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ON THE CORE AND DUAL SET OF LINEAR 
PROGRAMMING GAMES*t 

DOV SAMET AND EITAN ZEMEL 

Northwestern University 

We study the relation between the core of a given LP-game and the set of payoff vectors 
generated by optimal dual solutions to the corresponding linear program. It is well known that 
the set of dual payoffs is contained in the core, and that cores of games in which players are 
replicated converge to the set of dual payoffs when the number of replications tends to 
infinity. We give a necessary and sufficient condition for finite convergence. As corollaries we 
strengthen a sufficient condition due to Owen and obtain new conditions as well. We also 
study conditions in which the core and the set of dual payoffs coincide even without 
replication. We give a necessary and sufficient condition for this phenomenon and present two 
classes of LP-games with this property which properly subsumes all examples of this type 
discussed in the literature. 

1. Introduction. Optimization problems with several independent decision makers 
can be modeled often as cooperative games with side payments. In games of this type 
the worth of each coalition equals the optimal value of an optimization problem 
associated with this coalition. A well-known example of games of this type is the class 
of market games of Shapley and Shubik [12]. In these games each player has an initial 
bundle of commodities and the worth of a coalition equals the maximal value of the 
aggregate utility which can be generated by trading commodities between members of 
this coalition. 

In this paper we study a family of games which we call LP-games and which are 
generated by linear programming optimization problems. Individual players, in an 
LP-game, are each endowed with a bundle of inputs from which outputs can be 
produced under linear constraints. The worth of a coalition is the maximal value of 
outputs that can be produced by the coalition. The first example of games of this type 
that was studied is the assignment games of Shapley and Shubik [11]; the formulation 
used in this paper is due to Owen [7]. 

An LP-game can be viewed as a market game in which all players have the same 
utility function which is defined by the linear programming problem. Thus, the family 
of LP-games is contained in the family of market games. In fact, the two families 
actually coincide, and are equal to the family of totally balanced games. Dubey and 
Shapley [4] and, independently, Kalai and Zemel [6], have presented extensions of 
LP-games which are still totally balanced but in which the objective function and 
constraints are nonlinear. Samet, Tauman and Zang [9] studied LP-games in which not 
all the resources are controlled by the players. These games may have an empty core. 

Our main interest in this paper is the relation between the core of an LP-game and 
the set of dual optimal solutions for the optimization problem faced by the entire set of 
players (the grand coalition). We can view such a dual optimal solution as a vector of 
(shadow) prices on the various resources. Thus, each such vector can be used to define 
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a payoff vector where each player is paid an amount which corresponds to the value of 
his resources, according to the given price vector. We call payoff vectors generated in 
this form dual payoffs. In terms of market games dual payoffs correspond to competi- 
tive payoffs. It turns out that the set of dual payoffs is always contained within the 
core of a given LP-game but the two sets need not be identical. However, if the set of 
players is refined (or equivalently, duplicated) many times, the cores of the refined 
games converge in a certain sense to the set of dual payoffs. This result follows from a 
well-known theorem of Debreu and Scarf [3] which states the equivalence of the core 
and the set of competitive payoffs for market games. However, for LP-games the proof 
is especially easy [7]. Billera and Raanan [2] considered games with a continuum of 
players and proved that for such games the core and the set of dual payoffs coincide in 
accordance with the equivalence theorem of Aumann and Shapley [1] for market 
games with a continuum of traders. 

Owen [7] has noticed a property which is peculiar to LP-games which market games 
in general do not possess. He has shown that if there exists a unique optimal dual 
solution, then the coincidence of the dual set and the core occurs after a finite number 
of replications. Rosenmiiller [8] studied the fineness of the refinement required to 
achieve this coincidence. We study the finite convergence property in more detail in 
?3. Theorem 2 in this section provides a necessary and sufficient condition for finite 
convergence in LP-games. Using corollaries of this theorem we can conclude that such 
convergence occurs if the set of dual payoffs is a singleton (even if the set of dual 
optimal solutions is not). Finite convergence is also guaranteed if the underlying 
LP-problem has rational data or if there are only two players in the original game. In 
?4 we examine the conditions under which the core and dual set coincide even without 
replication. This phenomenon actually occurs in most of the special instants of 
LP-games which were considered in the literature ([5], [11], [13]). We describe two 
families of LP-games with this property which properly subsume all the known 
examples of [5], [11] and [13]. 

