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Abstract
We present the notion of Ranking for evaluation of
two-class classifiers. Ranking is based on using the ordering
information contained in the output of a scoring model,
rather than just setting a classification threshold. Using this
ordering information, we can evaluate the model's perform-
ance with regard to complex goal functions, such as the cor -
rect identification of the k most likely and/or least likely to
be responders out of a group of potential customers. Using
Ranking we can also obtain increased efficiency in com-
paring classifiers and selecting the better one even for the
standard goal of achieving a minimal misclassification rate.
This feature of Ranking is illustrated by simulation results.
We also discuss it theoretically, showing the similarity in
structure between the reducible (model dependent) parts of
the Linear Ranking score and the standard Misclassification
Rate score, and characterizing the situations when we expect
Linear Ranking to outperform Misclassification Rate as a
method for model discrimination�

1. Introduction   

A standard classification model is a function c, which gets
a data point x as input and returns the expected class for
this data point, c(x). In the 2 class case we have
c(x)∈{0,1}.

A simple scheme for building a classifier for a given
problem involves 2 main stages: (1)Based on a training set
of cases with known outcomes, using one or more model -
ing techniques (algorithms), create a number of  good can-
didate models, and (2) Choose a good model (preferably
the best) by evaluating the candidate models on a test set of
“new” cases with known outcomes and comparing their
performance.

This paper discusses the second stage in 2-class (0/1)
problems.

In standard 0/1 situations the most common evaluation
technique is the misclassification (error) rate, which simply
counts the number of erroneous decisions made by c(x) on
the test set. This technique gives reliable predictions of
future performance of the classification model.

A major shortcoming of the misclassification rate is its
limited ability to reflect the goal of the classification or
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decision process. For example, when misclassification
costs are highly unbalanced or the distribution of the
classes is highly skewed and unstable, the misclassification
rate can be inadequate (Provost and Fawcett (1997) de-
scribe this problem and suggest an alternative).

In some cases, the goal of the process can be more spe-
cific and include more than just 0/1 decisions - like locating
the k customers out of n who are most likely to respond in a
direct mailing campaign. Such goals extend the definition
of  “classification model” a little, but are a realistic de-
scription of actual needs. Evaluation of classification mod-
els with such  goals in  mind requires an adequate, special -
ized evaluation method.

This paper describes Ranking, a family of evaluation
techniques which are flexible in describing the goal of the
process and allow the researcher to adjust the evaluation
technique to the required goal. Some examples are given to
illustrate this flexibility.

The main result presented here, however, is that even in
the simplest case , 0/1 decisions with equal
misclassification costs, the Misclassification Rate is not an
efficient technique for comparing classifiers and choosing
the better one. It is shown that a member of  the Ranking
family, Linear Ranking, significantly exceeds
misclassification rate as a means of discriminating between
classifiers and identifying the better one. This is shown in
simulation results and discussed theoretically.

2. Ranking

Many of the common algorithms for building 2-class clas-
sifiers, like Naive Bayes,  K-NN and Logistic Regression,
actually estimate Pr(y=1|x), the probability that an unseen
case belongs to class “1”. The actual classification is then
performed by comparing this estimate to a given threshold
(usually 0.5 in the equal misclassification cost setting). 

Friedman (1997) notes that even for good classifiers
these probability approximations may be highly biased and
thus ineffective as probability estimates. However, they
may still be treated as scores rather than probability ap-
proximations, and as such their ordering may contain a lot
more information than is available by just thresholding
them into dichotomous decisions.

In fact, some other common modeling techniques which
do not give probability approximations, such as Linear
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Discriminant Analysis, Linear Regression (Hastie, Tib-
shirani and Buja 1994) and Back-Propagation Networks
(Rumelhart, Hinton and Williams 1986) can also be viewed
as creating scoring models rather than just binary decision
boundaries.

The information contained in the ordering of the scores
can be used both to address more complex needs than just
0/1 decisions, and to obtain better evaluations for the stan-
dard 0/1 decision task.

