
Statistical Learning, Fall 2022

Class notes 9

Bagging and Random Forest

Instead of a single tree being a model, combine many trees into a model:

1. Bagging and Random Forest: Fit different trees to the data and average them

2. Boosting: Adaptively build a model from adding more and more trees

We will focus first on Random Forest (also Bagging), later discuss boosting. Main idea of Ran-
dom Forest: Take advantage of the instability and high variance of the trees Trees are unstable and
greedy: if we change the data a little bit, the tree can change a lot. Now we intentionally change
(randomize) the data to get a different tree every time, and average them.

The value of averaging: This is captured through different things we know: CLT, LLN,
variance of the average... Assume zi ∼ F has some distribution with mean µ and variance σ2. If
z1, ..., zm ∼ F are independent, then V ar(z̄) = σ2/m, so z̄ is close to µ for large m.

Slightly more complex setting: assume z1, ..., zm are somewhat dependent Cov(zi, zj) = ρσ2, ρ <
1. Now we still get some variance reduction from averaging:

V ar(z̄) = ρσ2 + (1− ρ)σ2/m→ ρσ2.

This is exactly the intuition behind Bagging and Random forest.

Random forest algorithm:

1. Repeat many times:

(a) Randomize the data (by taking a subsample or a bootstrap sample)

(b) Build a tree on the randomized data, also randomize tree building, by randomly choosing
variables to consider at each node: typically choosing k ≈ p/3 variables in regression
and k ≈ √p for classification.

2. Final model is average of all models: To predict at new x0, apply each tree and average their
predictions

Intuition: tree predictions are different because of randomization, they are like z1, ...zn ∼
P(y|x0, T )
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1. Related (ρ > 0) because it’s the same training set T

2. Still different from each other (ρ < 1) because of randomization and instability of trees

Hence we expect (and indeed see!) that Random Forest gives more accurate predictions of E(y|x)
or P (y = 1|x) than single trees.

Bagging is the same as RF, applying only data randomization, without the randomization of
variables in each split. Historically, Breiman first invented Bagging around 1994, and extended it
to RF in 2001.

Boosted trees

Intuitive idea: We gradually and iteratively build the overall model as a sum of smaller models
called weak learners. Each weak learner seeks to improve the model we have so far. Weak learners
can be any predictive model, most widely used: trees. How do we capture the notion of improve
the model we have so far?.

Boosting: overall scheme

1. Initialize F (0)(x) = 0, ∀x

2. At stage t ≥ 1:

(a) Calculate Y (t) = (y
(t)
1 , . . . , y

(t)
n ) capturing what the model F (t−1) has not yet explained

(b) Fit a weak learner f̂ (t) to T (t) = (X,Y (t))

(c) Update F (t) = F (t−1) + εf̂ (t)

Details: How to determine Y (t)? Which weak learner to use? What is ε?

Example: Tree boosting for regression

Defining Y (t) as y
(t)
i = (yi − F (t−1)(xi)) the current residual (what the model does not explain)

Weak learner: trees, usually small — two- or three-level trees as f̂ (t)

Make ε as small as possible (ε-boosting): tradeoff between accuracy and computation.

For regression, taking the residual as y
(t)
i makes sense. What is an analogy for classification?

What about a more rigorous mathematical explanation of what we are doing? There are several
approaches of varying mathematical complexity for describing and analyzing boosting.

The additive model view:
Start with a very large (possibly infinite) set of q candidate ”weak learners”: h1(x), ..., hq(x). We

are looking for a ”linear” model of the form f̂(x) =
∑q

k=1 β̂khk(x). In boosted trees example the

hk’s are all possible trees of the given depth. Since q is huge we cannot directly find a good β̂ ∈ Rq.

Additive model via boosting:
At each iteration t we find a ”good” candidate hkt and add εhkt to the current model. After T
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iterations we have a model where β̂k = ε×#{kt = k} (the number of times k was chosen). How do
we define a good hkt to update its coefficient? One option: given the current model F (t−1), which
hk improves the model fit the fastest when we add it to the model? This can be captured by using
the derivative of the loss which measures the fit. Derivative of the RSS (squared loss):

∂RSS(F (t−1))

∂ŷi

∣∣∣∣∣
ŷi=F (t−1)(xi)

= −2(yi − F (t−1)(xi)).

The gradient boosting paradigm

• Choose a loss function for modeling (like RSS for regression)

• At each iteration: calculate the (negative) gradient of the loss function at the current model,
use that as Y (t) for the next weak learner

• Interpretation: trying to find a weak learner hkt which ”behaves like” the negative gradient,
which is the direction of fastest decrease of the loss

• Can be applied with different loss functions for regression or classification

For 2-class classification we denote yi ∈ {0, 1} (sometimes yi ∈ {±1} but we stick here with
0/1). A common loss function, which we also presented in the context of logistic regression is the
(negative) Bernoulli log likelihood:

L(yi, ŷi) = −yi log(
exp(ŷi)

1 + exp(ŷi)
)− (1− yi) log(

1

1 + exp(ŷi)
).

For simplicity denote as in logistic regression using the inverse logit transformation:

p̂i =
exp(ŷi)

1 + exp(ŷi)
=

exp(F (t−1)(xi))

1 + exp(F (t−1)(xi))
,

where the last equality refers to already applying ŷi = F (t−1)(xi).
If we use this loss function in a gradient boosting algorithm, after some scary differentiation we

get that simply:

y
(t)
i = yi(1− p̂i)− (1− yi)p̂i.

Note that since yi ∈ {0, 1}, only one of the two expressions is non-zero.

Formal gradient boosting description

In the gradient boosting paradigm, define:

• Training loss function per observation: L(y, ŷ), and total: L =
∑

i L(Yi, Ŷi).

• Family of q weak learners: hk : X → R , k = 1, . . . , q, possibly q =∞.

Now define F (0) ≡ 0, and for t = 1, . . . , T :

1. Set ∇L =

{
∂L(yi,ŷi)
∂ŷi

∣∣∣
ŷi=F (t−1)(xi)

}n
i=1

3



2. Solve (exactly or approximately) kt = arg mink 〈∇L, hk(X)〉

3. Find coefficient αt =

{
arg minα L(F (t−1) + αhk) Line search boosting
ε (small) ε-boosting

4. Update F (t) = F (t−1) + αthkt .

The optimization problem in the second step is often replaced with:

kt = arg min
k
‖(−∇L)− hk(X)‖2

which is very similar, except it also penalizes ‖hk(X)‖2, controlling the norm of the model.

AdaBoost as gradient boosting

The famous AdaBoost algorithm (Freund and Schapire 1992) was developed in the machine learning
community, with a different theory, but we can discuss it as gradient boosting. The algorithm for
two-class classification initializes f̂0 = 0, wi ≡ 1, then for t = 1...T updates:

1. Fit a classification tree with response y and weights w on the observations, getting tree ht

2. Denote by Errt the (weighted) misclassification error of ht

3. Set αt = 0.5 log ((1− Errt)/Errt)

4. Update weights: wi ← wi exp (−αt(yiht(xi)))

This is a gradient boosting algorithm with L(y, ŷ) = exp(−yŷ), (where y ∈ {±1} and ŷ ∈ R). The
weights w are the gradient, and step 3 is the solution to line search in this setting.
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