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1 Introduction: Sparse modeling roadmap

The sparse modeling assumption states that the true relationship of the response
Y to the covariates x1, ..., xp is a function of a small number of the covariates,
i.e.,

E(Y |x) = f(xj1 , ..., xjq )

with q << p. It is typically assumed further that the relationship is linear:

E(Y |x) =

q∑
l=1

βlxjl ,

though this assumption can sometime be relaxed.
This notion of sparsity is relevant and appropriate in many real-life do-

mains, including signal processing [???] and others. Herein, we concentrate on
applications of sparsity in genetics, in particular two major classes of problems
described above, where sparsity is regularly assumed: genome wide association
studies (GWASs) and gene microarray data analysis. As discussed earlier, in
GWAS, the phenotype is measured for a large panel of individuals (typically sev-
eral thousands) and a large number of single nucleotide polymorphisms (SNPs,
typically hundreds of thousands) throughout the genome are genotyped in all
these participants. The goal is to identify SNPs that are statistically associ-
ated with the phenotype, and ultimately to build statistical models to capture
the effect of genetics on the phenotype. It is usually assumed (and invariably
confirmed by GWAS results) that only a small number of SNPs are associated
with any specific phenotype. Thus, the model based on GWAS which describes
the dependence of the phenotype on SNP genotypes is expected to be sparse,
usually extremely sparse. We further discuss this example below.

A second class of relevant problem is gene microarray modeling. Before
the advent of GWAS, the major technology geared towards finding connections
between genetic and phenotypic information is through measurement of gene
expression levels in different individuals or different tissues. In this mode, the
quantities being measured are the expression or activity level of actual proteins.
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Proteins are encoded by genes, which are fragments of the genome. Hence gene
expression experiments can be thought of as measuring the association between
genomic regions and phenotypes, except that this is done through the actual
biological mechanisms as expressed in proteins, rather than by direct inspection
of genetic sequences as in GWAS. Not surprisingly, gene expression analysis
also typically assumes that only a few genes are actually directly related to the
phenotype of interest. Thus, this is also a sparse modeling situation, though
the statistical setup has some major differences from the GWAS, as we discuss
below.

Fundamentally, sparse recovery approaches are seeking two major goals:

• Correct recovery of the identities of the covariates that actually participate
in the function f .

• Accurate estimation of the model f , both in terms of parameter estimates
and prediction accuracy.

Traditional methods for sparse recovery can roughly be divided into two
categories:

• Methods based on exact or approximate combinatorial enumeration over
the space of possible “sparse” models and selection from this set based on
model performance.

• Methods based on univariate modeling of the relationship between single
covariates and the response y, then selection of a small set of covariates
showing strong association with y for inclusion in the sparse model.

In feature selection nomenclature, the first approach is broadly termed the
“wrapper” approach, while the second one is termed the “filter” approach
[Guyon and Elisseeff, 2003].

Beyond wrappers and filters, the last few years have seen an outburst of
interest in the use of convex optimization methods based on `1 norms for sparse
recovery, including compressed sensing, Lasso, Dantzig selector and other meth-
ods [Tibshirani, 1996, Donoho, 2006, Candes and Tao, 2007]. These methods
can provably succeed in situations where both wrapper and filter methods are
unlikely to result in successful recovery. We omit a detailed technical review of
this class of methods here, but for now we concentrate on a qualitative descrip-
tion of these approaches and their properties. `1-type methods all share some
version of the same basic (and quite intuitive) conditions for success in sparse
recovery:

• Sufficient sparsity — typically the number of covariates that participate
in the solution is required to be O(n), where n is the sample size, since
the well-known results from the compressed sensing literature state that
an accurate recovery of a sparse signal is possible when the number of
samples is O(k logm), where k is the number of nonzeros and m is the
dimensionality of a sparse vector.
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• Low correlation among the “non-zero” covariates and between them and
the other covariates. Different versions of this condition are termed “inco-
herence” [Candes and Plan, 2009], ”irrepresentability” [Meinshausen and
Yu, 2009] etc.