From now, and through the next sections, we assume we
have a scoring model m(x) and a test set {xi,yi} for
i∈{1...n}. Let h be the permutation which describes the
ordering of the test set observations by their scores (as
given by the model): m(xh(1) ) ≤ m(x h(2)) ≤  ...  ≤m(x h(n))

A Ranking score for the model on this test set will be
defined as:
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where g:N→R is the selected monotone non-decreasing
Ranking function and I is the standard indicator function.

It is easy to see how Ranking can be formulated for
Bootstrap and Leave-Out-Many Cross Validation as well.
We limit the discussion in this paper to test-set situations.

3. Examples of Ranking Scores

Following are some specific examples of Ranking scores.
These examples are meant to demonstrate the flexibility of
the family of Ranking scores and its ability to reflect and
represent different research goals. Detailed discussion of
the matching of Ranking functions to specific problems is
outside the scope of this paper.

  1 .  Misclassification rate as a Ranking score. A lower
bound on the number of misclassifications on the test set
can be obtained as a ranking score by setting:
 g(i) = I {i > n0}.

Then we get  s(m) = n1 - e/2 with e the minimal number
of errors which any threshold would achieve for this model.
(n0 and n1 are, respectively, the numbers of  zeros and ones
in the test set.)

2. Linear Ranking. Linear Ranking is based on setting
g(i)= i. We then get:
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In some cases, Linear Ranking may be a good approxi-

mation of the researcher’s real goal, like in the case of di-
rect mailing campaigns, where the goal could be to success-
fully rank the potential customers rather than give them 0/1
results.

In section 5 we show that the Linear Ranking score has a
symmetry feature - if we switch the class labels,
comparison of two classifiers’ scores still gives the same
results. This symmetry implies that Linear Ranking offers
an evaluation with equal “misclassification costs” for the 2
kinds of errors (although different costs for different
“magnitude” errors).

errors).
Sections 4-7 discuss the use of  Linear Ranking as an

evaluation and comparison method for standard classifica-
tion problems. They illustrate and discuss Linear Ranking’s
increased effectiveness in identifying the better classifica-
tion model, compared to the Misclassification Rate, in the
case of equal misclassification costs.

3. Quadratic Ranking. Set g(i) = i2. The resulting score
gives higher penalties to errors in the higher segments of
the sorted test set, and creates a non-balanced score which
gives more emphasis to getting the order right for the cases
with the higher probability of being “1”. This may be rele-
vant when the actual goal of the researcher is to correctly
identify the cases (customers) who are most likely to be-
long to class 1, and correct ordering among the cases less
likely to belong to class 1 is of secondary importance.
There are, of course, many other Ranking scores which
would put the emphasis on ordering the likeliest cases
correctly. Choosing the right one could be an important
issue, and is very relevant to successful and efficient use of
the idea of Ranking for model evaluation in such situations.

4. Simulation Results

In this section we describe simulations experimenting with
Linear Ranking on 2 of the simplest and most popular algo-
rithms for creating classification models : Naive Bayes and
K-nearest neighbors (K-NN). The goal of these simulations
is to show that the Linear Ranking score can actually judge
the classification performance better than Misclassification
Rate in real life situations and algorithms. We show this by
creating multiple pairs of models of the same sort and
demonstrating that Linear Ranking consistently identifies
the better model with a higher probability across different
pairs of models and large numbers of randomly generated
test sets. This phenomenon is discussed theoretically in the
next sections.

For simplicity all the examples in this section were con-
structed assuming equal prior probabilities for the 2 classes
and equal misclassification costs. As both algorithms are
actually probability approximation algorithms the threshold
for classification is always 0.5.

4.1 Naive Bayes Classifiers
The Naive Bayes algorithm (see Langley, Iba and
Thompson  1992) approximates the probability Pr (y=1) in
terms of the marginal “conditional” probabilities of the
x-vector’s components. For the equal priors case it reduces
to:
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For the simulations a 10-dimensional input vector was
used (d=10). All x-values were randomly and independ -
ently drawn in [0,1].

