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Abstract

Shapley proved the existence of an ordinal, symmetric and efficient solution for three-player
bargaining problems. Ordinality refers to the covariance of the solution with respect to order-
preserving transformations of utilities. The construction of this solution is based on a special feature
of the three-player utility space: given a Pareto surface in this space, each utility vector is the ideal
point of a unique utility vector, which we call a ground point for the ideal point. Here, we extend
Shapley’s solution to more than three players by proving first that for each utility vector there exists
a ground point. Uniqueness, however, is not guaranteed for more than three players. We overcome
this difficulty by the construction of a single point from the set of ground points, using minima and
maxima of coordinates.
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1. Introduction
1.1. Covariance of solutionsto bargaining problems

In his seminal paper, Nash (1950) suggested analyzing a bargaining situation by
considering the corresponding bargaining problem. The latter consists of two elements:
the set of utility vectors that describe the bargainers’ utility from possible agreements,
and the disagreement point which is the utility vector that corresponds to the outcome in
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case no agreement is reached. Nash also suggested the notion of a solution to bargaining
problems which is a function that assigns to each bargaining problem a utility vector. In
particular, he characterized axiomatically a specific solution, which bears his name. Many
other solutions to bargaining problems were subsequently proposed in the literature (see
Thomson (1994) for a survey of this literature).

The Nash solution presumes that preferences are represented by Von Neumann—
Morgenstern utility functions. Two such utility functions represent the same preferences
if one is derived from the other by an affine positive transformation. The presumption
of the Nash solution on the utility functions is demonstrated by the following property,
which is one of the axioms that characterize this solution. If one bargaining problem is
transformed to another by applying affine positive transformations to the players’ utility
functions, then the Nash solution varies correspondingly. That is, the utility transformations
map the solution of the first problem to that of the second. We say that the Nash solution is
covariant with positive affine transformation of utility.

The egalitarian solution, studied by Kalai (1977), presumes a different type of
utility presentation of preferences. This solution is covariant with any order-preserving
transformation of utility, the same transformation being applied to each player’s utility
function. The covariance of the egalitarian solution with the transformations in this group
reflects the interpersonal comparison of utilities which underlies it.

The larger the group of transformations with respect to which a solution is covariant,
the less the assumptions made on the nature of the presentation of preferences by utility
functions. It is natural then to look for a solution which is covariant with respect to the
largest possible group of transformations: the group of order-preserving transformations,
where different transformations are applied to different players. Such a solution is said to
beordinal. For further discussion of the covariance of solutions with utility transformation
see Shubik (1982).

1.2. Ordinal solutions

Obviously, there are ordinal solutions. The simplest is the one that assigns to each
problem its disagreement point. The shortcoming of this solution is that it fails the
efficiency test.

Consider next an efficient ordinal solution. All players except player 1 are bound to their
disagreement payoff, while player 1 receives her Pareto payoff—the payoff that makes the
new payoff vector lie on the Pareto surface. When order-preserving transformations are
applied to the utility functions of the players, this point is transformed to a point of the
same nature, that is, to the solution of the transformed problem. But this discriminatory
solution is not appealing.

Another ordinal solution is one in whiokach player receives her Pareto payoff. This
payoff vector is called by Kalai and Smorodinsky (1975) the ideal-point of the problem.
This solution treats all player on an equal footing, but it is infeasible.

Shapley (1969) has shown that there is no ordinal solution to two-player bargaining
problems which is also Pareto efficient and non-discriminating. Indeed his proof shows that
the only ordinal solutions are the four solutions mentioned above: the two discriminatory
ones, the infeasible one, and the inefficient one. Figure 1 sketches the proof.
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Fig. 1. The four ordinal solutions to two-player problems. The disagreement point is the origin. The curved
arrows along the axes depict two order-preserving transformations of the utilities. On each axis the transformation
maps the coordinates of the disagreement point and the discriminatory points to themselves. Theopdim

Pareto surface moves B, B moves toC and C to D. The bargaining problem remains the same under the
transformations. Therefore the solution for this problem should be a point that is mapped to itself. The only
points that are mapped to themselves are depicted by large dots.

For three players there are eight simple, but not attractive, ordinal solutions, similar to
the four solutions to the two-player case. But in this case Shapley showed that it is possible
to construct an ordinal solution which is also efficient and symmétric.

