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Introduction – Linear mixed models overview

Background and intuition. A linear mixed model (LMM) is an extension of the standard linear regression
model, wherein the variables are divided into two groups: fixed effects and random effects. Fixed effects are
modelled as parameters, i.e. fixed, but unknown, quantities, while random effects are modelled as being drawn
from a random distribution – typically a Gaussian distribution with mean zero and an unknown variance.
Intuitively, this formulation allows accounting for the random effects, while not specifically estimating the
value of each random effect. This is done by integrating the random effects out, resulting in a linear regression
model with a non-identity covariance matrix (where samples which have similar random-effects values have
stronger correlations and vice verse).

To illustrate this idea, consider the following toy example: A researcher is interested in modelling some
biometric measure as a function of time (e.g. weight of children). For that purpose she measures the weight
of several toddlers once a month over a year, starting at the age of two. However, it is obvious that each
subject has a different starting point at time t = 0. When using basic linear regression, accounting for
this heterogeneity requires adding an indicator variable per individual, dramatically inflating the number of
parameters in the model and increasing the standard errors of each estimate. The idea behind LMMs is to
realize that the between-individuals differences are not the focus of interest of this specific study, and so it is
counter-productive to ”waste” information on estimating the per-individual effect. Instead, each individual’s
intercept term is treated as being drawn from some distribution. Treating the intercept as random captures
the between-individual differences without requiring per-individual parameters, thus reducing the overall
number of parameters while increasing accuracy and power for the parameters of interest. Instead of adding
one parameter for each individual, we add only a single parameter – the variance of the intercept. This
variance captures the extent of the heterogeneity. The key is that the observations of each individual share
the value of the random effect, and so, after integrating it out, they become highly correlated: If a child is
seen as high-weight at the first time point, we expect her to continue being relatively high weight at following
time points.

Formulation and estimation. To put these ideas in a more rigorous form, we write down the linear
mixed effect model:

Y = Xβ + Zu+ e,

where Y1×n, Xp×n, β1×p and e1×n take their usual roles as in a standard linear regression model (outcome,
intercept, covariates, regression coefficients and noise drawn from a N(0, σ2

e), respectively). The important
addition is Zu where Zm×n is another set of covariates, similar to X but for which we are not interested in
specific estimates of the coefficients, and u1×m which are the associated random effects drawn from N(0, σu).
This model can be expressed as a specific distribution of Y :

Y | u ∼ N(α+Xβ + Zu, In×nσ
2
e).

Note how we condition on u but not on β, because only the former is a random variable. Assuming the covari-
ates in Z were standardized to have mean 0 and variance 1, and integrating u out, we get the unconditional
distribution of Y :

Y ∼MVN(Xβ,ZZTσ2
u + In×nσ

2
e).

Notice how Z no longer affects the mean of the distribution. Instead, it appears as a component of the
covariance matrix. This is the reason why this component of the model is also often referred to as a ”variance
component”. Another useful representation of this model is to define σ2

g = mσ2
u, and G = 1

mZZ
T , and replace

the Zu term by g ∼MVN(0, Gσ2
g) so that the model can be written as:

Y = α+Xβ + g + e.

This representation can be useful when the specific values of Z are unknown, butG can somehow be calculated
or estimated using external data, as will be the focus of this chapter. LMMs can be naturally extended to
accommodate several variance components, each with a different variance parameter.
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The primary uses of LMMs are:
Estimation and testing of fixed and random effects. Once the distribution of Y is specified, one

can proceed to estimate the fixed effects (β) and the variance of each group of random effects using maximum
likelihood approaches. Specifically, the common approach for estimating variance components is known as
restricted maximum likelihood (REML). This is then often used to test hypotheses about either the fixed or
random effects, most commonly of the form H0 : β = 0.

Prediction Given x and z, the covariates associated with a newly observed individual for whom the
outcome y is unknown, we would like to predict y with the greatest possible accuracy. For a simple linear
regression model, the answer is simply taking the covariate vector x and multiplying it by the estimated
coefficients β̂ (and adding the intercept): ŷ = α̂ + xT β̂. This practice yields unbiased estimates. However,
when attempting prediction in the LMM case, things are not so simple. One could adopt the same approach,
but since the effects of the random components are not directly estimated, the vector of covariates z will not
contribute directly to the predicted value of y, and will only affect the variance of the prediction, resulting
in an unbiased but inefficient estimate. Instead, one can use the correlation between the realized values of
Zu, to attempt a better guess at the realization of zu for the new sample. This is achieved by computing
the conditional distribution of the outcome of the new sample conditional on the full dataset, by using
the following property of the multivariate normal distribution. Assume we sampled n individuals, but the
outcome for the i’th individual is unknown. The conditional distribution of yi given the rest of the outcomes
(y−i) is given by:

yi|y−i ∼ N
(
α+ xTnβ + Σi,−iΣ

−1
−i,−i(y−i −Xβ−i),Σn,−nΣ−1

−i,−iΣ−i, i
)
, (1)

where Σ = ZZTσ2
u + Iσ2

e , and positive/negative indices indicate the extraction/removal of rows or columns,
respectively. Intuitively, we use information from different samples that have a high correlation with the new
sample, to improve its prediction accuracy. The practice of using the conditional distribution is known as
BLUP (Best linear Unbiased Predictor).

