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The egalitarian solutions for general cooperative games which were defined and axiomatized 
by Kalai and Samet, are compared to the Harsanyi solution. It is shown that axioms used by Hart 
to characterize the Harsanyi solution can be used to characterize the (symmetric) egalitarian 

solution. The only changes needed are the omission of the scale covariance axiom and the 
inclusion, in the domain of the solution, of games which lack a certain smoothness requirement. 
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1. Introduction 

Axiomatic characterization of solutions for cooperative games has a long history, 
but until recently only solutions for cooperative games with transferable utility and 
bargaining problems have enjoyed axiomatic treatment. Lately, the axiomatic 
approach was applied to three solution concepts for cooperative games without 
transferable utility. Aumann (1983) provided an axiomatic characterization of the 
nontransferable utility (NTU) value introduced by Shapley (1969). Hart (1983), 
using axioms which are closely related to those of Aumann, gave an axiomatic 
definition of the Harsanyi solution (1959, 1963). Kalai and Samet (1983) defined and 
characterized axiomatically the family o f  egalitarian solutions for games without 
transferable utility. 

The egalitarian solutions differ essentially from the NTU value and the Harsanyi 
solution. While the latter two solutions are covariant with utility rescaling applied 
separately to each one of the players, egalitarian solutions are not. As such, egali- 
tarian solutions are said to admit interpersonal comparisons of utility. 

The axioms used by Kalai and Samet are also different from those used by 
Aumann and Hart. 

The monotonicity axiom used for the egalitarian solutions is a stronger axiom 
(when supported by a Pareto optimality axiom) than the independence of irrelevant 
alternatives (IIA) axiom which is shared (in different versions) by both the NTU 
value and the Harsanyi solution. Also, the additivity required by Kalai and Samet 
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('additivity of  endowments') is of a different nature than the conditional additivity 
used by Aumann and Hart. The axioms of monotonicity and additivity of endow- 
ments used to characterize the family of t he  egalitarian solutions highlight the 
difference between these solutions and the NTU value and the Harsanyi solution 
since the latter solutions do not satisfy these axioms. 

In this paper we demonstrate the similarities between the egalitarian solutions and 
the Harsanyi solution by showing that the symmetric egalitarian solution (from 
which the other egalitarian solutions can be derived by rescaling of utility) can be 
characterized by axioms used to define the Harsanyi solution. To this end we have 
only to drop one axiom, the scale covariance axiom, and to enlarge the domain of 
games on which the solution is defined by allowing games for which the set of 
feasible outcomes of the grand coalition, V(N), is not smooth. This axiomatization 
illuminates the differences and similarities of these two solutions and shows how 
narrow (albeit deep) is the gap between them. A possible interpretation of this result 
is that intrinsic interpersonal comparisons of utility, which are part of both the 
Harsanyi solution and the NTU value, are possible only when transfer rates for the 
grand coalition can be unambiguously determined (this is the case where V(N) is 
smooth), otherwise these comparisons should be externally given. 

2. Preliminaries 

Most of the notations and definitions follow Hart  (1983). 
A finite set N is the set of players. Each nonempty subset S of  N is a coalition. 

Let ~s be the IS I-dimensional Euclidean space with coordinates indexed by the 
players in S. Thus, for x e  ~s we write x =  (xi)ieS . In particular we denote by 0s the 
origin of IR s and by ls the vector (1, 1, . . . ,  1) in [R s. Inequalities between elements 
of  ~s are interpreted coordinate-wise. ~s+ is the non-negative orthant of ~s and 
IR s + consists of all positive vectors in [R s. For A, B c_ ~s, A + B is the closure of the 
set {a + b I a e A, b e B }. For A, x erR s we denote Ax = (Aixi)i~ s. For a closed set A 
in ~s, OA is the boundary of A.  

A nontransferable utility game (a game for short) is a function V which assigns 
to each coalition S a subset V(S) of IR s. For two games V and W, V+ W is the 

N game defined by (V+ W)(S)= V(S)+ W(S) for each coalition S. For A e JR++ and 
a game V we define 2V by AV(S)= {~.xlxe V(S)} for each S. For a real number c 
the game c V is the game e V, where e = (c, c , . . . ,  c). 

We denote by F 0 the space of all games V for which V(S) is closed, convex and 
comprehensive for each coalition S. (The comprehensiveness of  V(S) means that if 
x ~ V(S) and y _  x, the y ~ V(S).) 

The space/'1 consists of the games in F0 for which: (i) V(N) is smooth, i.e. V(N) 
has a unique supporting hyperplane at each point on its boundary 0 V(N), and (ii) 
V(N) is not level, i.e. if x ,y~  V(N) and x>=y, then x=y.  