It is clearly true that these two dimensions – level of sparsity and degree
of correlation between covariates – are the critical determinants of possibility
or impossibility of recovery of sparse models from data, and the identity of
approaches that are likely to be successful. Here we attempt to qualitatively
divide the space of sparsity-correlation combinations into three regions:

• Situations that can be addressed by simple feature selection wrapper/filter
approaches

• Situations that are appropriate for `1-based sparse recovery approaches

• Situations where sparse recovery is unlikely to be possible

We consider three qualitative level of sparsity: very sparse where the number
of important variables is O(1); sparse, where the number is O(n), n being the
number of samples, and not sparse otherwise. We also consider three qualitative
levels of correlation between “non-zero” covariates and other covariates: Uncor-
rlated/orthogonal; low correlation, as defined in the `1 sparse recovery literature;
and high correlation. We can characterize our genetic motivating applications
above in terms of these dimensions: in the GWAS example we typically assume
that the model is very sparse and the “non-zero” covariates (SNPs) almost un-
correlated between them and with almost all “zero” covariates; while in the gene
expression modeling example we typically assume that large groups of covariates
(genes) may have high correlation within them, but low correlations between
groups, and that we are in the sparse situation [Leung and Cavalieri, 2003].

Considering which sparse recovery approaches fit which situation, some ob-
vious observations are: (a) That in the very sparse situation combinatorial
wrapper approaches are often likely to do well — in particular if we assume q
is very small and

(
p
q

)
is a manageable enumeration; (b) That in the uncorre-

lated/orthogonal situation, marginal univariate (filter) approaches are expected
to do well in identifying important covariates. In fact, it can easily be shown
that Lasso is equivalent to univariate regression when the covariates are orthog-
onal from a variable selection perspective [Tibshirani, 1996]. In that respect,
the `1 type methods can be thought of as reducing to univariate modeling when
there is no correlation.

Our conclusions from this qualitative discussion are summarized in Figure
1.
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Figure 1: A schematic view of sparse modeling scenarios

2 Example 1: Genome-wide Association Studies
(GWAS)

As previously discussed, in GWAS we can assume we have number of features
(SNPs) p in the hundreds of thousands, number of observations (individuals) n
in the thousands, and we also have the following statistical characteristics:

• Only a very small number of SNPs are associated with the phenotype y,
typically ten or less. Thus, we are clearly in the very sparse scenario.

• The vast majority of SNP pairs are uncorrelated. This is due to the
recombination process driving the SNP-SNP correlation in our genome.
SNPs that are far from each other on the genome, and certainly SNPs
on different chromosomes are in linkage equilibrium, meaning they are
completely uncorrelated, due to being separated by many recombination
events in the genetic history of the sample we are considering. Hence
we can assume that each SNP is correlated only with a tiny fraction of
all other SNPs, and typically all truly associated SNPs are uncorrelated
between them. However, we should keep in mind that every SNP typically
has some neighboring SNPs that are in high correlation with it.

The standard methodology in analyzing GWAS data is to perform p uni-
variate tests of association between each SNP and the response [WTCCC, 2007,
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Manolio, 2010]. Appropriate univariate models are chosen to accommodate the
specific problem setting, like linear regression, logistic regression or chi-square
tests of association . Each model is evaluated using the p-value for the effect
being tested (SNP coefficient in the linear regression, chi-square statistic, etc.).
The p-values from the univariate models or tests are ranked, and after appropri-
ate multiple comparison corrections, as warranted, the top results are declared
significant, therefore indicating likely true association. It should be noted that
because of the correlation structure it is typical that each significant finding
would actually be expressed as multiple neighboring SNPs that are significantly
associated, and the typical policy is to select the “most associated” SNP in the
region, consistent with the view that each region is likely to have only one true
association.

The significant results from GWAS are usually used as motivation and guid-
ance for follow-up studies, aimed at revalidating the findings and further ex-
amining the potential biological/genetic mechanisms underlying the discovered
associations [Manolio, 2010].

When examining this process as a sparse modeling exercise, several obvious
questions arise:

1. Is the approach of performing univariate tests instead of joint modeling
justified? What can we gain from performing multivariate analysis?