LMMs in genetics.

Linear mixed models have been extensively used in genetics, and in particular have been popular in the
animal-breeding literature and practice for many years [1]. Historically, the major focus of interest was
breeding selection – choosing which sires and dames to mate in order to improve a specific trait, or phenotype,
in the next generation (e.g. dairy yield). The phenotype is the outcome y, the covariates X are measured
and observed quantities (e.g. nutrition type, the farm where the animal was raised etc.) and the Z matrix is
the matrix of genetic variants. In many cases, the phenotype is influenced by many such variants, a situation
which is typically referred to as a highly-polygenic phenotype or a complex phenotype. In such situations
there are simply too many genetic variants to be included in the model, as they dramatically outnumber
the samples. Moreover, even if there were enough samples to allow including all the genetic variants, up
until roughly 20 years ago, actually measuring – or genotyping – these variants was either impossible or
prohibitively expensive. So the problem posed by such genetic studies is double: the variables are both too
many and unobserved. The solution put forward by LMMs is to skip the representation of the model that
includes Z, directly to the variance components representation, and use pedigree information to estimate G,
and plug the estimate into the equations.

The existence of pedigree information that allows to estimate the correlation accurately is quite unique
to this domain, and explains the unique success of LMMs in the context of animal breeding long before
genotyping became possible and affordable. In short, the DNA of an offspring is a mix of DNA segments
from both parents. On average, each parent contributes 50% of the DNA (note that this is true in expectation
only). Hence, when we look at the realizations of the random vector g for parent-offspring pairs, they have
a correlation of 0.5 (under additivity assumptions on the genetic architecture, which we will not delve
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into here). Similarly, for any known relationship, one can compute the expected correlation: grandparent-
grandchild pairs would have a correlation of 0.25, as would avuncular pairs, while second cousins would have
a correlation of 1

8 , and unrelated individuals would have a zero correlation. For these reasons g is typically
referred to as the ”genetic” effect, while G is referred to as the ”kinship”, or ”genetic relationship” matrix.
Similarly, e is referred to as the ”environmental” effect (which combines unmeasured effects and random
noise). Thus animal breeders could utilize their pedigree information to compute an (approximate) genetic
correlation matrix Ĝ, and use it for prediction with BLUP, thus predicting which breeding choices would
result in the best (predicted) yield.

Applications extend beyond prediction. One could be interested in estimating fixed effects (e.g. nutrition
type, local weather) while controlling for genetic effects. For example one could ask whether an observed
difference in yield is due to controlable living conditions or accumulated genetic differences. To answer such
questions one needs to control the genetic differences in different farms. Again, this is achieved by using
LMM with Ĝ, thus controlling for the genetic effect, and estimating or testing the fixed effects.

Lastly, it is often of interest to estimate h2 = σ2
g/var(y), which is referred to as the (narrow-sense)

heritability, the fraction of phenotypic variance which is explained by genetics. This magnitude is specifically
important in the context of animal breeding, as it signifies how effective would the breeding actually be: high
heritability implies a considerable genetic basis of the trait, so selective breeding would be very effective. Zero
heritability means no genetic basis, so random breeding would be just as effective. This is captured by the
famous breeder’s equation: R = h2S where R is the expected difference in phenotype between the previous
and current generations, h2 is the heritability, and S is the difference between the average phenotype in
the population and the average phenotype of the selected parents [2]. As the selection progresses and the
phenotype improves, the relevant variants become more and more frequent in the population, until they are
fixated, thus reducing the role of genetic diversity and reducing the heritability.

Moving to GWAS. As genotyping technologies emerged and prices plummeted, genome-wide associ-
ation studies (GWAS) became more and more affordable and a major dogma for human genetics research.
When performing GWAS, one genotypes thousands of individuals at hundreds of thousands of genomic loci
and scans the genome for loci which are significantly associated with the measured phenotype. Several major
differences exist between the human-centric GWAS and the animal breeding practice. First, the typical goal
of the GWAS is not improved breeding, but rather identifying loci which harbor causative variants (hoping
to implicate genes near these loci, thus leading to better understanding of a disease and novel therapeutics).
Second, when dealing with humans, one has less control over the design of the study compared to cattle. The
vast genetic heterogeneity in humans is mostly undocumented, and pedigrees are not as carefully maintained
for human populations as they are in the animal breeding business. Lastly, unlike carefully bred animals,
human populations are structured, where geographic, ethnic and other factors are correlated with genetic
differences. Many of these issues can be addressed by applying LMMs to GWAS.