A transferable utility (TU) game is a real function u defined on all the coalitions. 
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For each TU game o there is a corresponding game V in F0 defined by 

V ( S ) = I x ~ S  i~s~Xi<-°(S)l 

for each coalition S. The set of  all games corresponding to TU games is denoted by 

FTU. For a coalit ion T and a real number c the unanimity game Ur, c is the game 
in FTU corresponding to the TU game UT, c defined by UT, c(S)= 1 if S_~ T and 

Ur, c(S) = 0 otherwise. 
A payo f f  configuration (PC) x is an element in [Is~N ~s which we denote by 

x = (Xs) s c_ N. It assigns to each coalit ion S the p a y o f f  vector Xs. In particular let 0 
denote the PC x for which Xs = Os for each S. For 2 e ~N and a PC x, 2x is the PC 
Y = (Ys)sc_N for which Ys = AXs. 

A solution function on a space of  games F is a set valued function F that assigns 
to each game V in F a set (possibly empty) F (V)  of  payoff  configurations. Each 
point  in F(V)  is a solution of V. 

3. Egalitarian solutions and the Harsanyi solution 

A payoff  configurat ion x = (Xs)scN is a symmetric egalitarian solution of  the 
game V in F0 if for each coalit ion T there exists a number  c r  such that for each 
Sc_N: 

(El) X s= E Cr, 
TcS, ieT 

(E2) Xs ~ 3 V(S). 

Note that V has no symmetric egalitarian solution if and only if for some S either 
V(S) is empty or V(S) contains the vector (c, c , . . . ,  c) for every positive real number 
c. Otherwise V has a unique symmetric egalitarian solution. (See, for example, Kalai 
and Samet, 1983.) The number  ~r  can be interpreted as the dividend allocated by 
the coalition T to each one of  its members, and thus the symmetric egalitarian solu- 
t ion seems to follow the principle of  sharing equally. For  co = (coi)ie N in [R~+ the 
payoff  configurat ion x = (Xs)s¢ N is an co-egalitarian solution of the game V in F0 
if for each coalt ion T there exists a number ~r  such that  for each coalition S: 

(E¢o) XSmcoi E ~T' 
TC_S, ieT 

2) Xs a v(s) .  

Here again V has no co-egalitarian solution if and only if for some S either V(S) 
is empty or V(S) contains the vector cco for each real c. 

We remark that the co-egalitarian solution is related to the symmetric one by 
rescaling of  utilities. Namely,  x is the co-egalitarian solution of  V if and only if 
(,0 - I x  is the symmetric egalitarian solution of  co- 1 V, where co- l = ((co/)- 1 )i e N" The 



J76 D. Samet / Egalitarian solutions 

asymmetry of the players in the co-egalitarian solution is thus only apparent and it 
can be corrected by choosing the 'right' scale of utilities. 

For further discussion of the egalitarian solution the reader is referred to Kalai 
and Samet (1983). 

A payoff  configuration x = (Xs)s c_ N is a Harsanyi solution for the game V in/"1 
if for some 2 in N [~++: 

(H1) 2x is the symmetric egalitarian solution for 2 V, 

(H2) AxN maximizes total utility in A V, i.e. 

E AixiN >- • AiY i for each y=(yi) ie  N in V(N). 
i ~ N  ieN 

A Harsanyi solution for the game V satisfies simultaneously an egalitarian re- 
quirement (H 1) and a utilitarian requirement (H2). This simultaneity is achieved by 
choosing appropriately rescaling factors for the game. These factors are en- 
dogenously determined for each game V and are not given in advance as are the 
weights in the co-egalitarian solution. Observe that this definition excludes the 
possibility of A which is not positive since in such a case 2 V is not at all a game. 
There are other definitions of Harsanyi solution in which some A's may be zero. (See 
Harsanyi, 1959, 1963.) Since we are inerested in a Harsanyi solution mainly for 
games in F1, there is no loss of generality since condition H2 may hold for such 
games only with A > 0. 

The symmetric egalitarian solution function E is the function which assigns to 
each V in F0 the set which contains the symmetric egalitarian solution of V when 
it exists and is empty otherwise. The co-egalitarian solution function E~ is similarly 
defined. The Harsanyi solution function H assigns to each game V in F~ the set of 

all the Harsanyi solutions of V. 

4. The axioms 

The following axioms imposed on a possible solution function F defined on a 
space of  games F are used to characterize the Harsanyi solution function on F1 by 
Hart  (1983). The games V and W in these axioms are arbitrary games (in F) .  

(A1) Scale covariance. F(AV)=AF(V) for  each A>0 in ~N. 

(A2) Efficiency. For each x e F(V), x s e 0 V(S) for each S. 