2. Definitions and preliminaries. Let N = {1,2, .. ., n} be a set of players. A 
coalition is a nonempty subset of N. We associate with each coalition S C N a 0-1 
vector ts E Rn in the obvious way and reserve the letter e to denote the vector 
(1, 1,..., 1) E Rn which corresponds to the grand coalition N. 

Assume that each player j is endowed with a vector of resources b =(b{, 
b, . . . , b J) E Rm. Let B = (bj) be the (m X n) matrix whose jth-column is bJ. For 
each coalition S C N, let b(S) = Bts. Thus b(S) is the vector of the total amount of 
resources available to the coalition S. Let A be an m x p matrix and c E RP. For each 
vector t E Rn consider the linear program: 

F(t) = maximum cy 
P(t): 

subject to Ay < Bt 

where F(t) = - oo if P(t) is infeasible. It is well known that F is piecewise linear, 
concave and homogeneous of degree one on Rn. Let P = {P(t) t E Rn}. We call a 
system of linear programs of this type a Linear Programming System (LP-system). We 
assume in the sequel that for each coalition S the linear program P(ts) is feasible and 
bounded so that the optimal objective function values for the various coalitions are 
finite. Under these conditions the function F is finite over the entire nonnegative 
orthant R n+ . 

Consider the game Vp generated by the system P via the relation Vp(S) = F(tS). 
Thus, Vp(S) is the value of outputs which can be generated using the resources of 
coalition S only. We refer to games which arise in this fashion as Linear Programming 
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Games (LP-games). In cases where the LP-system associated with a given game is clear 
from the context, we suppress the subscript P and refer to the game simply as V. This 
convention is also used for all other constructs which are defined with respect to a 
given LP-system P. 

The core of a game V (not necessarily an LP-game) is the set of all payoff vectors 
x = (l, ..., xn) such that E= l xi = v(N) and is xi > v (S) for every coalition 
S C N. We denote the core of the game Vp by Cp. 

Let u = (ul, . . . , urn) be an optimal dual solution for the linear program P(e). 
Consider the vector x = uB. The n dimensional vector x can be considered as a payoff 
vector which endows each player the value of his resources vector according to the 
price vector u. We call a vector x obtained in this way, a dual payoff vector, and denote 
by Dp the set of all dual payoff vectors, i.e., 

Dp = {x E R l x = uB for some dual optimal vector u for P(e)}. 

It can easily be shown that Dp is the superdifferential of F at e, namely it contains 
all points x for which xe = F(e) and xt > F(t) for every t E R". In particular, for each 
S C N and x E Dp, xts > F(ts) = V(S) which shows that Dp C Cp for every LP-game 
and the latter set is therefore not empty. 

There are several classes of linear programming systems which yield games with 
D = Cp. However, this is not the case in general. To illuminate the relation between 
these sets it is instructive to observe their behavior when the players are split (or 
equivalently replicated). 

Let P be a given LP-system. The r-refinement of P, denoted pr, is obtained by 
splitting each original player (column of B) into r identical players each receiving b j/r 
as his initial endowment. We call the set of r identical players which replaces one 
original player a suit. Let Vp, be the LP-game generated by the system p r. It is well 
known that members of the same suit are equally treated in the core, i.e., they are 
always paid the same by core allocations. Therefore, the payment that a coalition S in 
Vpr gets in a core allocation is determined by its profile, i.e., by the number of players 
from each suit it contains. More precisely, let Gr be the grid of side 1/r in the unit 
cube of R n, i.e., 

Gr= {x E R nxi = ' qi an integer, 0 < qi < r, i = 1., .n 

With each coalition S in Vp, we associate a point ts = (ql/r, . . ., qn/r) in Gr where qi 
is the number of players from the ith suit in S. 

Clearly, because of the equal treatment property each allocation in the core of Vpr is 
uniquely determined by the amount allocated to each suit and therefore this core can 
be described by a point in R" (rather than R nxr). Explicitly, define the r-refinement 
core, Cr by: 

Cr = {x e R n xe = F(e), xt > f(t) for each t C Gr }. 