1.3. Shapley’ssolution in terms of ideal points

Shapley’s construction for three players lends itself to several possible extensions to
more players. But so far none has been shown to lead to an ordinal solution. In a recent
survey of bargaining theory, Thomson (1994) still reports on an ordinal solution to only
three-player problems. Our extension here is based on the description of the three-player
construction in terms of ideal points. In Safra and Samet (2001) we show how a different
formulation of Shapley’s construction leads to another extension for more players. This
extension makes use of a solution to gradual bargaining problems introduced by O’Neill
et al. (2001). Both extensions are efficient and symmetric.

Given a bargaining problem and a vector of utilitieae denote byr (x) the ideal point
of x, namely, the utility vector in which each playegets her Pareto payoff given ;.2
The pointx is called theground for 7 (x). The ordinal solution suggested here is based on
the following simple observation.

The relation between a ground point and its ideal point is covariant with respect to
order-preserving transformations.

That is, order-preserving transformations map a ground point and its ideal point to a
pair of points that have the same relationship. This principle guarantees, in particular, that
the solution that assigns to each bargaining problem the ideal point of the disagreement

1 The solution was first documented in Shubik (1982). See also Thomson (1994).

2 In Kalai and Smorodinsky (1975) the ideal point is an infeasible point defined for a feasible and
inefficient disagreement point. In the sequel we make the straightforward extension of this notion for infeasible
“disagreement points.” See also footnote 3.
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Fig. 2. The first step in Shapley’s construction.

point is an ordinal solution. However, this solution does not lead to the construction of an
efficient and feasible ordinal solution.

Shapley’s construction uses the same principle in the reverse direction. It starts with
assigning to a bargaining problem the ground point to the disagreement point of the
problem. What makes the construction possible for three-player problems is the following
fact.

For any three-player bargaining problem there exists a unique ground point for every
utility vector.

In other words, for every there exists a unique such thaty = = (x). In particular,
consider a bargaining problem with disagreement p@inta,, az) and a Pareto surface
Then there exists a unigque ground pairfor the disagreement poiat Thus, for each, a;
is the Pareto payoff af when the other two players are bound to their payoffs. &y the
definition of Pareto payoff this means that the three poi@ts,x2, x3), (x1, a2, x3), and
(x1, x2,az), are inS. The pointx is depicted in Fig. 2.

The solution that assigns to each bargaining problem the ground point of the
disagreement point is infeasible, but it is non-discriminating, and, most importantly, it is
ordinal.

To construct a solution which is also on the Pareto surface of the bargaining problem we
note thatr is closer in each coordinate to the Pareto surface than the disagreemeant point
We now solve the bargaining problem starting withs a disagreement poifiContinuing

3 Starting with a disagreement point below the Pareto surface results in axpainich is above the Pareto
surface. Such a point cannot be interpreted as a disagreement point. It is possible, however, to give some other
interpretation to an infeasible initial point of a bargaining problem, or simply treat it as a technical step in
constructing the ordinal solution.
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this way, we generate a sequence of points that converge to a point on the Paretd*surface.
This point is the desired solution.

1.4. Extending Shapley’'ssolution

An essential part of this construction is teéstence and uniqueness of a ground point
for any given payoff vector. We prove that existence holds also for more than three players.
For this we use the Alexandroff-Pasynkoff Lemma, which is an intersection theorem
derived from the Sperner Lemma.

Uniqueness, however, does not necessarily hold for more than three players, as has been
demonstrated by example in Sprumont (2000). A first attempt to overcome the multiplicity
of ground points might be to choose one ground point for each problem, in a way that is
symmetric in the players and covariant with order-preserving transformations. We doubt
that there is a way to choose such a point. We solve the multiplicity problem by generating
from the set of ground points of a given utility vectera single pointx, which is not
necessarily a ground point, as follows.ffis feasible therx; is the minimum payoff to
playeri in the set of ground points for. Wheny is infeasible, therx; is the maximum
of these payoffs. Since the maximum and minimum functions are order preserving the
construction ofc is covariant with order preserving transformations of utility. Whemas
a single ground point, which is always the case for three-player problems, then the point
thus defined is the ground point feras in Shapley’s construction.

The construction follows now the same iterative process as in the case of three-player
problem. The choice of the maximum function below the Pareto surface and the minimum
above it guarantees that the generated sequence of points converges to the Pareto surface
of the bargaining problem.