The use of LMMs in GWAS was pioneered by [3, 4]. They consider the problem of association tests of a
polygenic phenotype, in a highly structured population (wild-type and domesticated mice). They note that
testing the association of a single SNP (say, x1) involves assuming a univariate model:

yi = β1xi1 + ei,

to estimate β1 and test its significance, while in fact the true model is polygenic, and so the fitted model
should be:

yi = u1xi1 +
∑
k>1

ukxik + ηi.

Due to the population structure, many of the SNPs have different frequencies in each population, resulting
in a considerable dependence between them. Running a univariate scheme ignores the effect of the other
SNPs, effectively modelling them as part of the error, so we have ei =

∑
k>1 ukxik + ηi. Since the SNPs are

correlated, due to the major genome-wide differences in allele frequencies between the populations, this results
in a correlation between the tested SNP and the noise term, as well as between the noise of same-population
samples, resulting in inflated type-1 error rates. To solve this problem, they adopt the LMM framework and
treat the SNPs which are not directly tested as random-effects. The effects uk are treated as identically
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and independently distributed random variables drawn from a distribution with mean 0 and variance σ2
u.

Higher values of σ2
u imply larger effects. Hence, there is an additional “genetic effect”, gi =

∑
k>1 ukxik,

with variance σ2
g , and the model becomes:

yi = β1xi1 + gi + ei,

where the genetic effects are positively correlated between genetically similar individuals and vice-versa.
This is exactly the same LMM formulation used before, with the major difference being the way that G is
obtained. Instead of using pedigree data, the correlation between any two individuals is estimated using the
observed genotypes (after centering and scaling):

Gij = cor(gi, gj) =
1

m

m∑
k=1

(xik − 2fk)(xjk − 2fk)

2fk(1− fk)
.

Note that this is only an estimate of the true correlation for several reasons. First, the true causal
SNPs affecting the phenotype are not necessarily genotyped. Second, the correlation is estimated using
all genotyped SNPs, thus including many non-causal SNPs (adding noise to the estimate). However, the
estimated correlation is an unbiased estimate of the true kinship [5]. Several works focus on improving the
estimation of G, either by modelling LD [6], accounting for cryptic relatedness [7] or trying to pick out only
the causal SNPs (or the SNPs which best tag those SNPs) [8]. However, for our discussion, we treat the
estimated G as the true G, and note that this is an interesting area for future research.

While this approach was first applied to mouse GWAS, the methodology as described is well suited to
human GWAS as well, and indeed the LMM approach to GWAS gained popularity as it was repeatedly
shown that accounting for the subtle genetic similarities between individuals in a GWAS increases power
and reduces type-1 error rates [9, 10]. In addition, it was shown that accounting for the genetic correlation by
using LMMs is appropriate for controlling for population structure (which is a common problem in human
GWAS), as well as for cryptic relatedness, and that LMMs outperform the previously preferred principal
component analysis (PCA) approach in addressing these issues [10]. At the same time, methods for efficient
estimation emerged and enabled applying these methods to progressively larger GWAS (e.g. [4, 11, 12]).
The state of the art methods in terms of speed and memory requirements are BOLT-LMM [13] and BOLT-
REML [14], which are the first to provide a method to estimate an LMM that is not cubic in the number of
individuals, allowing their application to GWAS as large as 50, 000 individuals.

At the same time, LMMs were used to address a different burning question in human genetics: the problem
of the missing heritability [15]. Despite the clear evidence from twin and family studies that many traits
and diseases are highly genetic (e.g. height, type-1 and type-2 diabetes, multiple sclerosis, schizophrenia and
more), GWAS were only able to identify a handful of variants associated with these traits and diseases, and
these variants accounted for only a fraction of the heritability expected from twin studies. Specifically for
height, commonly cited numbers are 80% heritability from twin studies, and < 20% heritability explained by
discovered genetic variants. One leading theory explaining this gap was that these phenotypes are driven by
a large number of variants with small effects, and that GWAS are under-powered to detect most of the causal
variants. Yang et al. [16] used the LMM framework to address this question: assuming that the effect of each
variant is drawn from a Gaussian distribution, the model of the phenotype is an LMM, and the estimates of

the variance components can be used to estimate the heritability: h2 =
σ2
g

σ2
g+σ

2
e
. Their seminal paper showed

that the fraction of heritability of height explained by a set of 500K genotyped SNPs is considerably larger
than the heritability explained by the genome-wide significant hits alone, suggesting that height is indeed
driven, to the large part, by a plethora of common variants with small effects.

Their work sparked a wave of follow-up work adopting and adapting the LMM framework for various
heritability-related goals. One popular approach is to partition the SNPs to l groups, and compute a cor-
relation matrix Gi for each group. The variances σ2

g1, ..., σ
2
gl are estimated simultaneously, capturing the

heritability explained by each group. This practice was used, for example, to partition the heritability by
chromosomes [17], by cis/trans effects [18] or by functional annotations [19].
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The mixed modelling challenge for case-control GWAS.