Clearly, D C Cr and for each r and therefore D C fn"= Cr. Since Uj= Gr is dense in 
the unit cube we conclude by the continuity and homogeneity of F that nr= I Cr is the 
superdifferential of F at e, i.e., D = fn= ICr. This observation can be viewed as a 
special case of the limit theorem by Debreu and Scarf [3] (see also Owen [7]). However, 
in the linear case, one can show an even stronger result, namely finite convergence of 
Cr to D. 

THEOREM 1 (Owen [7]). If the linear program P(e) has a unique dual optimal 
solution, then for sufficiently large r, D = Cr. 
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Below, we examine in more detail the conditions under which such a finite 
convergence is achieved. 

3. Finite convergence of the core. We study in this section conditions which 
ensure finite convergence of Cr to D. We open the discussion with a necessary and 
sufficient condition for equality of D and Cr for a given integer r > 0. 

Let u E D. Denote by Tr(u) the convex cone generated by the points in Gr for 
which ut = F(t). Obviously, ut = F(t) for every t C Tr(u), i.e., these cones are regions 
in which F is linear. 

THEOREM 2. The r-refinement core Cr coincides with the set of dual payoff vectors D 

if and only if U UED Tr(u) contains a neighborhood of e. 

PROOF. Since F is finite on R , D is a bounded polyhedral set and thus can be 
convexly spanned by the finite set {u', . . ., u1}, of its extreme points. It is straightfor- 
ward to verify that for every u E D there exists a vertex ui, 1 < i < 1, such that 
Tr(u) C Tr(ui), and thus UuED 

T(u) = U'i 
= 

Tr(ui ). 
Assume that Ul=i Tr(u') contains a neighborhood of e. Let x E Cr, i.e., xe = F(e) 

and xt > F(t) for every t E G . We have to show that xt > F(t) for every t E R". 
Since F is homogeneous and concave, it is enough to show that this inequality holds 
for the neighborhood of e, which is contained in Ul=I Tr(u ). Let to be a point in this 
neighborhood. Then by our assumption, to E Tr(u1) for some index i, 1 < i > 1. Hence 

F(to) = u'to. But since xt > F(t) = u't for each t E Gr n Tr(u'), and since Gr n Tr(u') 

(conically) span Tr(ui) it follows that xto > F(to). 
Conversely, assume that U.=l Tr(ui) does not contain a neighborhood of e. Since 

each one of these cones is a polyhedral cone, there exists a direction vector z E R" 
such that for each positive a, e + az 

X 
U'=l Tr(Ui). Let T(ui) = {t E R+ ut = F(t)}. 

Clearly, T(ui) is a convex cone which contains e for each i- = 1,..., 1. Moreover, 
since F is piecewise linear and finite in a neighborhood of e, we get that U'= T(u') 
contains a neighborhood of e. Furthermore, Tr(u1) C T(u1) for i = 1, . . . , 1. Let a be 
a small enough positive number so that t = e + az belongs to Ui=l T(u'). In particu- 
lar t E T(uJ) for some 1 < j < 1. Obviously, t Tr(uI). Note that the intersection of 
Tr(U J) with the convex cone generated by t and e contains only the ray generated by e. 
We can therefore separate these two cones by a hyperplane which passes necessarily 
through the points 0 and e. Let ht = 0 be the equation defining this hyperplane with 
ht < 0, and ht > 0 for every t E Tr(Ui). We can normalize h in such a way that 
ht > F(t) - u t for each t in the finite set Gr n Tr(u ) (note that the right side is 
strictly negative for t in this set). 

Consider now the payoff vector u J + h. We claim that this vector belongs to Cr but 
not to D. To check the first assertion note that (uJ + h)t > u t = F(t) for each 
t E Tr(u J). Furthermore, for each t E Gr n Tr(u J) it holds that 

(uj + h)t > uJt + F(t) - uJt = F(t); 

and finally at the point e, (u + h)e =u je = F(e). On the other hand, to see that 
uj + h (4 D we note that (uj + h)t < ut = F(t). Q.E.D. 

REMARK. The existence of an integer r0 such that D = Cro is clearly a sufficient 
condition for finite convergence but it is also a necessary one. Indeed if D = nr I Cr 
for some m then for ro = m! Cro C Cr for r = 1, . .., m and therefore Cro C D; on the 
other hand D c Cro and therefore Cro = D. 