In Section 2 we present the algebraic properties of Pareto surfaces. We define the two
sides of such surfaces in terms of ideal points and prove (rather than assume) the continuity
of these surfaces. We formulate the ordinality of ideal points and introduce the properties
of the constructed solution: ordinality, efficiency, and symmetry. In Section 3 we describe
Shapley’s solution and its extension and prove the existence of ground points. The more
technical proofs are in Appendix A.

2. Preliminaries
2.1. Pareto surfaces

Consider a finite seV of n players, withn > 2. A point inRY describes the utility
levels of the players. For = (x;);cy andy = (yi)ien in RN we writex > y whenx; > y;
for eachi € N, x > y whenx = y andx # y, andx > y if x; > y; for eachi € N. The
inequalities<, <, and< are similarly defined. For each proper subgeof N, we denote

4 Taking the ideal point of the ideal point of ... the disagreement point, rather then the ground points, would
not lead to a solution because this sequence is geditiitiger away from the surface.
5 Sprumont (2000) claims without proving that there are such points for four-player problems.



134 Z. Safra, D. Samet / Games and Economic Behavior 46 (2004) 129-142

by x_u a pointinRM\M _ Forx = (x;);en in RV, the vectorc_ is the projection o on
RN\WM je. the vectolx;);en\m- WhenM is a singleton we omit the curly brackets and
write x_; andN \ i.

Definition 1. A subsetS ¢ R" is aPareto surface (asurface for short) if the following two
conditions hold:

(1) ifx,y e Sandx 2 y thenx = y; ' '
(2) for eachi, the projection ofs on RN\ js RN\ 6

Observation 1. Let S be a Pareto surface. Then for each i and x € RY there is a
unique number denoted by 77 (x) such that (x_;,7°(x)) € S. This defines a function
78 RN — R, which satisfies the fol lowing:

e 7 isstrictly decreasinginx; for j #1,
e 7 doesnot change with x; .

We callyrf(x), i’s Pareto payoff, at x. Following Kalai and Smorodinsky (1975), the
pointr3(x) is called thédeal point for x. The pointx is called theground point for 75 (x).
In Kalai and Smorodinsky (1975) the ideal point fowas defined fox belowS (a relation
we define below). Here we use it also foaboves.

We omit the superscrigf from nis, when the surfac§ is clear from the context.

There are only three possibilities for the relation between the pairdad 7 (x) =

(i (x))ien-

Observation 2. Let S be a Pareto surface. Then for each x € R¥, the vector 7 (x) satisfies
either x < (x),0or x =m(x), or x > w(x).

Using this proposition, we define the two sides of a surffice
Definition 2. For a Pareto surfacg andx € RV,

e if x < m(x) we say that is below S and denoteitby < S or S > x,
e if x > m(x) we say that is above S and denote it by > S or S < x.

Obviously,x = 7 (x) iff x € § in which case we say thatis onS. We writea < S when
eithera < S ora € S. The notations > S, S <a, S > a are similarly defined.

The following proposition provides an equivalent alternative criterion for being above
or below a surfacé, which is sometimes easier to use.

6 The second condition in Definition 1 is essential in this work: It is necessary for the existence of the Pareto-
payoff functions which are defined next. In particular it implies that surfaces are unbounded. This property,
however, is not essential. The construction of the solution in this paper can be also carried out for bounded Pareto
surfaces. We preferred unbounded surfaces for tractability and simplicity of notation.



Z. Safra, D. Samet / Games and Economic Behavior 46 (2004) 129-142 135

Observation 3. For x ¢ S, x isabove (below) S iff thereisy € S suchthat x > y (y > x).

Our construction hinges on continuity properties that are guaranteed by the definition
of Pareto surfaces.

Proposition 1.

e A Pareto surfaceis closed.
e Thefunctions; are continuous.

2.2. Order-preserving transformations

A strictly increasing continuous function frofd onto R is called ascalar order-
preserving transformation. An order-preserving transformation is a vector of scalar order-
preserving transformations. The order-preserving transformatien(u;);cy defines a
map fromRY ontoRY by 1 (x) = (u; (x;))ien. It is easy to see that maps Pareto surfaces
to Pareto surfaces. That is, for any Pareto surfgdbe setu(S) = {u(x) | x € S} is also
a Pareto surface. The following key observation states the covariance with order-
preserving transformations.

Observation 4. Let S be a surface and . an order-preserving transformation on RY . Then
for each x,

7 (n(x)) = (5 (). 1)

To see this we need to show that for eaemd.x, nl.“(s) (m(x)) = pui (nf(x)). Indeed, as
(x—i, w5 (x)) € S, it follows that

(=i (=), pi (70 (1)) € (S).