2. Is the ranking and selection of SNPs based on p-values, rather than other
commonly used model evaluation criteria (like likelihood) justified? Can
a different approach give better results?

3. How should the methodology of selection be related to the nature of the
follow-up studies to be performed?

We address here the first two questions, starting from the second: is selec-
tion by p-value justified? To frame the discussion theoretically, let’s assume a
standard univariate linear regression formulation, where:

y = βTx+ ε , ε ∼ N(0, σ2),

and assume for simplicity σ2 is known and there is only one truly associated
SNP. In other words, we assume all βj = 0 except one. The coordinates xj can
be highly correlated and the dimensionality of the problem is not too high (i.e.,
assume we are concentrating in the genomic region around the true association).
Our primary goal is to identify the SNP j0 with the true association.

The obvious statistical approach for dealing with this situation is maximum
likelihood (ML) estimation. Because of the normal noise model assumed, and
the assumption that only one coefficient is non-zero, it is easy to see that ML
estimation in this case amounts to finding the univariate model with the minimal
residual sum of square (RSS):

ĵ0 = arg min
j,βj

n∑
i=1

(yi − βjxij)2.
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How does this compare to selecting ĵ0 as the SNP attaining the minimal p-
value in performing a z-test on the coefficient of the SNP (or, equivalently, a
test for the univariate model against the null model)? As it turns out, the two
are completely equivalent in this case, in the sense that ranking of the SNPs
according to RSS is identical to their ranking according to z-test p-values. To
see this, denote for SNP j the sum of squares of x·j by Sxxj =

∑
i x

2
ij − nx̄·j ,

and denote Sxyj =
∑
i xijyi − nx̄·j ȳ and Syy =

∑
i y

2
i − nȳ.

Then the coefficient of the regression of y on xj is bj = Sxyj/Sxxj and the
p-value of the z-test is

pj = 2 ∗ Φ

(
−|bj |√
σ2/Sxxj

)
,

where Φ(·) is the cumulative standard normal distribution function. Note that
this expression is a monotone function of:

|bj |√
σ2/Sxxj

∝ Sxyj√
Sxxj

.

From the standard theory of linear regression it follows that the best RSS for
the univariate model with SNP j is:

RSS(β̂j) = Syy −
nSxy2j
Sxxj

= Syy − n

(
Sxyj√
Sxxj

)2

.

which is also clearly a monotone function of Sxyj/
√
Sxxj . Thus, selecting the

lowest p value or using ML are mathematically equivalent.
This perfect equivalence breaks down once we move away from the simplest

linear regression setting. For example, consider a logistic regression setup, where
GWAS typically uses the Wald statistic for p value calculation [McCullagh and
Nelder, 1989]. This is based on a quadratic approximation of the likelihood
around the estimate. Selecting the SNP that gives the lowest p value is no longer
equivalent to selecting the one that gives the best likelihood in a univariate
model. We would intuitively expect that the maximum likelihood approach
would be slightly better than the p-value based approach. To demonstrate that
this is indeed the case, we present a simplistic simulation. Assume we have
two SNPs, with xi1 ∼ N(0, 1) and xi2 = xi1 + r · N(0, 1), and P (yi = 1|xi) =
exp(xi1)/(1 + exp(xi1)). Thus, SNP 1 is the true association, but the two SNPs
are correlated with

cor(x·1, x·2) = 1/
√

1 + r2

. We examine the rate of success of both approaches in identifying SNP 1 as
the more highly associated, as a function of r. Results are given in Fig. 2. As
expected, the success rate of both approaches if similar, but the approach based
on likelihood is slightly better for all values of r.

To summarize our discussion of the use of p-values for model selection: this
criterion is generally similar to using maximum likelihood, but could be inferior,
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Figure 2: Percentage of cases the correct true association is identified by maxi-
mum likelihood (red) and Wald test p value (black) in a logistic regression setup,
see text for details. The maximum likelihood criterion is slightly superior for
all levels of correlation.

depending on the approximations used for calculating p-value, which may break
down the equivalence.