(A3) Conditional additivity. I f  U= V+ W, x e F ( V ) ,  y e F ( W )  and Xs+YseOU(S) 
for  each S, then x + y e F(U). 
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(A4) Independence o f  irrelevant alternatives (IIA). I f  x e F ( W )  and for  each S, 
V(S)c_ W(S) and Xse V(S), then x e F ( V ) .  

(A5) Unanimity games. For each unanimity game (Jr, o F(Ur, c)= {z}, where z~= 
i c~ I T I i f  i ~ T c_ S and Zs = 0 otherwise. 

(A6) Zero inessential games. I f  f o r  each S, OeOV(S), then OeF(V) .  

Theorem 4.1. (Hart, 1983). The Harsanyi solution function is the only solution 
function on F 1 which satisfies Axioms A1-A6. 

5. The main results 

The smoothness of V(N) required of games in FI is essential for the characteriza- 
tion of both the Harsanyi solution and the NTU value; neither one satisfies condi- 
tional additivity on F0. (See Aumann,  1983, for an example.) 

The failure of Axioms A1-A6 to characterize a solution on F0 is not due to the 
conditional additivity axiom alone, but is rather a result of inconsistency of several 
axioms which we name in the following proposition. 

Proposition 5.1. There & no solution function on F o satisfying the following 
axioms: scale covariance (A1), conditional addditivity (A3), IIA (A4), and unanimity 
games (A5). 

The smoothness of V(N) is closely related to the utilitarian part of the Harsanyi 
solution (H2) which requires maximization of total utility. Smoothness enables us 
to determine local transfer rates of  utility between the players unambigously. Since 
admitting games which are not smooth in V(N) makes the axioms inconsistent, one 
may interpret it as the inconsistency of  utilitarianism with the axioms. If we do not 
require utilitarianism, we are still left with equity or egalitarianism. But this require- 
ment is not consistent with scale covariance. It is thus reasonable to delete one of 
the axioms causing the inconsistency: the scale covariance axiom. This intuitive 
argument is justified by the following theorem. 

Theorem 5.2. The symmetric egalitarian solution function & the unique solution 
function on I" o satisfying Axioms A2-A6. 

It is possible to require that an egalitarian solution maximizes total welfare using 
the same exogenously given weights that are used for equating gains. We denote the 
solution function thus defined by G. More precisely, a payoff  configuration 
X=(Xs)sc_N is in G(V) if and only if: 

(i) x EE(V).  
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(ii) Xis >_ ~ yi for each S and each y e V(S). 
i ~ S  i ~ S  

The solution functions E and G are related to each other in the following 
theorem. 

Theorem 5.3. The minimal and maximal (relative to set inclusion) solution functions 
on Fo satisfying Axioms A2-A5 are G and E, respectively. 

Finally, the nonsymmetric egalitarian solutions may be obtained by changing the 
unanimity games axiom (A5). For a given co > 0 in [R N consider the axiom: 

Axiom A5-to. For each unanimity game Ur, c, F(Ur, c)= {z}, where 
i = ccoi/(~,j~s co j) if i e T c _ S and z~ =0  otherwise. ZS 

Theorem 5.4. The co-egalitarian solution function & the unique solution function on 
F o satisfying Axioms A2-A4, A5-co and A6. 

Observe that this characterization differs from that of Kalai and Samet in that 
it does not define the whole family of egalitarian solution, but rather defines each 
egalitarian solution separately by changing appropriately Axiom A5. The weights 
that are nowhere mentioned in the axioms of Kalai and Samet are given here as part 
of  Axiom A5-co, although their meaning as interpersonal utility comparisons 
weights is a result of the combination of A5-co with the other axioms. 

6. Proofs 

Proof of Proposition 5.1. Consider the games V0, VI and V2 which are defined as 
follows: 

V°(N)= Ixe~ 'g  i~N~ Xi<--INII' 

VI (N) = {X e [[P,N } x <-- I N} , 

V2(N)= IxelRN ieN~ aixi<--lNIl 

and 
v (s) = 

where a = (ai)ie N satisfies: 

a>O,  a ¢  1,v 

for S ~: N and i = 1, 2, 3, 

and a i= lNI.  
i e N  

Suppose that F is a solution function on F 0 which satisfies Axioms A1, A3, A4 and 
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A5. Then by A4 and A5: 

F(VI) ~_F(Vo)= {z}, 

where zN = 1N and Zs = Os for S ~ N .  By A l: 

F(Vz)= F(a-IVo)=a-~F(Vo) = {a-lz}, 

where a -1 = ((ai) -1)i~u and 

F(V1 + Vz)= F(2 Vz)= 2F(Vz)= {2a-lz}. 

now w=a-az+z satisfies Ws~O(V 1 + V2)(S ) for each S and thus by A3 a-lz+z = 
2a-~z, which contradicts a S  1 N. [ ]  

Proposition 6.1. The symmetric egalitarian solution function E, satisfies Axioms 
A2-A6. 