By definition (u—; (x—_;), nl.“(s) (n(x)) € u(S)), which establishes the required equality by
the uniqueness ofl.“(s) (w(S)).

2.3. Bargaining problems and solutions

Definition 3. A bargaining problem (a problem for short) is a pair(a, S), whereS is a
Pareto surface and € RV.” The set of all problems is denoted # A solution is a
functiony : B — RV,

Consider the following properties of a solutignto bargaining problems.

7 The usual definition of a bargaining problems requires dtiata feasible point, i.eq < S. Here we allow,
for convenience, to be infeasible. See footnote 3.
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Ordinality: For each probleni, S) and order-preserving transformatian

¥ (1(a), w(S)) = u(¥ (@, S)).
Efficiency: For each problent, S), ¥ (a, S) € S.

Let r be a permutation otV. Forx € RV, rx is the vector defined byrx); = Xz (). For
a surfaceS, S ={tx | x € S}.

Symmetry: For each probleni, S) and permutation of N,
¥(ta,tS)=1t¥(a,?s).

There are simple ordinal solutions that have only two of these properties. Thus, the
solution(a, S) — 7 (a) is ordinal and symmetric but not efficient. The solutien S) —
(a—;, ;i (a—;)) is ordinal and efficient but not symmetric. The soluti@n S) — a is both
symmetric and ordinal but not efficient. In the next section we construct a solution to
bargaining problems with at least three players that is ordinal, efficient, and symmetric.

3. An ordinal solution
3.1. Shapley’'ssolution for n =3

Shapley’s ordinal solution for three players is based on the following proposition, which
we prove in the next subsection.

Proposition 2. For each Pareto surface S in R® and a € R® there exists a unique ground
point for a. That is, there exists a unique point x such that 75(x) = a8

The equality in Proposition 2 is equivalent to the list of equalitigér) = a; for
i =1, 2,3. By the definition ofr, this means that for each (x_;, a;) € S. In Fig. 2 the
unigue pointx is depicted, for whictx is an ideal point.

For a given probleni, S), define a sequence of poir(té‘)k>0 in RV, such that:® = q,
and for eachk > 0, a**1 is the unique point that satisfiesa**1) = a*. This sequence
converges to a poin¥ (a, S) on S. The solution? thus defined is ordinal, efficient, and
symmetric.

3.2. The existence of ground points

Sprumont (2000) has shown, by a simple example of four players, that the uniqueness
in Proposition 2 is special for the case= 3. We show here that existence holds for any
n>3.

8 In particular,z S is a homeomorphism d&3.
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Proposition 3. For each Pareto surface S in RN and a € RY, the set of ground points
for a, {x | 75 (x) = a}, is nonempty and closed.

To prove it we use a closed-covering theorem, known as the AP Lemma, by Alexandroff
and Pasynkoff (1957). See Ichiishi and ldzik (1990) for a discussion of closed-covering
theorems and their applications to cooperative game theory.

The AP Lemma. Let (A;);cny beafamily of closed sets that cover the unit simplex in RV
such that A; containsthe face of the simplex inwhich x; = 0. Then (),.y A; # .

We identify a subset of a surface which is homeomorphic to the simplex. For a surface
SinRN anda < SletS,={xeS|x>a}).Fora>SletS,={xeS|x<a}.

Lemma 1. Let S be a Pareto surfacein RV, and a ¢ S. Then the map h(x) = (x — a)/
>_j(xj —a;) is a homeomorphism of S, onto A, the unit simplex in RY. Moreover, for
each j e N theset {x € S, | x; = a;} is mapped by » homeomor phically onto the face of
A wherex; =0.

Proof of Propositions 2 and 3. For a € § the two propositions trivially hold, agx |
w(x) =a}={a}. Assume, then, that < S. The proof fora > S is similar.

The conditionr (x) = a is equivalent to requiring thak_;, a;) € S for eachj. We fix
a playeri, and rewrite this requirement as conditions (2) and (3) below.

(x—i,a;) €S, (2)

(x—i,jy.aj,x;)) €S, foreachj #i. (3)
We further rewrite (3) as

mi(x_yijy.aj,a;) =x;, foreachj#i. 4)

Consider the Pareto surfage= {x_; ¢ R"\' | (x_;, a;) € S} in RN\\. By Lemma 1 the
setl, , = {x_; € T | x_; > a_;} is mapped homeomorphically to the unit simplesif{\,
with the subsefx_; € T,,_, | x; = a;} being mapped homeomorphically to the face of this
simplex, wherex; = 0.

