Available online at www.sciencedirect.com

SCIENCE@DIRECTE GAMES ar].d
Economic
o Behavior
ELSEVIER Games and Economic Behavior 48 (2004) 139-153

www.elsevier.com/locate/geb

Bargaining with an agenda

Barry O'Neill,2 Dov Samet;* Zvi Wienerd and Eyal WinteP

@ Department of Political Science, University of California, Los Angeles, CA, USA
b Faculty of Management, Tel Aviv University, 61390 Tel Aviv, Israel
€ School of Business Administration, The Hebrew University of Jerusalem, Jerusalem, |srael
d Department of Economics and Center for Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel

Received 12 June 2002
Available online 14 October 2003

Abstract

Gradual bargaining is represented by an agenda: a family of increasing sets of joint utilities, para-
meterized by time. A solution for gradual bargaining specifies an agreement at each time. We axiom-
atize an ordinal solution, i.e., one that is covariant with order-preserving transformations of utility. It
can be viewed as the limit of step-by-step bargaining in which the agreement of the last negotiation
becomes the disagreement point for the next. The stepwise agreements may follow the Nash solution,
the Kalai-Smorodinsky solution or many others and still yield the ordinal solution in the limit.
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1. Introduction
1.1. Gradual bargaining

Nash’s pioneering paper on two-person bargaining (Nash, 1950) has led to two streams
of research. One develops axiomatizations leading to Nash'’s solution or to later ones, while
the second constructs plausible non-coofeeagames behind the bargaining problem,
then solves these games. Less attention has been paid to expanding the definition of what
constitutes a bargaining problem.
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This paper looks at bargaining as extended over time. Our primitive is a family of
bargaining problems (each of which is a set of felesagreements), ther than a single one
as in Nash’s conception. We refer to such a family of feasible setsagenada. A gradual
bargaining problemis defined by its agenda and an initial agreement point. For clarity and
simplicity we assume that the time-ordering of the feasible sets is continuous.

Whereas a solution to a Nash bargaining problem specifies a single agreement, a so-
lution for a gradual bargaining is a path of agreementsgramual agreement—which
specifies an agreement point for each point in time. We propose a solution for gradual
bargaining, namely, a function that assignsetxh gradual bargaining problem a certain
gradual agreement. For a reason that Wwdtome clear, we call this solution tbedinal
solution.

Our model is meant to capture situations inig¥tthe parties are to reach agreements on
several issues negotiated one after the other. These issues can have a natural order as is the
case in labor contracts signed annually, or the division of profits determined at the end of
each quarter. Alternatively, the issues can leoed by the bargainers, as in a negotiation
to end a political conflict in which territoriaeconomic and other issues are negotiated
sequentially. In each of these cases, the possible agreements at each stage of the bargaining
process coveall the issues raised until this stageénus, for example, in a case of profit
sharing the possible agreements at a certain stage are all the possible sharing arrangements
of the profit accumulated up to this stage.

1.2. The axioms

Our framework views the agreement reachédach stage as final for the issues on the
table up to that time. This assumption is expressed in our axiomatic characterization by
the time consistency axiom. It requires thakting the agreemengached on the solution
path at a given point in time and applying the solution rule to the same agenda with this
agreement as an initial point yields the same path.

The axiom of time consistency can be compared to the axiom of step-by-step negotiation
that Kalai (1977) uses to characterize the family of proportional solutions for Nash'’s
bargaining problem. In Kalai's model a bargain is concluded in two steps. The first step
involves a problem with the same disagreement point as the entire problem but a smaller
feasible set, and the second uses the solution of the first as its disagreement point. Kalai's
axiom requires that the same agreememtréached independently of the choice of the
feasible set in the first stage, and so is much stronger than ours. An axiom of agenda
independence is also used by Ponsati and Watson (1997) to characterize the Nash solution.
In contrast to Kalai's and Ponsati and Watson’s axioms, our time independence axiom
involves a given agenda.

The ordinal solution is characterized by five axioms. The time consistency axiom,
which has already been discussed, is sgetti the gradual bargaining setup. So also
is a directional continuity requirement which depends on the solution being a path of
agreements. The other three axioms are analogous to axioms commonly used for Nash'’s
bargaining problem. We reqeithat the agreement reached@ath point in time be efficient
in the set of feasible utilities at that time. The solution of a symmetric problem must also



B. O’'Neill et al. / Games and Economic Behavior 48 (2004) 139-153 141

be symmetric. Further, the solution must be invariant under positive linear transformations
of a bargainer’s utility.