Theorem 2 provides as corollaries special cases of finite convergence of the refined 
cores to the set of dual payoff vectors. 

COROLLARY 1. If the set of dual payoff vectors D is a singleton then for sufficiently 
large r, Cr = D. 
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PROOF. Let D= {u}. Then T(u) contains a neighborhood of e. For sufficiently 
large r, the vectors ti = e - t{i /r, i = 1, . . ., n, are in this neighborhood. It follows 
that for those r's, Tr(u) contains a neighborhood of e and the corollary follows by 
Theorem 2. Q.E.D. 

This corollary strengthens Owen's result (Theorem 1) since it requires only the 
uniqueness of the dual payoff vector and not the uniqueness of the dual optimal 
solution. Rosenmiiller [8] gives bounds on the refinement needed to achieve coinci- 
dence of the refined core with the dual payoff vector when the optimal dual solution is 
unique. (This is done in a more general case where players are not equally refined.) In 
terms of Corollary 1, these bounds are given by the size of the neighborhood of e 
which should be generated by Tr(u). 

COROLLARY 2. If the matrices A, B and c (which define a given LP-system) contain 
only rational numbers, then for some integer r > 0, D = Cr. 

PROOF. Observe first that each of the extreme points u1, . . , ul of D is rational. It 
follows that each of the convex cones T(u') = {t E R+ j uit = F(t)), i = 1, . .. , , can 
be generated by a finite set of rational points in the unit cube of R . We can therefore 
find large enough r such that G r contains all these points. Clearly for such r, 
Tr(u') = T(u') and thetefore Uli= Tr(u') contains a neighborhood of e. Q.E.D. 

COROLLARY 3. If there are only two players (n = 2), then for sufficiently large r, 
D= Cr. 

PROOF. In this case D C R2 and for u E D, u1 + u2 = F(e) and therefore there are 
at most two extreme points in D. By Corollary 1 it is enough to consider the case of 
two extreme points ul and u2. Then T(u') U T(u2) contain a neighborhood of (1, 1). 
Without loss of generality assume that (t, 1) E T(ul) implies t < 1 and (1, t) E T(u2) 
implies t < 1. For sufficiently large r, 

(r-l,l)E T(ul) and (1, r-l)ET(u2). 

Therefore Tr(ul) U Tr(u2) contains a neighborhood of (1, 1). Q.E.D. 
Theorem 2 can be specialized to the case r = 1. This yields a necessary and sufficient 

condition for equality of the core and the set of dual payoff vectors even without 
refinement. An alternative statement of this condition is given also in Theorem 3 
below. 

Consider the LP-system P given by: 

F(t) = maximum Ys V(S) 
SCN 

P (t): 
subject to ysts = t, 

SCN 

Ys > 0; S C N. 

F(t) is called the cover of V and for an LP-game V (which is therefore also a market 
game), F(t) is the least homogeneous concave function which has the value V(S) at tS 
for each S [10]. 

THEOREM 3. The core of Vp coincides with the set of dual payoff vectors Dp, if and 
only if F coincides with F in a neighborhood of e. 

PROOF. By Theorem 1 of [10] it follows that the core C coincides with Dp, the set 
of dual payoff vectors defined by P. (Dp is actually the set of dual optimal solutions 
for P(e).) But Dp and Dp are the superdifferentials of F and F respectively, at e. Since 
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the two functions are piecewise linear, the equality D; = Dp holds if and only if F and 
F coincide in a neighborhood of e. Q.E.D. 

4. Coincidence of the core and the set of dual allocations. There are several known 
classes of LP-games for which D = C, even without refinement. These include the 
optimal assignment games of Shapley and Shubik [11], simple network games, Kalai 
and Zemel [5], and location games on tree networks, Tamir [13]. Below we study in 
more detail the conditions which give rise to the equality of D and C. We examine two 
classes of LP-systems for which this equality holds and which together properly 
subsume all classes of LP-systems mentioned earlier. For both types of systems, it is 
possible to derive the equality D = C directly from Theorem 2 or Theorem 3. 
However, we use here a direct approach which illuminates the specific features of these 
systems. In order to highlight the structure of the system involved, we modify the 
convention used to describe LP-games in the preceding sections. In particular, we 
break the matrices A and B into several blocks and introduce equality as well as 
greater than or equal to constraints. These modifications still leave us within the class 
of LP-games as defined previously. 