Define foreacly #1i, ¢;:T,_, — R' by {;(x—;) =m;(x—;, j1, aj,a;). Then, by (2) and
(4) x is a ground point for iff x_; € T and all the functiong; for j # i coincide atx_;
and their common value is . Figure 3 describes, for the case= 3, the setl,,_; as well
as the value of the functiorgg at some point in this set.

Let A; = {x_; € T,_; | £j(x—;) = Ming; & (x—;)}. Then the setsA; are closed and
U Aj = Ta_,. Moreover,{x_; € T,_, | xj = a;} € A;. Indeed, ifx; = a;, then
$j(x—j) = mi(x—;,a;). Sincem; is decreasing in, it follows that for anyk ¢ {i, j},
mi(x—i, a;) < i (x_(i k), ak, a;). But the latter is justy (x_;), which shows that_; € A;.
By Lemma 1 and the AP Lemma there exists a pointin (1;_; A;. By the definition of
the sets4 ; the functions;; coincide atx_;. The point(x_;, x;), wherex; is the common
value of the functiorg; is a ground point for.

The set{x | 7 (x) = a} is closed by the continuity of.
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Ca(z_3) = m3(z1, az,as)

Ci(z_3) = m3(ay, z2,a3)

i (a), #2,03)

(21,22, a3)

To_s

Fig. 3. The existence and uniqueness of a ground point fer3. In this picture we fix player 3. The s&_,,
which is one-dimensional, is depicted by a thick line. The arrows indicate the valggérafz) andzo(x_3) on
the axis of player 3. When the poitt;, x2, ag) varies alongl,,_, from right to left, ¢ strictly increases, angh
strictly decreases. Therefore, there exists a unique point where they coincide.

Consider now the cas¥ = {1, 2, 3}. Fix player 3. As was shown; is ground point
for (a1, az, az) iff (x1,x2) € T, , and¢1(x—3) = ¢2(x_3) = x3. The functions;; and¢>
are strictly decreasing witli, and x1 correspondingly. But along the one-dimensional
Pareto surfacg, ,, x1 is a strictly decreasing function ®. Thus,¢» is strictly increasing
with x1. But then,¢1 and¢» can coincide irf,_, in only one point. O

3.3. Constructing the ordinal solution

The uniqueness of that satisfiesr (x) = a whenn = 3 is essential to the construction
of the solution in that case.

We overcome the lack of uniqueness for 3 as follows. For each problefa, S) we
define a solutio® such that for each player

min{x,- |rrS(x)=a} ifa<s§,
Di(a,S) =1 a ifaeds,
max{x,- |rrs(x)=a} if a>S.

Proposition 4. The solution @ is ordinal and symmetric.

Proof. Obviously, the solutior® is symmetric. To see that it is ordinal, letbe an order-
preserving map, and suppose that S. Then

@i (1e(a), 1(8)) = min{y; [ 7D (y) = w(@)}
= min{u; () | 745 (e () = (@)}
=min{p; (x;) | (75 () = n(@} =min{u; (x;) | 75(x) = a}
= i (minfx; | 75(x) =a}) = wi(Pila, 9)).
The first and last equalities follow from the definition &f The second holds singeis
onR. The third uses the ordinality af in Observation 4. The forth equality holds since
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is one to one. And finally, the fifth holds since the minimum is covariant with scalar order
preserving transformations. The casezof S is shown similarly, and the casee S is
trivial. O

The solution® is defined in terms o like Shapley’s solution for three players. Define
a sequencé’);>o by a® = a and for eaclk > 0,a"*! = @ (a*, 5).

Proposition 5. For each problem (a, ) inRY, withn > 3, the sequence (ak)k>0 converges
toapointin S.

Two remarks concerning this convergence are in order. Note, first that the existence of
ground points holds also far= 2. It is the convergence in Proposition 5 that holds only
for n > 3, which explains why there is no ordinal, efficient symmetric solutiomfer2.

More specifically, it is the sharp inequalities in Lemma 3 in Appendix A which hold only
forn > 3.