The ordinal solution is described by a differential equation that is simple to interpret: at
each point on the agreement path the ratio of players’ marginal utility gains (with respect
to time) is the rate of substitution of their utilities on the current efficient frontier. Thus,
using the marginal rate of substitution to make an interpersonal comparisons of utility, the
gains of solving the next stage of the negotiation are divided in egalitarian way.

1.3. Ordinality

The name of the proposed solution, the ordinal solution, is suggested by two properties.
First and most important, ordinality applies to utility representation. The ordinal solution
is covariant with respect to order-presenyi(i.e., monotonic) ansformations of each
bargainer’s utility. Ordinality also refers to time: the solution depends only on the order
of the agenda and not the precise timing of when issues are negotiated.

Covariance with respect to order-preserving transformations is desirable for a solution,
since it means that the solution is based on the most elementary aspect of utility—the order
of outcomes—and nothing else. Shapley (1969) demonstrated that the two-person Nash
problem has no single-valued solution satisfying symmetry, efficiency, and covariance
with respect to order-preserving transformations of the utility functions. He showed that
the three-person problem, however, has such a solution. Recently, Safra and Samet (2000)
extended this ordinal solution to more than three players. The solution proposed here for
gradual bargaining is ordinal for any number of players, even for two players.

The derivation of the ordinality of utility from the axioms is surprising. The covariance
axiom requires that the solution be covariant with respect to linear transformations only.
Thus even if one insists on solving gradual bargaining problems using von Neumann—
Morgenstern utilities, one is led to the conclusion that any other utility function would
result in the same path of gradual agreemgmsvided one accepts the proposed axioms.

It is easy to see why these axioms imply ordinality. From the directional continuity and
time consistency axioms, the agreemesdahed at a certain time depends only on the
local behavior of the agenda. Thus, the solution is covariant with respect to monotonic
transformations ofthe utilities that are locally linearBut every smooth monotonic
transformation is, in an appropriate sense, locally linear.

Obviously, it is possible to strengthen the covariance axiom by requiring covariance
with respect to monotonic transformations. Potentially, this could lead to a characterization
of the ordinal solution in which one or more of the other axioms would be weakened.
Unfortunately, we could not find appealing weakened axioms.

1.4. Sep-by-step bargaining

The ordinal solution has an interesting relation to various solutions of Nash’s bargaining
problem. Suppose an agreement is reached attaicéime, and usinghis agreement as
a status quo point we solve the Nash bargaining problem with the set of utilities that are
feasible after some time increment. Assume we solve this problem using the Nash solution.
It turns out that when the time increment approaches zero, the utility gains of the players
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per unit time converge to those predicted by the ordinal solution. Thus, the ordinal solution
is the limit of a discrete process in which eaaffreement serve as a status quo point for

a Nash bargaining problem of the next stage, and the next agreement is the Nash solution
for this problem. Interestingly, if in therpcess described above we use the Kalai and
Smorodinsky (1975) solution instead of the Nash solution, we also end up with the ordinal
solution. Indeed, any solution may be used as long as it coincides with the Nash solution
on linear problem’sand satisfies a certain continuity condition that allows linearization of
small feasible sets.

1.5. Related works

Continuous time processes in the context of the Nash bargaining model were used
by the following authors among others. Maschler et al. (1988) characterized the Nash
solution by means of a system of differentigjuations and interpreted the solution as a
continuous process of moving within the féads set of utilities. Livne (1989) and Peters
and van Damme (1993) used a similar approach to characterize the continuous version
of Raiffa’s solution (Raiffa, 1953). Zhou (1997) used a differential equation to extend the
Nash solution to non-convex problems. In all these works bargaining is described by a Nash
bargaining problem, that is a single set of feasible utilities, and not as a family of Nash
bargaining problems as here. Related papers studied discrete bargaining with multiple pies:
Fershtman (1990) and John and Raith (1997) in a bilateral context, and Winter (1997) and
Seidmann and Winter (1997) in a multilateraintext. Nicold and Perea (2000) offered a
different model of two-person bargaining that also leads to an ordinal solution. An ordinal
solution, due to Shapley, to Nash’s bargaining problem, in terms of a differential equation,
can be found in Calvo and Peters (2002). In the theory of cost sharing, continuous time
solutions are common since the introduction of the Aumann-Shapley pricing by Mirman
and Tauman (1982). Recently, Sprumont (1998) introduced such a solution for ordinal cost
sharing.