The probability of  y to be 1 was set to depend only on
the first 2 coordinates:
Pr (y=1|x) = f(x1,x2) = ½ ⋅( x1+ x2)

2 ⋅ I{ x 1+ x2≤1} +
           [1 - ½ ⋅ (2- x1- x2)

2 ]⋅ I{ x 1+ x2>1}
Twenty training sets of size 1000 each were drawn. For

each training set, 100 test sets of size 100 each were drawn.
The training set x-values were discretized using a standard
χ2 method.

It is easy to see that the real Bayes (“oracle”) classifier
(which gives y=1 iff x1+ x2 ≤ 1) cannot be expressed as a
Naive Bayes classifier. The best Naive Bayes classifier
should clearly be the one using x1 and x2  for the model.
Classifiers with only x1 or x2 will generally be “underfitted”
(lack vital model flexibility) while classifiers with addi-
tional x-vectors will generally be “overfitted” (contain
flexibility which results from “noise”).

The simulation compared the Naive Bayes classifier us-
ing only x1 to the classifier using both x1 and x2. Explicitly,
the classifiers are:
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Thus, two models were created from each of the twenty
training sets. These models were used to score the 100 test
sets. Each of the models was evaluated on each of the test
sets using both Misclassification Rate and Linear Ranking.
The result which is of interest is the percentage of test sets
on which the better model (m2) gives a better overall
evaluation score compared to the lesser model (m1).

It should be noted that if this percentage had turned out
to be not significantly more than 50% for any of the 20
pairs of models it would mean that for that training set m2

is in fact not better than m1. This was not the case here,
however. Each of the twenty different pairs of models indi-
cated more than half the time that m2 was better than m1.
The results show that m2 was always much better than m1 in
terms of future classification performance. The overall av-
erage misclassification rates of the 2 kinds of  models were:
m1 - 33.5% m2 - 27.5%.

The results are summed up in table 1. The first row
shows the average percentage of test sets on which m2 was
better than m1 (averaged over the twenty different pairs of
models, each pair generated using a different training set).

The second row shows the minimal number of times out of
a 100 that m2 was better (the minimum is over the 20 pairs
of models) and the third row shows the number of times m2

got a perfect record over m1 by being better on all 100 test
sets.
 These results indicate clearly that Linear Ranking suc-
ceeded much better than Misclassification Rate in tracking
down the better model - both in the “average” sense (98.6%
correct vs. 90% correct ) and in the “worst case” sense.

So, by using Linear Ranking we significantly improve
our chances of identifying the better model successfully,
and making fewer classification errors in the future.

4.2 K-NN Classifiers
K-Nearest Neighbors models approximate the probability
Pr(y=1|x) of a new case by the average of its K nearest
neighbors in the training set:
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Different models are created by using different values of
K.

The setup here was quite similar to the Naive Bayes
simulations - all x-vectors are 10-dimensional independ-
ently drawn from U[0,1]. We derived twenty training sets
with 1000 cases each and for each training set (and result -
ing pair of models) there were 100 test sets of  100 cases
each.

Here the probability for y to be 1 was simply set as the
value of x1: Pr (y=1|x) = x1

Friedman (1997) has shown that the K (number of
neighbors), which gives the best classification performance
(smallest misclassification rate) tends to be large, much
larger than the optimum for probability estimation. Simula-
tions with Linear Ranking showed clearly that its behavior
is similar to that of classification.

Here, m1 was chosen with K=10 and m2 with K=50.
Given Friedman’s results, we expected m2 to be better and
the results confirmed this conjecture. The overall average
misclassification rate of the models : m1 - 28.5% m2 -
26.5%

The results can be seen in table 2. The first two rows in
the table have similar comparisons to the ones in table 1,
while the third row contains a comparison of the number of
times (out of the 20) m2 was better than m1 on at least 80 of
the 100 test sets.