Proof.  Efficiency is satisfied by E2. For the conditional additivity, let xeE(V) ,  
y e E ( W )  and Xs+Ys=O(V+ W)(S) for each S. Clearly, x+y  satisfies E2 for the 
game V+ W. There exist numbers ~r  and r/r for each T such that x~ = ~,r:s,i~r~r 
and y~ = ~r~_s,~r~r, for each S. Therefore, (Xs +ys) i= ~,r~s,t~r(r+ tlr and E1 is 
also satisfied for x+y. 

To check IIA assume x eF(W) and for each S, V(S)c W(S) and Xs ~ V(S). 
Clearly, for each S, Xs~OV(S) and thus x satisfies E2 for V. E1 is satisfied by x 
since x eF(W). (Observe that condition E1 is independent on the game.) The sym- 
metric egalitarian solution for each unanimity game Ur, c is seen to be the one 
specified by Axiom A5 by choosing ~s=c/ISI and ~ r = 0  for T:gS. Finally, if 
0 ~ O V(S) for each S, then 0 satisfies E2 for V and E1 is satisfied by choosing ~r = 0 
for each T. [] 

Proposition 6.2. For each solution function F which satisfies A2-A5, F(V) c_ E(V) 
for each VeFo. 

Proof.  Let F be a solution function which satisfies A2-A5 and let x = (Xs)s~ m be 
a solution in F(V). Define the games VI and U0 by: 

Vl(S)={xe~S[x<<_Xs}, for each S, 

U°(S )=Ix~ ' s  i~s~" xi<Ol' f o r e a c h S .  

By Proposition 6.1 in Har t  (1983), for every game Ue FTu, F(U)=H(U) and since 
for such a game H(U)=E(U) we conclude that F(U)=E(U). Since UoeFTu and 
E(U0) = {O} we find that  F(U0) = {O}. By IIA, xeF(Vl).  But xs +OseO(V1 + Uo) for 
each S and thus by the conditional additivity (A3) x e F(VI + U0). Again V1 + U0 is 
a game in FTU and therefore x e E ( V  1 + Uo). Finally, we observe that Xse OV(S) for 
each S and therefore x e E(V),  which shows that F(V)c_ E(V). [] 
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Proof of Theorem 5.2. Let x ~ E(V). Define the game V 2 by: 

V2(S)= IXE[~S ies~'~ xi <~ i~s~ XSl' for each S. 

The game V~ is the one defined in the proof of Proposition 6.2. By the definition 
of E, and since V2eF-rtJ, {x} =E(VI)=E(V2)=F(V2). Therefore by IIA xeF(Vl). 
Consider the game W defined by W(S)= V(S)-Xs for each S. Then 0 tOW(S) for 
each S and by A6 0 e F(W).  But V1 + W= V and for each S Xs + Os ~ a V(S) which 
by conditional additivity A3 imply x ~ F(V). Therefore E(V) c_ F(V) and together 
with Proposition 6.2 the proof is complete. [] 

Proof of Theorem 5.3. By Proposition 6.2 E is the maximal solution function 
which satisfies Axioms A2-A5. We now show that for each solution function F 
which satisfies A2-A5 F(V):3 G(V) for each V~Fo. Let x=(Xs)scN be a solution 
in G(V). Consider the game V 1 defined by VI(S)= {xe~Sl ~,i~s xi< ~,i~sX~} for 
each S. Since {x}=E(V) it follows that {x}=E(V1) and because VI~.FTU, 
F(V1) =E(V 1) = {x}. By the definition of G, IIA is applicable to the games V and 
VI and it implies x eF(V). We finish by proving that G satisfies A2-A5. The 
Axioms A2, A3 and A5 are satisfied by G since G(V)c_E(V). To see that IIA 
(Axiom A4) is also satisfied, let x~  ~ff(W) and suppose that for each S V(S) c._ W(S) 
and Xs~. V(S). Then x~.E(V) because E satisfies IIA. Moreover, for each S, 
~,i~sX~ maximizes total utility over W(S) and therefore also over V(S), which 
shows that x e G(V). [] 

Proof of Theorem 5.4. First we observe that if a solution function F is satisfying 
Axioms A2, A3 and A5-co, then for each V~FTu, F(V)=Eo~(V). The proof is 
completely analogous to that of Proposition 6.1 in Hart (1983). Using this fact the 
proof of Theorem 5.4 follows by replacing each E in the proof of Proposition 6.2 
and Theorem 5.2 by E~,. [] 
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