The Pareto surfaces generated by anndgecan be used to describe a continuous-
time bargaining over a shrinking pie. Bergman (1992) studied two-person non-cooperative
continuous-time bargaining in such a framework (see also Binmore, 1987). He developed a
differential equation that corresponds to our solution in the special case of two players, by
taking the continuous-time limit of the altetivag-offer non-cooperative bargaining-game.

In contrast, we motivate the ordinal solution axiomatically and by considering step-by-step
cooperative bargaining.

In this paper the bargaining agenda is given exogenously. However, a few authors
studied the choice of agenda itself as a non-cooperative bargaining problem. An agenda in
these studies is typically a finite set of issues. Negotiations are modelled as hon-cooperative
extensive form games and the results conamminly the comparison of agendas (the
ordering of issues) in terms of their prospedtyielding efficient outcomes. Examples are
Fershtman (1990) and John and Raith (1997) in bilateral negotiations, and Winter (1997)

1 This is the case when the solution is efficient, syminetnd covariant with respect to linear transformations
of utilities.
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in a multilateral framework. Thomson (1994) gives a concise survey of bargaining models
derived from Nash’s axiomatic approach, including Shapley’s ordinal solution.

1.6. The paper plan

Section 2 formalizes the gradual bargamijproblem, defines gradual agreements and
describes solutions to gradual bargaining problems. The ordinal solution is introduced in
Section 3 and axiomatized in Section 4. Section 5 shows the two ordinal properties of
the solution. The relation of the gradual solution to other concepts in the Nash bargaining
framework is in Section 6. Finally, the proofs appear in Section 7.

2. Gradual bargaining
2.1. Gradual bargaining problems

Consider a finite se¥ of n players. A gradual bargaining problem is one in which they
negotiate the issues one after another. In term of utilities, it is described by feasible sets
that expand over time. For each timéhe set forr is the subset of utilities ifRY that
correspond to possible agreements on the issued negotiated until

In our continuous time model the expanding feasible sets are described by an increasing
function f onRY, the value of which is time. The s¢t € RV | f(x) <t} is the set of
utility vectors of possible agreements on issues negotiable up ta time

Definition 1. An agenda is a real-valued functiorf onR”". The agendg defines for each
time ¢ thefeasible set Stf ={x e RY | f(x) <t}. We assume thaf satisfies the following
conditions.

1. f is continuously differentiable.

2. Vf>0.

3. Vfislocally Lipschitz, i.e., for each bounded subseRdf there is a constark such
that for eachx andy in the subset] Vf(x) — V()| < K|lx — y|.

We denote by the set of all agendas. By the strict monotonicityfofcondition 2),
forr <t/ S,f C Stjf. The setlx e RV | f(x) =1t} is the Pareto frontier of,f.

Definition 2. A gradual bargaining problem (or problem, for short) is a pair f, a), in
F x RV, of an agendg and aninitial (status quo) point a.

2.2. Solutions
A gradual bargaining problem results interim agreements, one for each point in

timet, which are given as-tuples of utilities. A specification of these agreements is called
a gradual agreement.
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Definition 3. A gradual agreement ¢ is a continuously differentiable path iR",
¢:R— RN,

Foreachtime, ¢ (¢) is the vector of utilities determined by the interim agreement at time
The set of all gradual agreements is denotedrhy

Definition 4. A solution for gradual bargaining problems is a function
@:F xRV —» 2,

such that for each probleiy, a), the gradual agreemett= @ ( f, a) is feasible at each
time, that is,f (¢ (¢)) <1, for all ¢.

The initial point of a bargaining probleny, a) is the agreement that holds at tiryiéq).
It can have two interpretations. First, we can think of the tifi{e) as being the beginning
of the bargaining process with being the status quo point. Alternatively, we can think
of the process as being started befgi@), and reaching the agreemantat the time
f(a). In this case a solution may specify not prthe agreementseached after time
f(a) but also the agreements at pays$ times that led to the agreementWe adopt
the second interpretation to simplify the presentation, but similar results can be formulated
for solutions that are defined only for times later than that of the initial point.