So far, we discussed LMMs in the context of studies where sampling is random and the phenotype in question
is quantitative. However, in many scenarios one or both of these assumptions does not hold. In particular,
the most important use of GWAS is for studying human diseases, where the phenotype is usually binary
(affected/healthy), and (relative) rarity of the disease requires the adoption of case-control sampling schemes.
In this setting, the problems addressed by using LMMs are still present, but application of LMMs is much less
straight forward. In this section we describe how LMMs are extended in these situations and what problems
arise.

Modelling discrete phenotypes. Quite often, the phenotype in question is discrete rather than quanti-
tative, specifically binary like disease phenotypes. In traditional regression settings (fixed-effects modelling),
this is often addressed by moving from linear models to the generalized linear models (GLM, [20]) framework,
where instead of assuming Y = Xβ+ e, we move to assuming f(P (Y = 1|X)) = Xβ, for an appropriate link
function f . The most common approaches are the probit and logit link functions:

Probit : f(p) = Φ−1(1− p)

Logit : f(p) = log(
p

1− p
),

where Φ is the standard normal cumulative distribution function. The well known logistic regression approach
is simply a GLM with the logit link.

In the generalized linear mixed models (GLMM) literature in statistics, the binary situation is often
addressed by the same approach that generalizes the linear mixed model through use of a link function [21]:

f(P (Y = 1|X,Z, u)) = Xβ + Zu,

where we still assume that ui ∼ N(0, σ2
u). While this model is well defined, estimation and inference in

this model is a much more complex task than in the standard LMM setting, since the normally distributed
vector is now unobserved. If the link function used is probit, the setting falls under the more general category
of Gaussian process regression and classification, which has been widely studied in the machine learning
literature [22]. The state of the art solutions developed in this area, including expectation-propagation (EP,
[22]) and Markov-Chain Monte Carlo approaches (MCMC, [23]), can offer practical solutions to GWAS-
sized problems. Such solutions can address all aspects of the GWAS problem discussed above: fixed effects
estimation/testing, variance components (heritability) estimation, and prediction.

In the context of genetics, Wright [24] put forward the liability threshold model (LTM) to address the
issue of binary phenotypes. In the mixed model version of LTM, one assumes the existence of a latent
phenotype vector L = Xβ + Zu+ e, which follows the same normal assumptions of the standard LMM:

L | u ∼ N(Xβ,ZZtσ2
u + Iσ2

e), (2)

Y = I(L > T ). (3)

The observed phenotype is determined by the latent phenotype crossing or not crossing a threshold T , set
such that the probability of crossing T is exactly the prevalence of the disease in the population. In the
GLMM context, LTM is simply a GLMM with a probit link function, since it gives:

P (Y = 1|X,Z, u) = P (L > T |X,Z, u) = 1− Φ(
T − (Xβ + Zu)

σe
).

An important development in the analysis of genetic data under LTM was the presentation by Dempster
and Lerner [25] of a mathematical connection between the heritability on the observed (Y ) scale, i.e., h2o =

cov(Y, g)/var(Y ), and the heritability on the liability scale, i.e. h2l = cov(L,g)
var(L) =

σ2
g

σ2
g+σ

2
e
:

h2l =
K(1−K)

ϕ(T )2
h2o,
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where K is the prevalance of the phenotype, T is the liability threshold, and ϕ is the density of the standard
Gaussian distribution. This implies that any reasonable estimate of the heritability on the observed scale can
be transformed to an estimate of the “true” heritability. One such estimate can be obtained using a method
known as Haseman-Elston regression [26], whereby the O(n2) products of binary phenotypes Yi × Yj are
regressed on the kinship values Gij . Thus within the LTM we have two competing approaches for estimating
heritability: via maximum likelihood GLMM or using the “moment-based” regression estimator, followed by
the correction of Dempster and Lerner.

A different approach which is often practiced in the genetics community is to ignore the binary nature
of the phenotype and apply regular LMM’s to the data, as if Y were a quantitative, normally distributed
phenotype. While this practice is clearly unsubstantiated from a probabilistic perspective, it leads in practice
to useful methods, especially for prediction. It can be thought of as using Y as a surrogate the unobserved
L.

Case-control sampling. So far we have assumed that samples are randomly drawn from the population.
However, quite often this is not the case, with the prime example being case-control studies. In case-control
studies, one is interested in studying a (relatively) rare outcome, e.g. a disease which affects < 1% of the
population. In such scenarios, a random sample from the population would include a very small fraction
of affected individuals (cases), and so the efficiency of the statistical analysis would be compromised. The
common strategy to address this problem is to make an effort to sample more cases than their random
share in the population, e.g. by recruiting cases using ads or at clinics and hospitals directly, and separately
sampling healthy controls from a “similar” population (to mitigate the effects of population structure and
other confounders). The resulting sample is then subjected to GWAS.

