1 1

Figure 1. Player 1’s payoff matrix in a two-player symmetric game

2. An example

Consider player 1’s payoff matrix in a two-player symmetric game depicted in
Figure 1, where the set of strategies of each player is {0, 1, 3, . . . , a, b}.2 For i ≥ 0,
let Si = {i, i+1, . . . , a, b}. Note, that the matrix of the game with a set of strategy
profiles Si×Si can be obtained from the original matrix by adding i to each of the
payoffs except for the payoffs of a player when she plays a or b, which remain the
same.

The only dominated strategies in the game are the strategies 0 of both play-
ers, as these strategies are strongly dominated by the strategies 1. When the 0
strategies are eliminated we are left with the matrix (S1)2. By the comment in the
previous paragraph, the only dominated strategies in this matrix are strategies 1
of each player. Repeating this elimination successively we eliminate all strategies
i ∈ {0, 1, . . . } of both players. The remaining matrix is {a, b}2. Here, strategy a of
both players is strongly dominated by b. Hence, the process continues for one more
round, round ω, which comes after all finite rounds. The process ends in round ω
with the profile {b}2.

We now review the process in terms of common knowledge of rationality. When
players are rational they do not play strategy 0. Thus, the game played is given by
the matrix (S1)2. If the players know that they are rational, then they know that
the game is given by this matrix, and being rational they do not play strategy 2,
and the game played is given by the matrix (S2)2. If they know that they know that
they are rational, then they know that this is the matrix of the game, and being
rational they do not play strategy 3. Common knowledge of rationality means that
the players know that they are rational (and hence they are rational), and that they
know that they know that they are rational and so on. Thus common knowledge
of rationality implies the successive elimination of all strategies {0, 1, 2, . . . }. In-
deed, each iteration of mutual knowledge, in the definition of common knowledge,
corresponds, as we have seen, to an iteration of elimination of strongly dominated
strategies.

The argument that accompanies the process shows that when rationality is com-
mon knowledge then the players face the game with the matrix {a, b}2. The finite
iterations of mutual knowledge that amount to common knowledge of rationality

2The payoffs in this game are unbounded. But the process of elimination will be the same

if each payoff i is replaced by a number ai such that the sequence ai is strictly increasing and
bounded.
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seem to be out of sync with the iterations of the elimination of strongly domi-
nated strategies. Common knowledge is achieved after all the finite iterations of
“all know that”, while the elimination of strongly dominated strategies requires
one more round of elimination, round ω, which comes after all the finite rounds. It
is hard to accept that common knowledge of rationality implies only that players
know that they are playing either a or b. If they know, they surely will not play
a. However, common knowledge of rationality seems to be achieved before a is
eliminated.

One is tempted to say that this example shows that common knowledge of ra-
tionality is not attained after all the finite iterations of knowledge and one more
iteration is required. But as we will see, when knowledge is formally defined, com-
mon knowledge is achieved after all finite iterations of mutual knowledge. The
failure to prove that common knowledge implies the elimination of a is a failure of
the proof, not of the non-transfinite nature of common knowledge. We will prove
that common knowledge of rationality does imply the elimination of a, and explain
why the suggested proof above fails to show it.

3. The puzzle formally reproduced

We now examine the relation between common knowledge of rationality and the
iterative elimination of strongly dominated strategies in a formal setup.

Iterative elimination of strongly dominated strategies. We consider a two-
player game with strategy sets S1 and S2. The analysis of games with many players
is similar. We refer to any set of strategy profiles S′ = S′

1 × S′
2, where S′

i ⊆ Si for
i = 1, 2, as a game or a subgame of S.

Consider a weakly decreasing sequence of games Sα = Sα
1 × Sα

2 starting with
S0 = S1×S2, where α ranges over all ordinals with cardinality which does not exceed
the cardinality of the set of strategy profiles. Such a sequence is a process of iterative
elimination of strongly dominated strategies if it satisfies the following conditions.
For each ordinal β, if the game S<β = (∩α<βS

α) has dominated strategies then
Sβ is obtained by eliminating one or more such strategies from S<β .3 If the game
S<β does not have any dominated strategy, then Sβ = S<β . The game ∩αS

α is the
game that survives the whole sequence of eliminations and it is called the terminal
game of the process.4

Models of knowledge. In order to formalize notions of knowledge, we consider
a state space the subsets of which, called events, corresponding to sentences that
are used to discuss the game. We assume that for each state there is a specification
of the strategy played at the state by each of the players. Thus, the event that
the strategy profiles played by the players are in the game S′ is well defined. We

3If β is not a limit ordinal, then β = γ + 1, and due to the monotonicity of the sequence, the
game S<β is Sγ

1 × Sγ
2 .