3. Theordinal solution

The ordinal solution is determined by a differential equation. In Section 4 we
characterize this equation axiomatically, but here we outline a derivation of it by reducing
the solution of a gradual bargaining problem to the solution of a sequence of Nash
bargaining problems.

Equipped with a solution for Nash bargaining problems, one may approach a gradual
bargaining as follows. At each stage solve thesh bargaining problem that consists of the
feasible set at this stage with the agreement of the previous stage as a status quo point. In
our continuous setup, where there is no “previous” stage, we require an appropriate limit
process, which we describe next.

Suppose that at time an efficient agreement is reached for the agendé& Thus,

f(x) =1t. Consider the Nash bargaining problem that consists of the status quaxpoint
and the feasible set at time+ At, that is, the sef{y | f(y) <t + At}. An efficient
solution for this Nash bargaining problem is a pojnt x + Ax on the Pareto frontier
of the feasible set, that ig;(x + Ax) =t + At. For the left-hand side we take the first
order approximationf (x) + Y_; f; Ax;, where thef;'s are the partial derivatives of
atx. Using this approximation, the requirement that Ax be on the frontier is given by
> fidxi = Ar.

Suppose we apply the Nash solution to this problem. Tkenjs the maximizer of
the functionk(Ax) = []; Ax; subject to) ", fi Ax; = At. This constrained optimization
problem is solved by the vectatx that satisfies for some (the Lagrangian multiplier of
the constrainth; = Af;, for eachi. As h; = h/Ax;, we conclude that\x; = (h/A)(1/f;).
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Substituting the right-hand side in the constraint, we find that = A¢/n. Thus, for
eachi, Ax; = At/(nf;). This leads to the differential equation described next.

As we shall see in Section 6, the same differential equation results if we use the Kalai—
Smorodinsky solution rather than the Nash solution. Moreover, any solution that coincides
with these solutions on linear bargaining problems and satisfies a simple continuity
property gives rise to the same equation.

Definition 5. The ordinal solution for gradual bargaining problems associates with each
problem(f, a) the unique gradual agreemefthat solves the simultaneous differential
equations

o [ of -+
¢,»(t)—[na—m(¢(t))} , ILEN (1)

with the initial conditiong (f (a)) =a.

By condition 2 in Definition 1, the right-hand side of (1) is well defined. LR \ 0 —
RY be the functionf (x1, ..., x,) = (x{l, e, x,jl). Then, the set of Egs. (1) can be written
as

$'0)=1(nV £ (p(1))).

Sincel is Lipschitz on any domain that is bounded away from O, it follows by condition 2
that the right-hand side of (1) is locally Lipschitz. It then follows from conditions 1 and 3,
that (1) has a unigue solution (see, for example, Hartman (1982)).

We show later that for each f(¢(¢)) =¢. That is, the agreement at timebelongs
to the Pareto frontier Qﬁ,f, the feasible set at In light of this, the interpretation of the
ordinal solution is straightforward. The ratio of playéissand j's marginal increments of
utility at time 7, ¢; (t)/¢ (1), is, according to (1), the marginal rate of substitution’sf
and’s utilities at¢(r) along the Pareto frontier cﬂ‘ Thus the ordinal solution equates
players’ gains according to the appropriate substltut|on rate of their utilities.

4, Axiomatic characterization

We now consider a set of axioms that characterize the ordinal solution. The first three are
analogous to axioms in many characterizations of solutions of Nash bargaining problems.
We require first that no feasible outcome at tindominate the agreement pointrat

Axiom 1 (Efficiency).For eacht, if x > @ (f,a)(t), then f(x) > t.

Since the Pareto surface of tﬁé is {x | f(x) =1}, and since solutions are required to
be feasible, this axiom is equivalent to requiring that for eact(® (£, a)(¢)) =1t.
The next axiom corresponds to the standard symmetry condition used for several
solutions of Nash’s problem. For a permutatiomafz : N — N andx = (x;);en in RY,
we denoterx = (xr))ien. A problem(f, a) is symmetric if for any permutationr and
x eRN, f(x) = f(7x) anda = 7 (a) (i.e., all coordinates of are the same.)
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Axiom 2 (Symmetry)If (f, a) issymmetric, then for each ¢, @ (f, a)(z) issymmetric, i.e.,
all its coordinates are the same.