This seemingly innocent sampling approach has the potential to wreak havoc in the statistical analysis
of the resulting data, which has been the subject of a long and storied line of work in the statistics literature
[27, 28, 29, 30, 31, 32]. Here we concentrate on some of the aspects of this area which are most relevant to
mixed models analysis of case-control GWAS.

It is first important to note one situation where case-control sampling can be mostly ignored. The famous
result by Prentice and Pyke [28], building on earlier work by Anderson [27], shows that if we are assuming
that P (Y |X) follows a fixed-effects GLM with a logit link function in the population, with an intercept:

P (Y = 1|X) =
exp(α0 +Xβ)

1 + exp(α0 +Xβ)
,

then the parameters β can be estimated from a case-control sample from the population, and inference
carried out on them, while ignoring the fact that such sampling has taken place. This result is extremely
useful and widely used, but it represents the exception rather than the norm in analyzing case-control data.
Even if no random effects are assumed, but we move away from the logit link (say, to probit), important
aspects of this result no longer hold. Once we also include random effects and move to a mixed model (say,
using LTM), we can no longer ignore the case-control sampling and hope to obtain meaningful results.

More concretely, the typical probabilistic mixed model in case-control GWAS still assumes that the
GLMM (specifically, probit GLMM through the LTM) holds at the population level without the case-control
sampling. This is often justified by a Central Limit Theorem (CLT) type of argument, for example that the
genetic effect is the sum of many small effects drawn from the same distribution and therefore follows a normal
distribution by virtue of the CLT. Thus, in the population we still assume the model (2,3). Once we move
to case-control sampling, then in the sampled population the probabilistic setting is significantly changed.
Formally, we add a sampling vector S which encodes the sampling process, i.e., in case-control sampling the
liability is sampled not from P (L), but from P (L | S = 1), and similarly for all other quantities. In this
setting, it is easy to see that [33]:

1. The distributions of the liability L, the genetic effects vector g and the environmental effects vector
e are no longer normally distributed

2. The genetic effect and the error vector e are no longer independent, because cases are oversampled,
and these tend to have both g and e high, so that L passes the threshold T .
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FIGURE 1
Comparison of the distribution of the liability in a random sample and a case-control sample
of a discrete phenotype. We simulated two studies using the liability threshold model: a random sampling
study of a relatively common disease phenotype (K = 10%, top panel), where the liability follows a normal
distribution as expected; and a balanced (P = 50%) case-control study where the phenotype is relatively
rare (K = 1%, bottom panel). In the latter case, the over-sampling of cases results in an oversampling of
the right tail of the distribution, and the distribution is obviously no longer normal.

These effects are demonstrated in Figures 1 and 2.
Maximum-likelihood based statistical modelling and estimation of GLMMs with case-control sampling in

this setting is to our knowledge an unsolved problem. The Gaussian-process literature discussed previously
does not offer EP or MCMC solutions to this problem, and we are not aware of other work offering practical
computational solutions to this problem (which can be thought of as a high-dimensional integration problem).

However, as discussed before, using LMMs to analyze GWAS offers a unique combination of major
benefits, including their ability to control for population structure and model cumulative effect of many
small genetic effects, and the efficient computational tools that exist for computing LMMs. Because of this,
many researchers have sought to analyze case-control studies by applying standard (normal) LMMs to the
data, and using the results in association testing [11], heritabililty estimation [34], and genetic risk prediction
[35]. In some of these cases, the results of LMM were “corrected” to account for case-control sampling [34].

The fundamental difficulty in all these efforts is that the probabilistic model assumed by the LMM does
not hold at all: As just demonstrated, the distributions of the elements of the LTM (liability, genetic effect
and environmental effect) and their correlation structure are fundamentally influenced by the sampling. Not
surprisingly, we are not aware of any theory that can describe the distribution of estimates derived by applying
standard LMMs to case-control GWAS, and it seems unlikely that such theory is possible. Consequently, we
do not believe that tasks concentrated on statistical estimation, inference and testing in case-control GWAS
(like association testing and heritability estimation) should be based on LMMs. A slightly different case is
presented by genetic risk prediction, where the goal is to predict the phenotype of new individuals, based
on their genotypes. Since this task carries with it an objective measure of performance that does not need
to be tied to probabilistic inference, methods based on LMMs can be justified. However, they should be
thought of as algorithmic predictive modelling approaches, rather than a well founded probabilistic model
of case-control GWAS.
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FIGURE 2
The effects of case-control sampling on the marginal and joint distribution of the genetic and
environmental effects. We simulated genetic and environmental effects for unrelated individuals with
σ2
g = σ2

e (so h2 = 0.5). Phenotypes were determined using a liability threshold model without fixed effects
using for either a common phenotype (K = 10%, left panel) or a rare phenotype (K = 1%, right panel). In
the former scenario, random sampling was applied, while in the latter scenario, cases were oversampled to
achieve a balanced study (P = 50%). The joint distributions are illustrated in the middle panels while the
marginal distributions of the random effects are illustrated in the side panels.
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Methods for mixed modelling of case-control GWAS

After reviewing the general challenge, in this section we review some of the recent methods for addressing
the major tasks in case-control GWAS under the mixed-models paradigm. We try to emphasize methods
that take into account the complex probabilistic model in this setting and offer valid solutions (if partial
and suboptimal, compared to the currently impractical alternative of solving the full case-control GLMM
problem).