4The order of elimination in finite games is known to be independent of the order of elimination.
But in infinite games the order does matter. Consider, for example, a game in which player 1’s
strategy set is {0, 1, 2, . . . }, and suppose that when she plays n her payoff is n independently of

the second player. We can eliminate in the first round all strategies of player 1, but one of them.
The strategy which is not eliminated is now the terminal game. This example shows also that
unlike finite games, in infinite games the terminal game may be empty. We can eliminate in the

first round all of player 1’s strategy. Dufwenberg and Stegeman (2002) provided conditions that
guarantee order independence of such processes.
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denote this event by [S′]. Knowledge is introduced by operators Ki for each player
i, such that for any event E, KiE is the event that i knows E.5 We skip the
details of the construction of the state space, which is documented in numerous
publications.6 Recall the following two properties of knowledge operators that we
use in the sequel.7

Distributivity : Knowledge distributes over conjunction. That is, for any family of
events (Ex)x∈X , Ki(∩xEx) = ∩xKiEx.

Truth: What is known is true. That is, for each E, KiE ⊆ A.

By applying distributivity to two events E ⊆ F we conclude straightforwardly
that KiE ⊆ KiF . Thus, knowledge operators are monotonic.

Common knowledge. We define an operator K of mutual knowledge which cor-
responds to the claim that all players know. Thus, for each E, KE = K1E ∩K2E.
The properties of distributivity, truth, and monotonicity of the individual knowl-
edge operators Ki are trivially inherited by the operator K.

Powers of K mean iteration of the phrase “all know”. Thus, K1E is simply KE,
and Kn+1E = KKnE. The event that E is common knowledge is CE = ∩n≥1K

nE.8

Rationality. For our purposes, rationality means that when all players know that
they are playing a game S′, and S′′ ⊆ S′ is obtained by eliminating strategies in
S′ that are strongly dominated in this game, then the strategy profile they play is
in S′′. Thus, rationality requires that either it is not the case that all the players
know that S′ is played, or else they must play a strategy profile in S′′. That is, for
rationality, ¬K[S′]∪ [S′′] must hold for each such pair S′ and S′′, and thus the event
that the players are rational is R = ∩S′,S′′¬K[S′] ∪ [S′′], where the intersection is
over all pairs S′ and S′′ such that the S′′ is obtained from S′ by elimination of
some strategies that are strongly dominated in S′.9

5We make all the definitions, claims, and proofs that follow, as close as possible to their
formulation in natural language or in a syntax of a well defined language. This is done by not
using the term “state”. Thus, although events and knowledge operators are set theoretic semantic
notions, they are used here in a way that makes it possible to translate them to natural language.

6Kripke models serve as set theoretic semantics of knowledge. In such models a set of states
is endowed with the binary relationship of accessibility for each player. Knowledge operators are
easily defined in Kripke models. The event KiE consists of each state from which only states in
E can be accessed. The partition model in Aumann (1976) is a Kripke model for a set of axioms

in the syntax, called S5, in which the accessibility relations are equivalence relations. There is
another class of models, based on Boolean algebras with operators. A set theoretic model with
operators Ki, as discussed here, is a Boolean algebra model for knowledge, where the algebra
consists of all subsets of the state space. A discussion of such models can be found in Samet

(2010). Boolean algebra models are more general than Kripke models and they are important for
the study of the relation between knowledge and belief (Halpern et al , 2009a,b).

7Knowledge operators in partition models also have two properties of introspection, positive
and negative. These properties are not required for the analysis of common knowledge that we
carry out here.

8Aumann (1976) introduced common knowledge in a set theoretic semantic model of partitions.
The event that E is common knowledge is the union of all elements of the meet of the players’
partitions that are contained in E.

9Rationality is defined here as the event R that all players are rational. Hillas and Samet

(2014) define the event Ri that player i is rational for each i, and define rationality as the event
R = ∩iRi. This definition of rationality of all players implies the definition given here.
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This formal presentation helps us to follow closely the argument made in the
example in Section 2, and reproduces the same puzzle: Common knowledge of ra-
tionality seems to imply only the finite rounds of elimination of strongly dominated
strategies.

Proposition 1. Common knowledge of rationality implies that the game being
played is the intersection of all finitely indexed games in the sequence. That is,

CR ⊆ [∩n<ωS
n].