The other question we wish to address pertains to the use of univariate
models, as opposed to multivariate sparse modeling approaches like Lasso [Tib-
shirani, 1996]. Consider again a genomic region with correlated SNPs, where at
most one SNP is associated, and we would like to compare the use of univariate
models to find the associated SNP to the use of Lasso or similar methods. The
Lasso formulation:

β̂(λ) = arg min
β

∑
i

(yi − βTxi)2 + λ‖β‖1, (1)

includes a regularization parameter λ. At λ =∞ the solution is all zeros, while
as λ → 0 the solution converges to the least squares solution. Specifically, at
large enough λ the solution would contain only a single non-zero coefficient.
It is easy to verify that this first variable is the maximizer of the empirical
covariance, i.e., Sxyj [Efron et al., 2004]. In other words, if all xj are pre-
standardized to have the same Sxxj , then the univariate and Lasso approaches
amount to selecting the same first covariate.

For lower values of λ, a reasonable approach using Lasso and assuming a
single association is to select the largest absolute coefficient in β̂(λ) as ĵ0. It
is now relevant to enquire if this approach could prove superior to the uni-
variate approach in identifying the correct association. To test this question,
we performed a simulation study, this time with three covariates. We have
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xi1 ∼ N(0, 1), yi = 2 + 5xi1 + εi , εi ∼ N(0, 1) is the true association signal,
and we define two correlated variables as: xi2 = xi1 + δi2 , δi2 ∼ N(0, 0.01)
and similarly xi3 = xi2 + δi3 , δi3 ∼ N(0, 0.01). We examine the success of four
approaches in detecting the first variable as the true association:

• The univariate regression approach in GWAS.

• Regular least squares, where the maximal coefficient is chosen.

• Lasso with standardized explanatory variables for various regularization
levels, where the maximal Lasso coefficient is chosen.

• Lasso with non-standardized explanatory variables.

In Fig. 3 we present our results. The x-axis is the Lasso constraint (in its
Lagrange-equivalent constrained form), and the y-axis is the percentage of cor-
rect identification of the first explanatory variable as the best association. The
univariate approach and the standardized Lasso with small constraint (high
penalty) are much better than the other two approaches. On our simulation
data, there were a few examples where the standardized Lasso added the wrong
variable first but then for higher constraint values the order of absolute coef-
ficients reversed and the first variable was correctly chosen. Hence, there is a
range of constraint around 0.4 where the Lasso does very slightly better than
univariate. The generality of this phenomenon requires further research. Not
surprisingly, the least squares approach and the non-standardized Lasso are far
inferior in their model selection performance.

Figure 3: Success of different variable selection schemes on a simulated GWAS
example. See text for details.
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To summarize our analysis of univariate GWAS tests, we have shown that
the common practice of using p-values for selection is generally similar to using
maximum likelihood, although the latter may be slightly superior in some cases.
We have also argued that because the problem is very sparse and because of
its correlation structure, the univariate approach is appropriate and we are
unlikely to gain from using multivariate approaches like Lasso for identifying
the associated SNPs.

We have not discussed here further our third question, of how the selection
should be affected by follow-up study design. As a simple example, if planned
follow-up work is search for the biological mechanisms underlying statistical
associations, then it may make sense to bias our modeling towards identification
of associations in biologically plausible genomic regions (such as inside genes).
This can be accomplished by using Bayesian priors or other intuitive weighting
schemes [Cantor et al., 2010]. Further discussion of this aspect is outside the
scope of our chapter.

3 Example 2: Gene Microarray Data Analysis

Microarray technology actually precedes the emergence of the GWAS approach
[Schena et al., 1995]. The analyzed data comprises expression levels of genes
– how much of each protein (equivalently, gene) is expressed in each sample.
Different samples can be different individuals, different tissues, or even the same
tissue under different environmental conditions. The most prevalent goal in
analyzing gene expression data is to identify which genes are associated with
the response of interest, which can be disease status as in GWAS (in which
case, the same case-control design as in GWAS can be used), a measure of
the environmental conditions being applied (such as concentration of sugar or
temperature) etc. The number of samples (n) is usually in the tens or low
hundreds, and the number of genes (p) is usually in the thousands or tens of
thousands, hence we are in the p >> n situation of “wide” data.