The following axiom requires that the solution be covariant with respect to positive lin-
ear transformations of utility. Lat= (s;);cy be a vector of positive linear transformations
of R. Forx in R, we denota (x) = (s; (x;))ien . For each functiorf onR”, the function
fs is defined by( f5)(x) = f(s(x)).

Consider two bargaining problenig, b) and (f, a), the first formulated in terms of
the utilities before the transformatierand the second in utilities after the transformation.
Thatis, fs = g, anda = s(b). The covariance axiom requires that the solutioHt) be
the one obtained by applying the transformatido the solution of g, b).

Axiom 3 (Covariance)Let s = (s;);cny beavector of linear transformations. If for the pair
of problems (f, a) and (g, b), g = fs,anda = s(b), then @ (f, a) =s(D(g, b)).

The next two axioms are special to the gradual bargaining context. The first expresses
the essence of gradual bargaining: bargaining restarts at each point in time with the “last”
agreement serving as a status quo point. The axiom requires that taking any of the interim
agreements as the initial status quo result in the same path of agreements.

Axiom 4 (Time consistency)f @ (f,a)(t) =x,then @ (f, x) = @(f, a).

Next we require that the solution be continuous in the following sense. If the agendas
in the two problems f, a) and (g, a) are close in a neighborhood af then the rates of
utility gains ata for these two problems are also close.

Proximity of agendas in the neighborhooda€tannot be measured by the difference
| f — g| in the neighborhood of, since it reflects only diffeences in time measurement.

By adding time constants the difference between any two agendas can be madeszero at
and hence, by continuity, small in the neighborhood: (&ee also the property of time
ordinality below). What matters is the wag and ¢ change in the neighborhood of,

which leads to the following definition.

For a bounded neighborhoagl of a we defined a pseudo-metritz on the set of
agendasF, such that for eaclf andg, dg(f, g) =sup.cp IVf(x) — Vg®)l.

Axiom 5 (Directional continuity)For any problem ( f, a) and a neighborhood B of a, the
function

f—2'(fLa)(f(@)

is continuous with respect to the pseudo-metric dp on F .

Theorem 1. The ordinal solution is the unique solution that satisfies axioms 1-5.
Furthermore, these axioms are independent.
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5. Ordinality

We justify the name of the solution by showing that it is ordinal with respect to both
utilities and time.

The first property considerably strengthens the covariance axiom by requiring that the
solution be covariant not only with linear trsfiermations ofutility, but with monotonic
transformations of utility. The notation is the same as used above for the covariance axiom.

Property 1 (Utility ordinality). Let s = (s;)iey be a vector of strictly increasing
transformations of R. If for the pair of problems (f, a) and (g, b), g = fs,and a = s(b),
then @ (f, a) = s(P (g, b)).

Feasible sets of utiIityS,f, as well as agreements along the solution path have been
parameterized here by time. The next property says that only the order of the feasible
sets and agreements matters, not their precise timing. To formulate this exactly, consider
a time transformation, which is simply an increasing function: R — R. When time is
transformed by\, agendas and gradual agreemaafitange correspondingly. The agenda
f is represented, after the transformation gy which is defined byAf)(x) = A(f (x)).
Similarly, a gradual solution is represented by which is defined by¢i) (1) = ¢ (A(2)).

Property 2 (Time ordinality).Let f be an agenda, and A a time transformation. If Af is
anagendaand ¢ = @ (Af, a) then @ (f,a) = pA.

Theorem 2. The ordinal solution satisfies the properties of utility ordinality and time
ordinality.

6. Gradual and one-shot bargaining

A one-shot bargaining problemis a pair(S, d), whereS, the feasible set, is a subset
of RY, andd, the status quo (or disagreement point), is a poinf.ilet D be a set of
one-shot bargaining problems. golution for D is a functiono : & — R", such that for
each problentS, d) € D,0(S,d) € S.

An agenda defines a continuum of feasible sets. We are interested in agendas for which
any of these sets, in combination with a disagreement point, belongs to the donoaier
whicho is defined.

Definition 6. An agendaf, is compatible with D if for eachr andd € S,f, (S,f, d)e D.