We first consider an LP-system of the form 

maximize cy 
P(t)' 

subject to A y < B 't, 

A2 > B2t, 

A3y = B3t, 

y >0. 

Let 

A1 B1 
A= A2, B= B2 

A3 B3 

We say that the system P is simple zero-one if A is composed of zeros and ones and B 
is the identity matrix. Under the last condition each player has complete individual 
control over one of the resources and therefore with each player we can associate one 
of the constraints defined by the rows of A. 

THEOREM 4. If P is a simple zero-one system, then Dp = Cp. 

PROOF. Observe that if player i is associated with a "<" constraint then V({i}) 
> 0 and if he is associated with a ">" constraint then V(N\ i}) > V(N). It follows 
that every core allocation x E R" must satisfy: 

xi > 0 if the ith constraint is "< ." 

xi < 0 if the ith constraint is "> ." 

Consider the kth column of A, and let Sk = { i aik= 1}. Then, the (primal) solution 

y* = 0, i - k, yk = 1 is feasible for P(t K). Thus, x must satisfy EieSkXi > V(Sk) 
> Ck. But these conditions, together with the sign convention on the xi's established 
previously, are precisely the constraints defining the dual set of P(N). Since iENXi 
= V(N) which is the value of P(N), it follows that x is an optimal dual solution. 

Q.E.D. 
Assignment games [1 ], simple network games [6] (in the path flow formulation) and 

location games [13] are all examples of games generated by simple zero-one LP- 
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systems. In all three cases, the matrix A possesses some special additional structure 
which ensures that the linear problem involved has solution in integers. However, as is 
clear from the proof of Theorem 4, the only requirement for the coincidence of C and 
D is that the matrix be zero-one. 

It was shown in [6] that D = C for simple network games also when the arc flow 
formulation of these games is taken. In the path flow formulation mentioned earlier, 
there is a variable associated with each path of the network while in the arc flow 
formulation there is a variable associated with each arc of the network. The arc flow 
formulation typically involves much fewer variables and is more tractable computa- 
tionally. For the equivalence between these two formulations, see [6]. The following 
class is a generalization of such systems. 

maximize cy 

subject to A y < B t, 

A2y < 0, 

where the matrix B is the identity matrix. Under these conditions we can identify the 
rows of A' with the players of V. Note that in this case 

D = x E Rn | for some w, (x, w) is an optimal dual solution for P(e) }. 

An interesting necessary and sufficient condition for a given x E R ' to be contained in 
D is given in the next lemma. 

LEMMA 1. Let x E Rn. Then x E D iff 
(i) xi > O, i = 1, . . . , n. 
(ii) 7=1 Xi = V(N). 
(iii) For every primal solution y feasible to P(e) we have (c - xA l)y < 0. 

PROOF. The necessity of conditions (i)-(iii) is obvious. For the sufficiency note that 
the third condition is equivalent to the implication A 2y < 0 = (c - xA ')y < 0. Thus, by 
Farkas' lemma, there exists w > 0 such that wA2 = c- xA . But this condition, 
together with (i) and (ii), implies that (x,w) is a dual optimal solution for P(e). 

Q.E.D. 
Note that for x E C and for a primal optimal solution y for P(e) 

n n 

(c - xA 1)y = cy-xAy= V(N) 
- xi(A y),> V(N) 

- xi= 0. 
i=l i=1 

Using Lemma 1 we conclude: 

LEMMA 2. Let x E C. Then x E D iff the optimal value of the following program is 

equal to zero: 

maximize (c-xA )y 
(Px): 

subject to A 'y < e, 

A2y < O. 

It follows that a necessary and sufficient condition for D = C is that for every x E C 
the condition of Lemma 2 holds. A class of LP-systems where this indeed is the case is 
the following: 

THEOREM 5. Let the matrices A l,A2 be such that for every objective vector c there 
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exists an optimal solution for the program 

maximize cy 

subject to A 'y < e, 

A2y < 0, 

with A ly a 0-1 vector. Then D = C. 