Like in GWAS, it is usually assumed that the true association relation be-
tween gene expression and the response is sparse or very sparse, in the sense that
the true dependence (e.g. conditional expectation) of the response on the gene
expression can be almost-fully modeled using few “true” genes. However, the
correlation structure among genes’ expression is much more complex than that
among SNPs, since genes are organized in pathways and networks [Davidson
and Levin, 2005], which interact and co-regulate in complex ways. It is usually
not assumed that these interactions and the resulting correlation structure are
known, hence we can consider this an example of a sparse modeling scenario with
arbitrary complex correlations between the explanatory variables, in particular
we cannot assume that the few true genes are uncorrelated as in the GWAS
case. Hence univariate approaches are unlikely to properly address this situa-
tion, and although they had originally been used for gene expression analysis, in
particular for identification of differentially expressed genes [Leung and Cava-
lieri, 2003], they have been surpassed in this task too by mutivariate approaches,
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which have been demonstrated to be much more effective [Meinshausen, 2007,
Wang et al., 2011]. It should be noted that combinatorial variable selection
approaches are unlikely to be relevant, since with thousands of genes, even a
very sparse model with several dozen genes is too prohibitive to enumerate.

Another important difference between GWAS and gene expression analysis
is that in the latter case we are often interested in building an actual prediction
model to describe the relation between gene expression and the response, rather
than just identifying the associated genes for further study [Leung and Cavalieri,
2003]. This also affects the choice of models.

Since we are seeking a sparse prediction model in high dimension with limited
samples, Lasso-type methods are a natural approach to consider. The standard
Lasso has some major shortcomings in this situation:

• With p >> n, Lasso regularized models are limited to choosing at most
n genes in the model [Efron et al., 2004]. This can become a problem
in gene expression modeling with very few samples. Furthermore, Lasso
typically selects one “representative” from each group of highly correlated
explanatory variables (in gene expression, this could represent genes in
a specific pathway). This is not necessarily desirable, as there could be
multiple independent associations in the same path, or separating the
true association from other genes that are highly correlated with it can
be very difficult. Hence a selection of a single gene can be arbitrary or
non-representative.

• If we are interested in prediction, then the shrinkage Lasso performs on its
selected variables is likely to lead to sub-optimal predictive model [Mein-
shausen, 2007].

Several Lasso extensions have used gene expression as a motivating appli-
cation and these specific problems as motivation for their proposed algorithmic
extensions:

1. Elastic net [Zou and Hastie, 2005], which adds a second penalty to the
Lasso formulation in (1), thus allowing solution with more than n distinct
features, and similar coefficients for highly correlated features.

2. Adaptive Lasso [Zou, 2006], which adds weighting to the Lasso penalty of
each feature, using the least square coefficients. This leads to favorable
theoretical properties and has also shown improved empirical performance.

3. Relaxed Lasso [Meinshausen, 2007], which uses Lasso for variable selection,
but then fits a less regularized model in these variables only, thus partially
avoiding the excessive shrinkage behavior.

4. VISA [Radchenko et al., 2008], which implements a more involved version
of the same idea, of performing less shrinkage on the “good” variables
Lasso identifies than warranted by the Lasso solution.

5. Random Lasso [Wang et al., 2011]

10



We now describe Random Lasso in more detail, and demonstrate relative perfor-
mance of these algorithms on simulated and real gene expression data, following
Wang et al. [2011].

3.1 Random Lasso

When many highly correlated features are present, we want to consider the
portion of them that is useful for our predictive modeling purposes. Lasso-type
regularization would tend to pick one of them semi-arbitrarily, which can be
considered a model-instability issue.

The statistics literature offers some recipes for dealing with instability, most
popular among them Breiman’s proposals of Bagging and Random Forest [Breiman,
2001]. The basic idea is to generate a variety of slightly modified versions of
our data or modified versions of the model fitting algorithm, generating a va-
riety of different prediction models which “approximately” fit our data. Then
averaging these models has a stabilizing effect, as we hope that models that are
not chosen for our original data would occasionally get chosen when the data
is changed. Empirically, this tends to lead to much more accurate prediction
models in many cases [Breiman, 2001].