A gradual agreement can be thought of as the limit of agreements achieved in discrete
time when the time intervals between agreements tend to zero¢ Ust a gradual
agreement, ang(¢) be the interim agreement at time Suppose the next agreement
is reached at time’ > r. The feasible set at tim€ is St-’f, and the status quo point
is the most recent agreemeptr). Applying the solutions to this one-shot bargaining

problems results in the agreememsf, ¢(¢)). Dividing the utility gains of this agreement,
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cr(St-’,p, ¢ (1)) — ¢(1r), by the elapsed timg — ¢ yields the rate of change in utility gains. If
the limit of this rate, when’ converges ta, is ¢’ (1), for eachr, then we say the gradual
agreement is compatible with the solutionr. The following definition formalizes the
idea that a gradual solutiog@ is compatible with a solutiom for one-shot bargaining

problems in the way just described.

Definition 7. Let o be a solution onD, and @ be a solution for gradual bargaining
problems. We say thap is compatible with o if for each agendg’ that is compatible
with D, and for eaclx, the gradual agreement= @ ( f, a) satisfies for each,

o (S). (1) — ()
v —t '

¢'(t) =lim (2)
t'\t

Thus the rate of utility gains at a poigtz) on the ordinal solution path is the limit of
the rate of gains, according to the solutioyfor small problems witly () being the status
quo point.

We now consider two properties of a solutienof one-shot bargaining problems that
guarantee that the ordinal solution be compatible with

A problem (S, d) is linear if S is of the form{x | c(x — d) < y}, for somec > 0 in
RY and positive real number. We assume that the domain®f £, contains all linear
problems. The first property concerns solutions for linear bargaining problems.

Property 1 (Solutions for linear problems)f S = {x | c(x —d) < y},theno(S,d) —d =
yI(nc).

This property is possessed by any solution that is efficient, symmetric and covariant with
respect to linear transformation of utility, such as the Nash and the Kalai—Smorodinsky
solutions.

The next property concerns the approximation of bargaining problems by linear

problems. Consider an agendathat is compatible withD, and a problen(Stff, d). Let
f(d) =1, and note thas;, = {x | f(x) — f(d) <1 —t}. We approximatés, ) by the
linear problem(S/, d) whereS/ = {x | (V£)(d)(x —d) <t —1}.

Property 2 (Linear approximation)Let f be an agenda that is compatible with . Then

_o(Shdy—d  o(S),d)—d
lim —— = jim —
1t t—t T ' —t

Theorem 3. The ordinal solution is compatible with any solution o satisfying Properties 1
and 2.

The proof of this theorem is straightforward. If a soluti@rsatisfies Property 1 then
a(:if,, d)—d={ —0)I((nVf)(d)). Therefore, Property 2 is equivalent, in this case, to

requiring that the ordinal solution be compatible with
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We prove that the Nash and the Kalai—-Smorodinsky satisfy Properties 1 and 2. This
yields the following theorem.

Theorem 4. The ordinal solution is compatible with the Nash and the Kalai—Smorodinsky
solutions.

7. Proofs

Proof of Theorem 1. Let @ be the ordinal solution. To see that it is efficient, ¢et=
@(f,a), and denote.(r) = f(¢(1)). Then, by (L)X (1) =D ;cy 0f/0xi (9 (1)@ (1) = 1.
Also, A(f(a)) = f(d(f(a))) = f(a). Thereforer(r) =t.

Next we show thatp satisfies the ordinal utility axim, which is stronger than the
covariance axiom. Assume théf, a) and (g, b) are as described in the ordinal utility
axiom. Sinceg = f, it follows thats; is continuously differentiable for each Let
¥ = @ (g, b). We need to show that = sy solves (1) for( £, a). The gradual agreemeit
solves

: dg T ds; -t
vl = [n o (w(r))} = [n o (s(vm)) o (Vi (r))}
with the initial conditionyr (g(b)) = b. Multiplying both sides of the differential equation
by (ds; /dx;)(;(t)) shows thatp = sy solves (1) for(f, a) with the initial condition
d(f(@)=sY(f(sb)) =sy(gb)) =sb)=a.

To see why the consistency axiom is satisfied, note that the differential equations
for (f,a) and (f, x) differ only in the initial ondition. Suppose that fap = @ (f, a),
¢(t) = x. Since the ordinal solution is efficienf,(x) = ¢. It is enough to show thap
satisfies the initial condition of (1) fatrf, x). Indeedgp (f (x)) = ¢ (¢) = x.

Itis easy to see that the ordinal solution satisfies the axioms of symmetry and directional
continuity.

Conversely, letb be a solution that satisfies Axioms 1-5. We show that it is the ordinal
solution.