Association testing and estimation of fixed effects. Association testing is the main original intended
use of GWAS (as expressed in the term itself), and naturally it has been extensively applied to case-control
GWAS. Ultimately, association testing seeks to test a null hypothesis for the association between each variant
genotyped in a GWAS (typically counting the number of minor alleles 0, 1, 2) and the phenotype in question.
The simplest approach treats this through standard univariate tests: Armitage’s test for trend, Chi-square
tests on contingency tables, likelihood-based tests (G test, score test) on logistic regression, etc. All of these
tests are statistically valid for case-control GWAS (since under the null, the sampling does not affect the
distribution of the statistic) and have been extensively used in GWAS (e.g. [36]).

Already in the early days of GWAS, the statistical genetics community came to the realization that
population structure and linkage disequilibrium are critical aspects of the problem, and univariate tests
which ignore them give results that are statistically valid but are often of little interest in the application.
This is because the presence of the above factors, especially population structure, imply that many non-
causative genetic variants will be significantly associated with the phenotype through their correlation with
causative variants, and these can be spread throughout the genome. Early efforts to correct this problem
(beyond traditional genomic control approaches [37]) concentrated on explicitly modelling structure through
the use of principal components (PCs). These were then added as additional fixed effects to a regression
model, or regressed out of both the genetic variants and the phenotype, before testing [38]. Under the
assumption that a few PCs successfully capture population structure, this approach is reasonable. However,
as previously described, the use of mixed models for controlling population and genetic structure has been
demonstrated to be the most effective and general approach in many settings.

Thus there is an obvious interest in taking advantage of the mixed models conceptual framework in
case-control GWAS as well. The first option is to apply LMMs to this problem “out of the box”, ignoring
both the discrete phenotype and the sampling (see, e.g., [11, 35]), assuming that the 0/1 phenotype follows
the LMM normal distribution. This is difficult to justify as has been discussed, and indeed leads empirically
to low power [10].

We are aware of two recent papers that made an effort to adapt the mixed model framework to association
testing in case-control GWAS [39, 40]. The common idea to these two methods is to start from replacing
the 0/1 case-control status by an estimate of the liability L , and doing so while taking into account the
probabilistic structure (i.e., considering the distribution P (L|S = 1)).

The paper by Weissbrod et al. [39] takes advantage of the similarity between BLUP and ridge regression
prediction (which are equivalent when no fixed effects are present), to formulate the liability estimation
problem as a penalized probit regression problem:

L̂ = Zû+ ε

û = arg min
u

n∑
i=1,yi=1

log

(
Φ(
T − zTi u

σe
)

)
+

n∑
i=1,yi=0

log

(
1− Φ(

T − zTi u
σe

)

)
+

1

2σ2
u

‖u‖2.

This calculation assumes that the variances σ2
g = mσ2

u, σ
2
e are known in advance, and the resulting L̂ is the

maximum a-posteriori (MAP) estimate of L|S = 1. [39] then plug this L̂ into a regular LMM to perform
the association testing, and demonstrate that the resulting power is superior to that of standard LMMs or
PC-based correction for structure. However, as demonstrated in Figures 1,2 there is no reason to assume
that L̂ (or indeed the true unobserved liability L) has a normal distribution under case-control sampling,
hence the second part of their solution still fails to fully take the case-control sampling into account.
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The paper by Hayeck et al. [40] takes a different approach to estimating the liability. They use the fact
that given the phenotype vector Y , and all liabilities but one L−i, the distribution of the missing liability is
a truncated normal:

li | L−i, Yi = 1 ∼ TN(µi, σ
2
i , T,∞),

li | L−i, Yi = 0 ∼ TN(µi, σ
2
i ,−∞, T ),

where µi, σ
2
i are the conditional mean and variance, calculated as in Eq. (1). This allows them to design

a simple Gibbs sampling algorithm for generating random samples of “representative” liability vectors L
for the case-control probabilistic model. These are averaged to calculate a “posterior mean” liability vector
L̂. This vector is then used as if it were a normally distributed LMM response in a score test of the null
of no association for each genetic variant. Hence for this approach too, the second part fails to take the
probabilistic structure into account. The superiority of the approach over standard LMMs and trend test in
terms of power is demonstrated in both simulations and real data.

