
Statistical Learning, Fall 2024-5

Class notes 6

Classification methods: linear and traditional

Recall we are in a setting where Y ∈ G = {g1, . . . , gK} unordered set. Of special interest is the
binary classification case K = 2. When thinking of predictive modeling in a probabilistic setting,
we have repeatedly discussed it as modeling the conditional distribution Pr(Y |X) or its properties
like the conditional expectation E(Y |X).

The probabilistic approaches we have discussed so far (like least squares regression or nearest
neighbors) fall under the category of discriminative methods that aim to directly model this condi-
tional distribution.

In the classification context, we can consider a different approach, termed generative modeling,
which uses Bayes rule:

Pr(Y |X) =
Pr(X,Y )

Pr(X)
=

Pr(Y )Pr(X|Y )

Pr(X)
∝ Pr(Y )Pr(X|Y ),

that is, if we can estimate the two distributions on the right, we can get a good estimate of which
probabilities on the left are bigger or smaller, and use that for prediction. This is especially relevant
to classification, because Y takes onlyK values, so there is a finite set of distributions Pr(X|Y = gk)
to estimate.

In the toolbox of “traditional” methods for classification, we can find methods of both types,
in particular we will discuss:

� “Discriminative” methods (including non-probabilistic):

– Linear regression for classification

– Logistic regression (typically used for K = 2, often called Multinomial regression for
bigger K)

– Support vector (linear) classification

� Generative methods:

– Linear discriminant analysis (LDA)

– Generalizations: Quardratic (QDA) and regularized (RDA) discriminant analysis

– Naive Bayes
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Linear regression for classification

For K = 2 we already discussed the option of coding Y ∈ {0, 1}, performing a least squares
regression, and if we interpret the results as:

f̂(X) = X̂(Y |X) = P̂ r(Y = 1|X),

then it’s natural to use Ŷ = I{f̂ > 0.5} as the classification rule.
An important caveat is that there is no guarantee that for predictions generated this way, we get
f̂(X) ∈ [0, 1], which hampers the interpretation as probabilities.

For K > 2, the standard approach to applying linear regression is through one-hot encoding,
dividing the problem into K binary problems of separating each class k from all the others, and
coding each one of these as a linear regression problem as above, that is denote on the training set:

Ỹik =

{
1 if Yi = gk
0 otherwise

,

and Yn×K is now a matrix whose i, k entry is Ỹik. Now we can still solve a linear regression over
every column, writing it compactly as:

B̂ = arg min
B∈Rp×K

∥Y−XB∥2F (Frobenius norm = sum of squares).

Each column of B is simply a least squares solution for one class.

Notes:

� If the matrix X contains an intercept, then it is easy to see that
∑K

k=1 f̂k(X) = 1, and therefore
it’s enough to solve K − 1 problems, as in the case K = 2.

� The natural class prediction in this approach is Ŷ (X) = argmaxk f̂k(X), the class with the
highest score.

� A major problem with this approach is masking, where if one class is in the middle between
two others, a prediction model may never predict the class in the middle (example on the
board).

Logistic regression

We recall the general idea of generalized linear models (GLMs), that replace the standard linearity
assumptions with:

g(E(Y |X)) = XTβ,

with g prperly selected invertible function so that g−1 : R → L, where L is the set of legal val-
ues for E(Y |X), for example for 2-class classification where Y |X ∼ Ber(g−1(XTβ)), we will want
L = (0, 1).
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GLMs have extensive theory related to exponential families, and practical applications in meth-
ods like Poisson regression (dealing with count data) and logistic regression. For our purpose we
will concentrate on 2-class classification and logistic regression:

logit(X) = log
Pr(Y = 1|X)

1− Pr(Y = 1|X)
= XTβ ⇒ Pr(Y = 1|X) = E(Y |X) = logit−1(XTβ) =

exp(XTβ)

1 + exp(XTβ)
.

Unlike in our discussion of linear models and least squares regression, GLMs are closely tied
to probabilistic assumptions — for example, for logistic regression it is that the logit is really
linear in the covariates. Given the assumptions, GLMs are fitted to data by maximizing the (log)-
likelihood of the parameters β. We note that for properly defined GLMs, including Poisson and
logistic regression, the likelihood is convex in β so standard second-order methods like Newton-
Raphson are guaranteed to converge to the optimum (in traditional statistics, variants of this are
called Fisher scoring and are described as iteratively reweighted least squares). The maximum
log-likelihood problem for logistic regression (with Yi ∈ {0, 1}) can reformulated as:

β̂ = argmax
β

n∑
i=1

I(Yi = 1)(XT
i β)− log(1 + exp(XT

i β)).

As noted, logistic regression requires strong assumptions about the true model. If we are willing
to make these assumptions, we get some major additional benefits:

1. Statistical inference mechanism, similar to this we have for least squares linear regression (for
GLMs it relies on asymptotic approximations rather than exact finite sample theory), which
offers:

� Inference on importance of predictors (Wald tests instead of t-tests in OLS)

� Generalized ANOVA and F-tests for model selection

� Resulting approaches for variable and model selection like forward-stepwise

2. Non-probabilistic interpretation of XT β̂ as a “scorecard” which weights the different proper-
ties of the observation in making a prediction decision.

We also note that the decision boundary Ŷi = I
{
P̂ r(Y = 1|X) > 0.5

}
is linear in logistic

regression:
P̂ r(Y = 1|X) > 0.5 ⇔ logit−1(XT β̂) > 0.5 ⇔ XT β̂ > 0.

Logistic regression for K > 2 (also called multinomial regression)

Recall we now have Y ∈ G = {g1, . . . , gK}. The standard generalization assumes:

log
Pr(Y = g1|X)

Pr(Y = gK |X)
= XTβ1

...

log
Pr(Y = gK−1|X)

Pr(Y = gK |X)
= XTβK−1
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We can easily transform this to probabilities for the classes by multiplying and summing up:

Pr(Y = gk|X) = exp
(
XTβk

)
Pr(Y = gK |X), k < K

⇒ Pr(Y = gk|X) =
exp

(
XTβk

)
1 +

∑
l<K exp (XTβl)

, P r(Y = gK |X) =
1

1 +
∑

l<K exp (XTβl)
.

where the transformation uses the identity Pr(Y = gK |X) = exp
(
XT 0

)
Pr(Y = gK |X) and the

fact that the probabilities sum to 1.

Notes:

1. Fitting this model to data is done by maximizing the likelihood as before (we already have
the probabilities written explicitly).

2. This can be interpreted as associating a vector βk with each class, and prefering class k to l
if:

Pr(Y = k|X) > Pr(Y = l|X) ⇔ XTβk > XTβl.

3. The choice of K as the “reference class” in the denominator and βK = 0 seems arbitrary,
but the solution is invariant to this choice in the sense that the predicted probabilities of
the maximum likelihood solution P̂ r(Y = k|X) are unaffected by this choice (the coefficient
vectors β̂k are affected of course). Proof of this: HW3
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