(a) If « € RN is symmetric and has positive coordinates, énig a solution that satisfies
the symmetry and efficiency axioms, then for the linear funckion = ax + ¢, whereax
is the scalar product anda real numberp’(h, 0)(h(0)) = I (na).

Indeed,n is a symmetric agenda, and thds(h, Q) is symmetric. Fixs, and let
Dh,00@) = (x,..., x). By efficiency, h(x, ..., x) = t. Thus, x = t(na1)~ L. Hence,
®'(h,0)(r) = I (n) for all z, and in particular this holds far= 4(0).

(b) Let g be an agenda for whick g(0) is symmetric. If® is a solution that satisfies
the axioms of efficiency, symmetry, and directional continuity, thiiig, 0)(g(0)) =
1(nVg(0)).

To see this, lek(x) = Vg(0)x + g(0). Then by (a)®’(k, 0)(h(0)) = I(nVg(0)) and
therefore it is enough to show that

?'(g,0)(g(0) = &' (h, 0)(h(0)).
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To show this we need to use the directional continuity axiom. Fix a neighborBaxd
ande > 0. By the directional continuity o® at (k, 0), there exist$ > 0 such that if for
eachi € N, andx € B,

|(8f/0xi)(x) — (9h/Bxi) (x)| < 8 3)

then|®'(f,0)(f(0)) — @'(h, 0)(h(0))| < e.

We construct an agendathat satisfies (3) and coincides wighin some neighborhood
of 0. By the directional continuity axion®’( f,0)(f(0)) = ®'(g, 0)(g(0)). Therefore
D' (g,0)(g(0)) — ®'(h,0)(h(0))| < &. Since this is true for arbitraryg, the required
equality is established.

To complete the proof of (b) we construct the agentalLet ¢ be a continuously
differentiable function oiR such that 6< ¢ < 1,¢(r) = 0 for eachr <0, andg (r) = 1 for
eachr > 1. Let M be a uniform bound oty’| such that\ > 1.

Choosec > 0 such that for eachix|| < 2¢, |(9g/0x;)(x) — (0g/9x;)(0)| < 8/(4nM),
for eachi € N. Consider the function

fx)=Q—=q(lxl/c —1))gx) +q(lxll/c — 1)h(x).

Then,f(x) —h(x) = (L—q(|lx]|/c —1))(g(x) — h(x)). By the definition ofy, f coincides
with g for ||x|| < ¢ and withh for || x| > 2c.

We evaluate the size of the terms on the left hand side of this equality, as well as the
derivatives of these terms. It is enough to consider ¢rly < 2¢, since for|x|| > 2c the
difference vanishes. By the definition @f and sincgd||x||/9x;| < 1,

I —q(lxll/c = 1)) < M
0x; =

For the derivative of the other term,
‘ 3(8 h)

‘—( )——( )‘

Also, |1 —¢g(|lx|l/c — 1)| < 1. Finally, sinceg(0) — 2(0) =0, |g(x) — h(x)| = [|Vg(x') —
Vh(x")| IIx|| for some x’ with ||x’|| < 2¢, and therefore this term is bounded by
(n8/(4nM))(2c). Thus,

a(f —h)

0x;

né 8

<6é.
c nM dnM

()<

X

This completes the proof of (b).

(c) If @ satisfies the axioms of symmetry, efficiency, directional continuity, and
covariance, then for each problai a), @'(f, a)(f(a)) = I (nV f(a)).

For each € N, define a linear transformation

9 -1
5i(x;) =a; + <—f(a)) Xj. (4)
0x;
Letg = fs. Sinces(0) = a, it follows by the covariance axiom that
?(f,a)=s(2(g,0). (5)
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Itis easy to check that

Vg0 =(1,...,1), (6)
and therefore by (b),
@'(g.0)(g(0)) = 1(nVg(0)). (7)

Applying, in this order, (5), (4), (7), and (6), we conclude

d
?;(f.a)(f(@) = d—(cb(g, 0)(f(@)®;(g,0(5(0)

S
X

_(9f “tr ag toraf B
—(a—x@) (”a—x,-@) —(a—x@) "

(d) If @ satisfies Axioms 1-5, anfl= @ (f, a), then¢ satisfies (1).

Let ¢ (1) = x. By efficiency, f(x) = 1. By (c), @'(f,x)(f(x)) = I(nV f(x)). By the
consistency axion® (f, x) = @(f, a), and thereforg’(f (x)) = I(nV f (x)). Substituting
t for f(x) in the left-hand side, angdl(¢z) for x in the right-hand side yields (1).