Beyond testing, actual estimation of the association parameters (fixed effects) is usually considered a
by-product of the process. We are not aware of specific efforts to estimate fixed effects within mixed-model
analysis of case-control GWAS. This is in contrast to the problem of estimating variance components and
heritability, discussed next.

Estimating variance components (heritability). The first attempt to estimate the variance of the
genetic random effect (i.e., the heritability) in the context of case-control GWAS was by Lee. et al. (2011)
[34]. They describe a procedure in the spirit of [25]: First code the phenotype as a 0/1 variable, treat it
as quantitative and apply a standard LMM method (in their case, REML as implemented in GCTA [41]).
Then, apply a post-hoc correction to correct the errors and biases introduced by the fact that, in fact, the
method applied was inappropriate. Specifically, Lee et al. obtain an ”observed scale” heritability estimate
ĥ2o, which is the heritability of the synthetic 0/1 phenotype, and transform it to the desired ”liability scale”
heritability using the following relationship:

ĥ2l =
K2(1−K)2

P (1− P )ϕ(T )2
ĥ2o,

where K is the prevalence of the disease in the population, and P the percentage of cases in the study
(typically P >> K in case-control studies).

While Lee’s method has become extremely popular, evidence from both simulation studies and actual
studies show that it, in fact, produces downwards-biased estimates [10, 33]. Strikingly, this bias appears to
increase with sample size, as demonstrated by simulations in [33] and using real data in [14], who used down-
sampling of a huge GWAS to demonstrate how the estimates decrease as the size of the sample increases.

Recently, Golan et al. (2014) [33] developed an alternative method that does not suffer from the same
problems as the method of Lee et al. They adopt the moments-method approach of Haseman and Elston
[26] to obtain estimates that are unbiased despite the complicated underlying probabilistic model. The basic
idea is to look at the relationship between two correlations: the correlation between the phenotypes of pairs
of individuals (phenotypic correlation) and the correlation between the genotypes of pairs of individuals (the
genetic correlation). Higher heritability implies that high genetic correlation should yield high phenotypic
correlation, and low heritability implies no such relationship. More formally, Golan et al. express the product
of the phenotypes of any two individuals, as a function f of the true underlying heritability, the genetic
correlation, and the fixed effects, where f itself depends on the actual design of the study (specifically P )
and the properties of the disease (specifically K):

E(yiyj) | S = 1;Gij , h
2) = f(h2, Gij),

where the conditioning on S = 1 indicates the fact that both individuals were selected for the study. Note
that we assume that the phenotypes are centered and scaled so E(yiyj) = cor(yi, yj). Next, f is approximated
using its Taylor series approximation:

f(h2, Gij) = a0 + a1Gijh
2 +O(G2

ij).
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Since individuals in the the GWAS study are typically unrelated, the values of Gij are relatively small, so
the first order approximation is satisfactory, resulting in an (approximated) linear relationship between the
phenotypic correlation and the genetic correlation. In this situation, one can use linear regression to estimate
the slope a1h

2 (by regressing the products yiyj onto Gij for all pairs i 6= j). To obtain an estimate of the
heritability, all that is left is to compute the constant a1. Golan et al. show how this can be done for various
study designs (e.g. case-control and extreme phenotype sampling). Importantly, the computation explicitly
involves the conditioning on the selection variable S = 1, so it accounts the effects of the non-random
selection. The resulting estimates are unbiased (by virtue of being first moments estimators) and fast to
compute (O(n2) instead of the usual O(n3) of most REML based methods). The method is named PCGC (for
regressing phenoytpe correlations on genetic correlations) and a fast and memory-efficient implementation
of PCGC regression can be found in the software reference list.

The application of PCGC regression to a wide range of GWAS in [33] demonstrated that the fraction of
heritability explained by common variants is larger than estimated by the method of Lee et al. (for example,
the estimated heritability of multiple sclerosis explained by common variants increased from 30% [42] to
45% [33] using the same data), and recent applications of PCGC regression for other phenotypes show
similar results [14, 43]. Importantly, a recent paper used a huge GWAS of schizophrenia (involving 50, 000
individuals) to show that estimates using the method of Lee et al. method indeed decrease as the sample
size increases, and that PCGC regression yields the correct estimate (i.e. a similar estimate to the estimates
obtained when applying Lee et al.’s method to very small subsets of the data which have a very small bias
due to their size).