As Breiman noted, linear modeling approaches are not subject to improve-
ment from Bagging, but since Lasso is not a linear approach in this sense (be-
cause of the regularization), it can be subjected to Bagging-type modifications.

The first part of the Random Lasso (RLasso) is basically applying two-
way bootstrap-aggregating, which can be considered a hybrid of Bagging and
Random Forrest. The second part repeats the same exercise, but with variables
weighted according to their importance in the first part, to accomplish stronger
variable selection.

1. Iterate B1 times:

(a) Bootstrap-sample the data and sub-sample the features (two-dimensional
sampling)

(b) Fit a Lasso model to the current sample

2. Average the coefficients of all resulting models

3. Generate an important measure for each variable, typically proportional
to its average coefficient

4. Perform a second iteration, this time B2 times:

(a) Bootstrap-sample the data and sub-sample the features according to
their importance measure

(b) Fit a Lasso model to the current sample

5. The final model is the average of the B2 models from the second stage
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Detailed discussion of the motivation behind the exact formulation of the
algorithm is beyond the scope of this chapter, but we show here a comparison
of the various Lasso extensions on simulation and real gene expression data.

In the simulation scenario there are p = 40 variables. The first 10 coefficients
are nonzero. The correlation between each pair of the first 10 variables is set to
be 0.9. The remaining 30 variables are independent with each other, and also
independent with the first 10 variables. We let

β = (3, 3, 3, 3, 3,−2,−2,−2,−2,−2, 0, ..., 0),

and
y = βTx+ ε, , ε ∼ N(0, 9).

The signal to noise ratio is about 3.2.

Table 1: Variable selection frequencies (%) of different methods for the sim-
ulation example. “IV”: important variables; “UV”: unimportant variables;
“RME”: relative model error (lower is better) .

Lasso ALasso Enet Relaxo VISA RLasso
n = 50
IV 35 38 60 29 28 98
UV 20 11 13 9 7 17

RME 666 613 562 608 610 299

n = 100
IV 69 82 76 62 62 99
UV 52 21 35 36 37 30

RME 505 313 471 487 487 132

Table 1 shows the performance of the various algorithms in selecting the
important variables 1-10 (IV) and the unimportant variables 11-30 (UV), and
also the relative model error (RME), as defined in [Wang et al., 2011]. The
performance is averaged over 100 simulations. As can be seen, RLasso is far
superior to all competing methods on both criteria. The paper contains many
other simulation setups, including some where RLasso is inferior to some of
the alternatives, and discussion of the underlying reasons. We note, however,
that for most realistic simulation scenarios that are gene-expression motivated,
RLasso performs best.

Finally, all methods were also applied to a famous real gene expression
dataset, where the examined response is the log-survival time of Glioblastoma
patients [Freije et al., 2004]. One dataset with n = 50 patients was used for
training the models, and the other with n = 61 patients for comparing predic-
tive performance. The number of genes is p = 3600, reduced to p = 1000 by
initial filtering. Table 2 shows the results: number of genes selected and mean
squared prediction error. As can be seen, RLasso chooses more genes than other
methods (though still less than 6% of genes), and achieves the best predictive
performance.
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Table 2: Analysis of the glioblastoma data set.

Method # of genes selected Mean prediction error
Lasso 29 1.118 (0.205)
Adaptive Lasso 33 1.143 (0.211)
Relaxed Lasso 23 1.054 (0.194)
Elastic-net 28 1.113 (0.204)
VISA 15 0.997 (0.188)
Random lasso 58 0.950 (0.210)

4 Summary

As we have shown, practical sparse modeling is a wide area, and the selection
of specific appropriate methods should strongly depend on the specific type of
sparsity and correlation in the problem at hand, as well as on the desired perfor-
mance metrics for the model: successful variable selection, favorable predictive
performance, or both.

In the GWAS example, where the goal is mostly identification of associ-
ated SNPs for followup studies, the univariate filter approach commonly used
is appropriate. In the gene expression example, with more complex correla-
tion structure, and a second goal of good predictive performance, more complex
methodology is required, and we surveyed variants of Lasso that aim to take
the specifics of the problem into account and accomplish both goals.
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