The results here are even more conclusive than for Naive
Bayes classifiers - we even have a “threshold” of 80% cor-
rect discrimination between the models which

Misclassification Rate Linear Ranking

Ave. Pct. of m2 better than m1 90.05 98.60

Min. Pct. of m2 better than m1 69 95

No. of times m2 better than m1 on all 100 test sets 1 8

Table 1: Results of comparing Naive Bayes classifiers with 1 and 2 predictors by using the Misclassification Rate and Linear
Ranking Score criteria.



Misclassification Rate Linear Ranking

Ave. Pct. of m2 better than m1 69.72 92.6

Min. Pct. of m2 better than m1 61 86

No. of times m2 better than m1 on at least 80 test sets0 20

Table 2: Results of comparing K-NN classifiers with K=10 and K=50 by using the Misclassification Rate and Linear Ranking
Score criteria.

Linear Ranking achieved on all 20 pairs of models while
Misclassification Rate achieved on none.

5. Probabilistic Analysis of Linear Ranking

As before, we assume we have a scoring model, and a test
set ordered according to the model’s scores. We also as-
sume a set of “true” probabilities p, with Pr(yi=1|xi) = pi for
this test set. We further assume now, without loss of gener-
ality, that the test set is ordered according to these “true”
probabilities:  p1  ≤ p2  ≤  ...  ≤ pn

Reducible-Irreducible Decomposition
The first step in understanding how a choice of classifier is
related to the evaluation score to be examined is to decom-
pose the score into the part that depends only on the prob-
lem (the “irreducible” or more appropriately here
“predetermined” part) and the part that is determined by the
chosen model (the “reducible” or “model dependent” part).
This type of decomposition for estimation and misclassifi-
cation rate can be found in Friedman (1997).

Following the ideas used by Friedman we define the pre-
determined part as the score of an  “oracle” model with
complete knowledge of the real pi’s. The oracle would cor -
rectly order the items and attain the score:
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with the last term describing the reducible (model depend-
ent) part of the ranking score.

A smaller reducible part means a bigger, hence better,
score. The mean of the reducible part is always
non-negative (because no classifier can attain a better aver-
age result that the “oracle”).

Symmetry Feature of the Reducible Part. The reducible
part in (5.1) is symmetric, in the sense that if the class la-
bels are switched together with the order of the scores and
Linear Ranking is performed again, the reducible part will
be the same. In terms of the current notations this reducible
part (with switched class labels) will be:
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Because of the dichotomous nature of the identity function,
(5.2) is equal to:
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which can be rearranged as:
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The sum in the second term is zero, and the first term is
simply  the reducible part in (5.1).

Re-formulation of the Reducible Part. The reducible part
of the Linear Ranking score in (5.1) depends on the per-
mutation h(i) relative to the identity permutation. A differ-
ent representation of the reducible part can be achieved as a
function of only the pairwise switches of order between the
2 permutations. This representation will prove very useful
in analyzing the Linear Ranking score. The following
equivalence is the basis for this representation:
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So the reducible part is the sum of the class differences
over all the pairs that switched places between their “true”
probability ordering and the ordering determined by the
model scores (as described by the permutation h).

The proof of this equivalence is quite simple, based on
the representation of the permutation h as a collection of
pairwise “switches”, but will not be presented here.

6. The Two Model Comparison Procedures

We now want to compare the Misclassification Rate score
(MC) and Linear Ranking score (LR) as methods of model
discrimination and to gain some insight into why LR might
perform better. The decomposition of the scores into re-
ducible and irreducible parts is a key tool.

For MC, (Friedman 1997) formulated the reducible part:
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with yB representing the Bayesian (“oracle”) decision. In
this formulation, as with LR, a smaller reducible part
means a better result (as we presented MC here it actually
counts the number of correct classification decisions).