Prediction The prediction problem is essentially different from the problems of estimating fixed or
random effects. For these statistical inference problems, one is interested in unraveling some “ground truth”
(the true heritability of a disease or the true effect size of a SNP), or making a scientific discovery (identifying
a novel causal locus). In contrast, the prediction problem comes with its objective and measurable metric
of success – predictive accuracy. In this case, applying methods which are not theoretically justified, but
yield good performance is legitimate, as evidenced by the popularity of the application of out-of-the-box
machine-learning methods such as support vector machines or elastic-nets for phenotype prediction (e.g.
[44]). However, machine learning methods typically make no assumptions regarding the data, and take as
input only a feature matrix (the genotyped SNPs) and an outcome vector (the phenotype). In contrast, GWAS
in general, and case-control GWAS in particular, do have several unique characteristics: a highly polygenic
nature of many phenotypes; a unique structure of correlations between the SNPs (linkage disequilibrium);
the existence of population structure, which is captured by the correlation matrix G; and, of course, the
artifacts introduced by the non-random sampling scheme in case-control studies. As discussed earlier, LMMs
are particularly suited to take advantage of these features in the case of randomly sampled phenotypes,
and typically outperform other methods, including ”simple” classifiers which are based only on genome-wide
significant SNPs (e.g., [45]). Given these favorable results, it is only natural to apply LMMs to the problem
of prediction using a case-control GWAS as reference panel.

One popular approach is to code the binary phenotype as 0/1, and use standard LMM methods for
prediction (e.g. using BLUP, or its recent extension multiBLUP [35] on the coded phenotype). The application
of LMM-based methods aims to utilize their advantages for improved prediction. However, the same logic
implies that a BLUP-like method that accounts for the quirks introduced by case-control sampling, should
out-perform naive BLUP methods as it takes full advantages of the unique features of the case-control
GWAS problem, namely, assumes a highly additive model, captures population structure, and accounts for
the non-random sampling.

This intuition is captured by GeRSI – a method for genetic risk score inference which accounts for case-
control sampling [46]. Here the authors find the conditional distributions of the genetic and environmental
effects ei | g, e−i, Yi and gi | g−i, e, Yi, which turn out to be truncated normal distributions, similarly to
the conditional distribution of the liabilities in [40] described earlier. Once the conditional distributions are
specified, Gibbs sampling is used to sample the posterior distribution of the genetic effect of an individual with
an unknown phenotype, and these samples can be used to compute the posterior risk prediction (intuitively,
higher posterior value of the genetic effect translates to higher risk). Simulations and application to real data
show that GeRSI outperforms its BLUP equivalent.
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Conclusion

The problem of mixed-modelling analysis of case-control studies in general, and case-control GWAS in par-
ticular, is unique in its combination of high importance and popularity, extreme difficulty, and paucity of
computationally effective and statistically valid approaches. Indeed, while several of the approaches we pre-
sented here offer statistically valid solutions to specific aspects, we are aware of no fully valid approaches based
on maximum-likelihood principles or Bayesian principles for estimation or testing in case-control GWAS. An
intriguing question is whether this is because this problem is simply too difficult from a computational and
statistical perspective, or whether it is a matter of getting the right communities and capabilities involved.
In particular, the Gaussian processes literature does offer efficient solutions to GWAS-sized problems with
binary phenotypes and natural sampling [22, 23]. If these EP and MCMC approaches can be adapted to
dealing with case-control sampling, they may present an important opportunity. We note that recent research
efforts in our group have been focused on this direction, and we are hopeful that a solution may be found.

One common critique of the mixed effects approach is that while many phenotypes are considered to
be highly polygenic, it is not reasonable that all of the SNPs have identically distributed non-zero effects.
Several methods try to address this issue by introducing an indicator variable for every SNP, indicating
whether the SNP has a non-zero effect, and another parameter p which is the proportion of causal SNPs.
Then, p can be jointly estimated with the other parameters of the model using MCMC-based methods [8, 47].
These models were recently extended to allow for a richer distribution of the effect sizes of SNPs, jointly
modelling several scales of effect sizes [48]. These models are promising as they allow for a more realistic
modelling of the genetic architecture and yield posterior probabilities of causality per SNP, as well as an
overall estimate of the proportion of causal SNPs. While some efforts were made to modify these models to
address some of the issues discussed here [49], we still view the problem of extending these approaches to
account for case-control sampling in a way which is scalable for large GWAS as an open problem of great
interest and potential importance.

Software reference list

GCTA A software package [41] containing an implementation of BLUP for standard LMM and an imple-
mentation of the biased heritability estimation method of Lee et al. (2011) [34], as well as many other
useful functions for data handling (e.g. computing GRMs).
http://cnsgenomics.com/software/gcta/

PCGC Regression A memory-efficient implementation of the PCGC method [33] implemented by [50].
https://github.com/gauravbhatia1/PCGCRegression/

LTSOFT A software package implementing various liability-threshold related functions, including the com-
putation of posterior liabilities of [40].
http://www.hsph.harvard.edu/alkes-price/software/

LEAP Implementation of the MAP liability for case-control GWAS of [39].
https://github.com/omerwe/LEAP

GeRSI Prediction of case-control status using LMMs which takes the case-control sampling scheme into
account [46].
https://sites.google.com/site/davidgolanshomepage/software/gersi

GEMMA A software package which includes the Sparse Bayesian regression (BSLMM) models of [49].
http://www.xzlab.org/software.html
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