Proof. It is enough to show that KnR ⊆ [Sn+1] for each finite n. We prove this by
induction on n.10 First, note that R ⊆ [S1]. This follows since R ⊆ ¬K[S0] ∪ [S1]
and ¬K[S0] = ∅.

We now prove the induction hypothesis for n = 1. As R ⊆ [S1], it follows by
monotonicity that KR ⊆ K[S1]. Thus, by truth, KR ⊆ R ∩ K[S1] ⊆ (¬K[S1] ∪
[S2]) ∩ K[S1] = [S2]. Suppose the hypothesis is proved for n/ Then Kn+1R =
KKnR ⊆ R ∩K[Sn+1] ⊆ (¬K[Sn+1] ∪ [Sn+2]) ∩K[Sn+1] = [Sn+2]. �

4. The solution

Evidence. We say that event E is an evidence of F if E implies that all know
F , that is, E ⊆ KF . An event E is self evident if it is an evidence of itself, that
is E ⊆ KE. Note that by the truth property, KE ⊆ E, and therefore E is self
evident when KE = E. That is, E is a fixed point of K, or equivalently, it is a
fixed point of all the individual knowledge operators Ki.

11 Self evident events are
formal rendering of situations in which all the players are present and each one
of them knows the description of the situation. We are interested in self evident
situations in which some fact becomes known to the players, like an announcement
of some fact in the presence of all players, such that they can describe the situation.
Formally such a situation is described by an event E which is self evident and is an
evidence of F , that is E ⊆ KE ∩KF .

The following proposition shows that a self evident event E which is an evidence
of F implies that F is commonly known. Such events seem to describe the simplest
situations, and perhaps the only ones that make a statement commonly known.
This proposition also shows that the event that F is commonly known is self evident
and it is an evidence of F . However, there can be other self evident events that are
evidence of F . Common knowledge of F is the largest event with this property.12

Proposition 2. A self evident event E which is an evidence of F implies common
knowledge of F , that is E ⊆ CF . Moreover, CF itself is self evident and an evidence
of E, and thus it is the largest, and hence the least informative event with these
properties.

10For simplicity, we assume that if the game is finite, the sequence Sn is defined for all n < ω.
Of course, this sequence is constant after some finite round.

11The semantic definition of common knowledge in Aumann (1976) is in the spirit of the fixed
point definition. An element of the meet is an event P which is the union of elements or each of
the players’ partitions. Hence P ⊆ KP .

12When knowledge is generated by a partition, then the event that F is commonly known is

the union of all the elements of the meet which are contained in F . A self evident event which is
an evidence of F is any union of elements of the meet which are contained in E.
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Proof. Assume that E ⊆ KE ∩ KF . We prove by induction on n that E ⊆ KnF ,
and thus P ⊆ CE. For n = 1 this follows from our assumption. Suppose that
E ⊆ KnF , then by monotonicity, KE ⊆ Kn+1F , and since per our assumption
E ⊆ KE it follows that, E ⊆ Kn+1F .

Obviously CF is an evidence of F , as CF ⊆ KF . To see that it is self evident, we
note that by distributivity, K(CF ) = ∩n≥2K

nF . However, as KF ⊆ F , K2E ⊆ KE,
and thus ∩n≥2K

nF = ∩n≥1K
nF . We conclude that CE = K(CE). �

The transfinite process of elimination of strongly dominated strategies is fully
captured when we view common knowledge of rationality as a self evident event
which is an evidence of rationality.

Proposition 3. If E is self evident and an evidence of rationality, then

E ⊆ [∩αS
α].

In particular,

CR ⊆ [∩αS
α].

Proof. Assume that E ⊆ KE ∩ KR. We prove by transfinite induction on α that
for each α, E ⊆ [Sα]. By the truth axiom and the definition of R, E ⊆ R ⊆
¬K[S0] ∪ [S1]. Since ¬K[S0] = ∅ it follows that E ⊆ [S1].

Suppose that E ⊆ [Sβ ] for all β < α. Then E ⊆ S<α, and by monotonicity,
KE ⊆ K[S<α]. Thus, E ⊆ R ∩KE ⊆ (¬K[S<α] ∪ [Sα]) ∩K[S<α] = [Sα]. �

5. The process of elimination is sluggish

By Proposition 3, for each terminal game S′, CR ⊆ [S′], and thus CR ⊆ ∩[S′] =
[∩S′], where the intersection is over all terminal games. However, the event that
∩S′ is played is not a sufficient condition for common knowledge of rationality.
Consider, for example, the game in Section 2. The subgame {b}2 is a terminal
game, indeed the only one. However, this game is incompatible with CR, because
CR is necessarily empty. To see this, note that as CR ⊆ [{b}2] and since KCR =
CR, it follows by monotonicity that CR = KCR ⊆ K[{b}2]. By monotonicity,
K[{b}2] ⊆ K[{b, 2} × {b}]. In the game {b, 2} × {b}, strategy 2 strongly dominates
b. Thus, CR ⊆ R ∩K[{b, 2} × {b}] ⊆ [{2} × {b}]. Therefore, CR is a subset of two
disjoint events, and hence CR = ∅.