PROOF. Let x E C, and consider the problem Px. By Lemma 2 it is sufficient to 
show that the optimal value of this program is not positive. Let y* be an optimal 
solution for this program with the integrality property (i.e., A vy* is a zero-one vector). 
Let S = (i I (A ly*)i = 1}. Assume, on the contrary, that (c - xA l)y* > 0. Note, that y* 
is feasible to P(S) and thus V(S) > cy*. Hence, 

0<(c- xA I)y* = cy* xA ly* < V(S )-2 xi 
iES 

which contradicts our assumption that x E C. Q.E.D. 
The stipulations of Theorem 5 hold, for instance, if A2 is a totally unimodular 

matrix which contains (implicitly or explicitly) the nonnegativity constraints on the 
variables and where the matrix A is the identity matrix. The path flow formulation of 
simple network games falls into this category. 

References 

[1] Aumann, R. and Shapley, L. S. (1974). Values of Non-Atomic Games. Princeton University Press, 
Princeton, New Jersey. 

[2] Billera, L. J. and Raanan, J. (1981). Cores of Nonatomic Linear Production Games. Math. Oper. Res. 
6 420-424. 

[3] Debreu, G. and Scarf, H. (1963). A Limit Theorem on the Core of an Economy. Internat. Econom. 
Rev. 4 235-246. 

[4] Dubey, P. and Shapley, L. S. Totally Balanced Games Arising from Convex Programs. Report No. 

15/80, The Institute for Advanced Studies, The Hebrew University, Jerusalem, Israel. 
[5] Kalai, E. and Zemel, E. (1982). Totally Balanced Games and Games of Flows. Math. Oper. Res. 7 

476-478. 

[6] and . (1982). Generalized Network Problems Yielding Totally Balanced Games. Oper. 
Res. 30. 

[7] Owen, G. (1975). On the Core of Linear Production Games. Math. Programming 9 358-370. 
[8] Rosenmuller, J. (1980). L.P.-Games with Sufficiently Many Players. Technical Report No. 103, 

Institute of Mathematical Economics, University of Bielefeld. 
[9] Samet, D., Tauman, Y. and Zang, I. (1984). An Application of the Aumann-Shapley Prices for Cost 

Allocation in Transportation Problems. Math. Oper. Res. 9 25-42. 
[10] Shapley, L. S. and Shubik, M. (1975). Competitive Outcomes in the Cores of Market Games. 

R-1692-NSF, The Rand Corporation. 
[11] and . (1972). The Assignment Game; 1. The Core. Internat. J. Game Theory 1 111-130. 
[12] and . (1969). On Market Games. J. Econom. Theory 1 9-25. 
[13] Tamir, A. (1980). On the Core of Cost Allocation Games Defined on Location Problems. Department 

of Statistics, Tel-Aviv University. 

J. L. KELLOGG GRADUATE SCHOOL OF MANAGEMENT, NORTHWESTERN UNIVERSITY, 
EVANSTON, ILLINOIS 60201 


	Article Contents
	p. 309
	p. 310
	p. 311
	p. 312
	p. 313
	p. 314
	p. 315
	p. 316

	Issue Table of Contents
	Mathematics of Operations Research, Vol. 9, No. 2, May, 1984
	Front Matter
	Necessary Conditions in Nonsmooth Optimization [pp.  159 - 189]
	Minimum Convex Cost Dynamic Network Flows [pp.  190 - 207]
	On the Marginal Function in Nonlinear Programming [pp.  208 - 221]
	Duality and an Algorithm for a Class of Continuous Transportation Problems [pp.  222 - 231]
	A Finite Method for the Solution of a Multi-Resource Allocation Problem with Concave Return Functions [pp.  232 - 243]
	A Note on Approximation Schemes for Multidimensional Knapsack Problems [pp.  244 - 247]
	Single Machine Scheduling with Precedence Constraints of Dimension 2 [pp.  248 - 259]
	A Note on Expected Makespans for Largest-First Sequences of Independent Tasks on Two Processors [pp.  260 - 266]
	A Unifying Note on Fatou's Lemma in Several Dimensions [pp.  267 - 275]
	Constrained Undiscounted Stochastic Dynamic Programming [pp.  276 - 289]
	On Stationary Strategies in Countable State Total Reward Markov Decision Processes [pp.  290 - 300]
	Dichotomous Search for Random Objects on an Interval [pp.  301 - 308]
	On the Core and Dual Set of Linear Programming Games [pp.  309 - 316]
	Errata: Approximate Purification of Mixed Strategies [p.  317]
	Back Matter