Second, we note that the convergence in the gas@ has a special feature. It is simple
to show that for any point ¢ S, 75(x) andx are on different sides of. Therefore, for
three-player problems, starting witly < S, all the even elements of the sequene® are
below S, and all the odd ones are abaVeThis must not be the case for- 3, sincex and
@ (x, ) may be on the same side &f

Theorem 1. The solution ¥ (a, S) = lim a* is efficient, ordinal, and symmetric.

Proof. Efficiency is guaranteed by Proposition 5. Symmetry is obvious from the symmetry
of @. To prove ordinality observe that(a**1) = u(® (¥, §)) = ®(u(a@®), u(S)). The

first inequality follows from the definition of the sequenc€. The second from the
ordinality of @. But then, by the definition o, lim u(a*) = ¥ (u(a), 1(S)). By the
continuity of i, lim p(a®) = n(lima*) = n(¥(a, S)). O

Appendix A

Proof of Observation 1. The existence of the number’ (x) is stated in part (2) of
Definition 1. The uniqueness follows from part (1) of this definition.

By the definition ofr; it does not change with;. Suppose that foy = i, x;. > Xj.

Since both(x_, j), x}, 7 (x, x— ) and (x_y; . xj, i (x;, x- ;) are in S, it follows by
property 1 thatr; (x}, x_j) <mi(xj,x—j). O

Proof of Observation 2. Obviously, if x € S, then 7 (x) = x. Suppose that for
somei, m;(x) > x;. By definition y = (x_;, m;(x)) € S. Similarly, for j #i, z =
(x—j,mj(x)) € S. Now, z; < y;, and for eaclk ¢ {i, j}, zx = yx. Therefore, by property 1
of Pareto surfaces, > y;, which means that; (x) > x;. The prooffor the case; (x) < x
is similar. O

Proof of Observation 3. If x > S, then by Observation 27(x) < x. The pointy =
(x—;i, m(x))isin S andx > y. Conversely, suppose> y for y in S. Thenx >y =n(y) >
7 (x) which shows that > S. The proof of the other half of the proposition is similaia
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Proof of Proposition 1. We observe first that for eadh and numbew;, the setS_; =
{x_i | (x_i,a;) € S} is a Pareto surface iRV \'.

We prove, by induction on, that ifa < S then there exists such that: < ¢ € S.

Letn = 2 and letb = (;r1(a), a2). Thenb1 > a1. Choosec; such thath > c¢1 > as.
By part (2) of Definition 1, there exist$ such that = (c1, ¢2) € S. Thus, by part (1) of
Definition 15 % ¢, and therefore, > b,. Hencec > a.

Suppose we proved our claim fer— 1, and letN be of sizen. Sincea < S it follows
thata_; < S_;, and hence by the induction hypothesis, there eXisis= S_;, such that
b_i>a_;. Letc_; =(a—; +b_;)/2. Thenb_; > c_; > a—;. There exists a number such
that the poinic = (c_;, ¢;) € S. Since(b_;,a;) € S, it follows that (b—;, a;) # ¢, which
implies thatc; > a;. Hencec > a.

We can similarly prove that if > S, then there exists such that: > ¢ € S.

Assume now that is an accumulation point &f. Suppose < S. Then, there i such
thata < ¢ € S. But then there exists a poitite S close enough ta such that/ < ¢, which
contradicts condition (1) in Definition 1. A similar contradiction followsaif- S. Thus
aces.

Consider the functiortr; : RV — R’ defined by#;(x_;) = m;(x_;, x;). Sincen; is
independent of;, 7; is well defined and the equality holds for amy The graph ofz;
is S. As 71; is decreasing, it is bounded in the neighborhood of each point, and therefore
the closedness df implies the continuity oft; and therefore that of;. O

Proof of Lemma 1. Sincea ¢ S the denominator does not vanish drand’ is well
defined and continuous. Suppdse) = i(y) and assume without loss of generality that
Zj(.x]' —aj) > Zj(yj — aj), then for eachi, x; — a; < y; —a; and thereforer = y.
Finally, to see that is on lety be a point inA with y; > 0. Consider the function
f@) =mi(a+ty) — (a; + ty;). Suppose that < S. Then f(0) > 0. For big enough,
a+ty > (a—j,mj(a)) € S. Therefore for such, a +ty > S and thereforef (r) < 0. Thus

for somer, f(t) =0 and hence +ty € S. Itis easy to see that(a + ry) = y. The proof

for the caser > S is similar. It is straightforward to show the homeomorphism of the faces
of the simplex to the said setsO

The following two lemmas are used to prove the convergence in Proposition 5.
Lemma2.lfa< S (a>S)andx(x) =a,thena <x <7w(a) (a > x > n(a)).