Now we can formulate explicitly the expressions for a
comparison of 2 classifiers, m1 and m2, using MC and LR.
Because the irreducible parts are equal for both models, the
difference between the models’ scores is the difference



between the reducible parts. Using (6.1) and (5.3) we get:
0& P 0& P

W W \ L

� � � �

> � � `@ � �

� �

� �

− =

≤ ≤ ⋅ −
=
∑ ,^P �[ `� ,^P �[� L

L �

Q

� L

(6.2)

/5 P /5 P , P [ P [

, P [ P [ \ \

L M

M L

Q

L M M L

� � � � > ^ � � � �`

^ � � � �`@ > @

� � � �

�

� �

− = > −

− > ⋅ −
= +=
∑∑

L �

Q

(6.3)

For either MC or LR, m2 will be preferred if this differ-
ence is positive.

7. Discussion

In comparing LR and MC, equations (6.3), (6.2) show the
similarity in their structure.

I{m 1(xi) ≤ t} - I{m 2(xi) ≤ t} in (6.2) compares a thresh-
olding decision between the two models, while I{m1(xi) >
m1(xj)} - I{m 2(xi) > m2(xj)} in (6.3) compares an ordering
decision. If these decisions differ, they are confronted with
the evidence from the test set, and 1 is added to or sub-
tracted from the sum. For example: for MC, if m1(xi)≤t and
m2(xi)>t, the sum will increase by 1 if yi=1 (m2 was ”right”)
and will decrease by 1 if yi=0 (m1 was “right”).

The MC score (6.2) compares these decisions on the n
test-set cases and checks them against the test-set y values
when the 2 models disagree. The LR score (6.3) compares
decisions on the n(n-1)/2 pairs of cases and checks the
y-values when the decisions regarding the ordering of these
cases by their scores disagree.

So in general we can say that MC sums over the results
of O(n) comparisons and LR sums over the results of O(n2)
comparisons. This gives us a strong sense of the advantage
of LR over the MC - it is in fact the reduced variance of the
resulting decision, obtained by using more information to
make it. On the other hand, the fewer comparisons we
make in (6.2) are the ones which actually determine the
classification performance of the models, as MC(m2)-
MC(m1) is actually an unbiased estimator of the average
difference in misclassification rates, E[MC(m2)- MC(m1)].
Thus, the “average” result of (6.2) is guaranteed to be the
right one. The comparisons in (6.3) check slightly different
attributes of the scoring model. A scoring model may have
one behavior with regard to the “threshold crossings” tested
in (6.2) and a different one with regard to the “binary
switches” tested in (6.3). So, LR may be “biased” in that its
average result may not reflect the true difference in classi-
fication accuracy. Consequently, models for which LR
should be effective as a comparison method would be ones
where the scoring behavior is “consistent” in the sense that
threshold crossings are as common as can be expected
given the number and magnitude of binary order switches
and vice versa. When this consistency does not exist we
can expect that LR will not always outperform MC in se -
lecting the better classification model.

It is of course easy to build artificial examples where

there would be no such consistency and LR’s indication as
to the better model for classification would be erroneous.

We can also describe families of models for which we
can be sure that LR will be a better discrimination method
than MC. We are currently working towards formulating
generalizations which would set a more formal basis for the
use of LR (and hopefully Ranking in general).

Intuitively it seems reasonable that most of the algo-
rithms for creating scoring models, which fit the data to
some non-trivial structures, should not display inconsistent
behavior between threshold crossings and binary order
switches. This indicates that LR should indeed be an effi-
cient discrimination method in most practical situations.

8. Conclusions

We have introduced Ranking as a family of evaluation
techniques for scoring models. Ranking methods have two
main interesting features:
  1 . When the goal of the researcher is not strictly minimum

error rate classification, it gives a tool for defining a va-
riety of target functions and testing the suggested mod-
els against them.

  2 . For the standard minimum error rate classification task,
Ranking can provide a more efficient tool for compari-
son of suggested models and selection of the best one
than the standard evaluation methods (like Misclassifi-
cation Rate). This was illustrated through the improved
efficiency of Linear Ranking in selecting the better
classification model compared to Misclassification
Rate.
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