We started with the puzzle that common knowledge of rationality seems to slug-
gishly follow the full transfinite process of elimination of strongly dominated strate-
gies. We then showed that the self evident nature of common knowledge of rational-
ity does imply the full process of elimination. Now, we see that it is the transfinite
process of elimination which is lagging behind common knowledge of rationality.
In our example, the process ends with the profile {b}2, while common knowledge
of rationality eliminates this profile too.

The reason for this is obvious. The strategies that dominate b in the terminal
game {b}2 were eliminated and cannot be used again to eliminate b. This cannot
happen when the set of strategies is finite, as we explain now. If si is a strategy of
i that was eliminated in the process, then there was a strategy s′i that dominates
it in some subgame S′. If s′i was eliminated too, then there is a strategy s′′i that
dominates s′i in some subgame S′′ ⊆ S′. This sequence of eliminated strategies
is finite, and therefore it should reach eventually the terminal game. This shows
that no strategy si that was eliminated can dominate a strategy in the terminal
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game. However, in the case of infinite set of strategies, the sequence of eliminated
strategies can be infinite, as it is in our example. Hence, it may never reach the
terminal game. The result is, that strategies that are eliminated can dominate
strategies in the terminal game.

We conclude that the process of elimination of strongly dominated strategies
does not capture common knowledge of rationality.13 The example hints also to
the process that does converge to a terminal game which is consistent with common
knowledge of rationality. It is a process in which strategies can be eliminated even
if they are dominated by strategies that were already eliminated. Chen et al (2007)
showed that this process does capture common knowledge of rationality. Obviously,
to prove their result they use the self evident nature of common knowledge rather
than the iteration of mutual knowledge.

6. Discussion

Proposition 3 answers in the affirmative the question whether common knowledge
of rationality implies the full process of elimination of strongly dominated strategies.
The proof makes use of the fixed point definition of common knowledge, and thus
decouples the two iterative processes: the one that reaches common knowledge and
the one that reaches a game that does not have strongly dominated strategies.

The question still remains why these two iterative processes fail to match beyond
the finite rounds. To pinpoint the reason for this, we start by emphasizing the
common features of the two iterative processes. For this, consider an operator D on
the set of all the subgames of S. For each game S′, let D(S′) be the game obtained
by eliminating all strongly dominated strategies in S′. The operators K and D
share the following properties.

(1) Both operators are contractions: By the truth axiom K(E) ⊆ E, and by
definition D(S′) ⊆ S′.

(2) As a result, the iterative application of both operators generates a decreas-
ing sequences.

(3) The iterative application of K to rationality and the iterative application
of D to S are clearly related, as rationality is defined here as not using
strongly dominated strategies in a subgame known to the players as the
game they are playing.

The reason why despite these similarities D can produce a transfinite sequence,
while K is “stuck” after the finite rounds is the difference in distributivity. The dis-
tributivity of K implies that K(CE) = CE and therefore applying K after all finite
rounds does not change the event. Thus, reaching the largest public announcement
of rationality is achieved after all finite iterations of K. However, D does not dis-
tribute over intersections and in particular, D(∩nD

nS) can be a subset of ∩n>2D
nS

rather then being the same set. Hence, reaching the terminal game may require a
transfinite sequence of elimination.

Although the two definitions of common knowledge discussed here are equivalent,
many students of common knowledge believe that it is the fixed point nature of
common knowledge that captures the “right” aspect of the notion. The iterative

13Dufwenberg and Stegeman (2002) noted the many problems that afflict this process. How-
ever, since rationality and common knowledge of rationality were not formally introduced in their

paper, they could not state explicitly the incompatibility of the process with common knowledge
of rationality.
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definition is just a way to describe the largest self evident event which is an evidence
to the event which is commonly known. Moreover, even the iterative definition does
not imply that common knowledge is a process. Rather, common knowledge is a
fact; a state of minds; a statement; an event that happens to imply many other
statements and events.
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