Proof. We prove the case < S. The other case is similarly proved. If to the contrary
a < x then by Observation 2 = x. Hence,r(a) < 7 (x), and thust (a) < a which by
Observation 2 contradicts the assumptior S. To show thak; < 7; (a) for eachi, choose

j #i. By what we have showm, < (x_;, a;) with strict inequalities for alk # j. Also,
sincern(x) =a, (x_j,a;) € S. Sincern; is decreasing in alk # i and there are players
other than’ andj, asn > 3, it follows thatz; (@) > 7 (x—j,a;) =x;. O

The following proposition indicates the sense in whigtu, S) is closer to the surface
S thana.
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Lemma3.lfa < Sthena < ®(a, S) <n(a) and w(P(a, S)) = a.
Ifa>Sthena > ®(a, S) > w(a) and 7 (P (a, S)) < a.

Proof of Lemma 3. Suppose: < S. The proof fora > S is similar. Since the inequalities
in Lemma 2 hold for every point ifx | #(x) = a} and this set is closed, it holds
also if we replacex by @(a, S). If x satisfiesz(x) = a, thenx = &(a, S) and hence
(P, S)2n(x)=a. O

Proof of Proposition 5. If a pointa® is in S, thena” = a* for all m > k and we are done.
Assume, then, that none of the points of the sequence &re in

Claim 1. The subsequence of (ak)k>0 of all the points below S (above S) is strictly
increasing (decreasing) and bounded, and therefore convergesto a point b (c).

If ak, a**t1 < S, thena ! = & (a*, S) > a¥, by Lemma 3, and similarly foe*,
aktl» § a*+1 < 4k Thus, as long as the sequendestays on the same side it remains
monotonic: increasing while belo$and decreasing while above it.

SupposarX, a™*1 < § with m > k, while all the pointsa**1, ... 4™ are aboves.

As we showed, if there is more than one of them, these points are strictly decreasing. As
a™ > S, a1 > 7(a™) by Lemma 3. Ast is decreasing (a™) = 7 (a*t1) (the inequality

is weak, since possibly: = k + 1). Again by Lemma 3;7(a*t1) > 4*. These three
inequalities amount ta”*1 > g%, Thus, returning to the side belasvafter an incursion

to the other side, ends at a point greater than the last one Iselow

To see that this subsequence is boundedilet S, thena* < 7 (a*) < 7 (a*1) where
a*t is the first point belows. The proof for the points abowvgis similar.

Claim 2. b = ¢ and thispointisin S.

Obviouslyb < S, since for anyi, m; (b) — b; = lim;(; (a®) — afl) > 0, where(a®) is
the subsequence of points beldwSimilarly, ¢ > S.

Case 1. There are only finitely many points ¢&*) aboves.

In this caseq* — b. Fix playeri. Since®; (a*, ) = a¥™, there existst* such that
7(x%) = aF andx¥ = af 1. By Lemma 2,¢* < x* < 7(a¥). By the monotonicity o,
ako < g% and 7 (a*) < m(a*0), for somekg and all k > ko. Thus, (x¥) is uniformly
bounded from above and below. Assume, without loss of generalityxthat x. Thus,
ak = 7 (x*) - m(x) and hencer(x) = b. Moreover,ai™ = x¥ — x; and therefore
x; = b;. Hencem; (x) = b; = x; which implies thatx € S. Thus,7(x) = x, and therefore,
b=x € S. The proof is similar for the case when there are only finitely manigelow S.

Case 2. There are infinitely many points @&*) on both sides of.
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We note that by Lemma 3, if* < S, thena*™1 = & (a*, §) < 7 (a¥), andm (a*t1) =
7 (® @k, S)) > da¥, and if af = S, then d*t1 = @, §) > 7 (db), and n(a*t1) =
(@ (d¥, 8)) < ak.

For infinitely manyk, a* < S < a**1. Thus by the above inequalities < 7 (b), and
7(c) = b. Also, for infinitely manyk, a**1 < § < o, and thereforep > 7 (c), and
7 (b) < c¢. Thus,7(b) = c andn(c) = b. But then it is impossible that < S, because
in this case: < 7 (b) by Lemma 2. Hencgye Sandc=n(b)=b. O
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