To prove the independence of the axioms, wevgte for each a solution that violates it
but satisfies the rest. Details are omitted.

Efficiency. Let @ be the ordinal solution. Fix a real numhet 0, and define a solution
W by W(f,a)@t) = ®(f,a)t — c). Since the derivative op is positive, it is strictly
increasing. Thusf (¥ (f, a)(®)) < f(@(f,a)(t)) =t, and¥ does not satisfy efficiency.

Covariance. Let g(x) = f(x, ..., x). Define a solution by W (f, a)(r) = (g7 (), ...,
¢~ 1(t)). Obviously ¥ is a solution, and it is easy to see that it satisfies all axioms but
covariance.

Symmetry. Let w = {w;}ieny be a set of non-negative numberge(ghts) such that
Y ieywi = 1. For each problem(f,a) let ®¥(f,a) be the solution ofg!(r) =
w; ((3f/3x;) (¢ (1))~ with initial conditionse (f(a)) = a. Then, by applyingp® to the
problem(f,0), where f(x) = } ;. y xi, it is easy to see that it satisfies the symmetry
axiom if and only ifw; = 1 for eachi. All other axioms are satisfied b™ for eachw.

Directional continuity. Fix a non-symmetric weight vectar. Consider a solution that
coincides with the ordial solution for each problenyf, a) if there exists a monotonic
transformatiors, as in the axiom of ordinal utility, such thgts is a symmetric function.

For all other problems (and indeed there are such problems) the solution is represented by
@Y, This solution satisfies all axioms but directional continuity.

Consistency. Define a solution¥ such that for each problemf,a) and time:,
W(f,a)(t) is the Nash solution for the one-shot problefﬁ, a). O

Proof of Theorem 2. In the proof of Theorem 1 we showed that the ordinal solution
satisfies the ordinal utility axiom.

Let f be an agenda, andan increasing real-valued function such thgtis also an
agenda. Theri, must be differentiable. Denoge= A f, and letp = @ (g, a).

We show that) (1) = ¢ (A(t)) solves (1) forf. Note that for each, g(¢(¢)) = ¢, which
implies thatf (¥ (¢)) =t. Now,
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V' (t) = ¢ (AN (@) =1 (I (nVg (¥ @)))
=NOInN (f(v®))VF(¥®))
=1(nVf(¥(®)).

Also, ¥ (f (@) = ¢ (u(f (@) =p (L0 H(g(@)) =a. O

Proof of Theorem 4. Consider an agendA and a point/ such thatf (d) =r.
We first examine the case thais the Nash solution. Faf > 1, cr(StJf, d) is the pointx

at which the functiorg(y) = []/_4(yi — d;) attains a maximum oStff. At the pointx,
f(x)="r', and the direction of the gradientsg@nd f coincide. As the gradient gfatx is
g(x)I(x —d), it follows thatx — d is in the same direction d<V f (x)). Hence, there is an
a =a(t’) suchthatt =d+al(V f(x)). Thereforef (d+al (Vf(x)))— f(d) =t —t.We
conclude thateV f(d)I(V f(x)) + o' —t) =t —t. ASV f(x) = Vf(d), it follows
thata /(1" — 1) =4 ,= 1/n. Finally,

[0(S/,d) —d]/(' =) =al(Vf(0))/( —1) =y, 1(nV £ (@),

which establishes (2) for the Nash solution.
Assume now that is the Kalai-Smorodinsky solution. For eagliet ; be the number
that satisfies

fd+bie)=t', (8)
wheree; is a unit vector along theaxis. Letb =), _y bie;. Thencr(St-’,p, d) is the point

on the efficient frontier oS,f in the directionb fromd. Thereforea(Stff, d) —d =ab for
some numbet, such that

fd+ab) =t 9)

By (8), f(d + bje;) — f(d) =t —t, and therefore; (3f/9x;)(d) + o(t' —t) =1’ — 1.
Hencep —> )t I(Vf()).

By (9), f(d+ab)— f(d) =t —1t, and thereforeyV f (d)b +o(t' —t) =t' —t. Hence,
a/(t' —1t) =y 1/n. Finally, [cr(St-’,p, d)—dl/(t' —t)y=ab/{t' —t) =y, I(nV f(d)), as
was to be to shown. O
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