
Statistical Learning, Fall 2022

Class notes 8

Decision trees

The general idea: divide the space X into “neighborhoods” where the response is homogeneous, and
use that for prediction. In trees this is done via recursive partitioning. A partition R = {R1, ....RM}
is such that

⋃M
j=mRm = X and Rj

⋂
Rk = ∅ , j 6= k. A recursive partitioning scheme divides the

space recursively into smaller regions, which can be described as a tree. The model has the form:

f̂(x) =
L∑

m=1

ĉmI{x ∈ Rm}.

For regression ĉm is a number, for classification it is a class.
A decision tree algorithm (for regression or classification) has three elements:

1. How do we choose a split at each node of the tree?

2. How do we decide when to stop splitting? This can be thought of as a bias-variance tradeoff,
where bigger trees are more flexible (less bias) but more overfitted to training (more variance).
A tree that never stops and ends up with one observation in each leaf is similar to a 1-NN
model.

3. How do we fit a value ŷ for each terminal node (leaf)?

Some well known decision tree algorithms:

• ID3, C4.5, C5.0: for classification only, invented in the CS/machine learning community

• Classification and regression trees (CART, Breiman, Friedman, Olshen, Stone 1985): invented
in the statistics community

• We are going to mostly describe CART, which is the basis for modern methods we discuss
later

CART for regression: splitting process and leaves fits

Criterion: Minimize RSS on training.
Given set of r observations in current node, define for a variable j and possible split point s:

L(j, s) = {i ≤ r : xij ≤ s} , R(j, s) = {i ≤ r : xij > s}
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ȳL =

∑
i∈L(j,s) yi

|L(j, s)|
, ȳR =

∑
i∈R(j,s) yi

|R(j, s)|

RSS(j, s) =
∑

i∈L(j,s)

(yi − ȳL)2 +
∑

i∈R(j,s)

(yi − ȳR)2

And the obvious choice is to choose the split that minimizes RSS:

(ĵ, ŝ) = arg min
j,s

RSS(j, s).

this is the split we do. We split the node into two according to the chosen split and continue.

Complexity: After sorting each variable (cost of O(r · log(r) · p) for a node with r observations),
we can use summary statistics to find the optimal split in O(rp), so the overall complexity for a node
is O(r · log(r) · p). However since the sorting has to be done only once for the entire tree, the com-
plexity can be shown to be O(n(log(n) + d)p) for a tree of depth d, since typically d << log(n) we
simply get O(n log(n)p). Hence trees are usually fit with exhaustive search, with some simple tricks.

CART for regression: fits at leaves

Similar to OLS, we think we want to estimate f̂(x) ≈ E(y|x). We interpret the splitting as finding
homogeneous areas with similar y values in our data, hence hopefully similar E(y|x). Consequently,
given a leaf (terminal node) with set of observations Q ⊆ {1, ..., n}, we estimate:

f̂ = ȳQ =

∑
i∈Q yi

|Q|
,

although other variants like using median or fitting simple models in the leaves also exist.

CART for regression: stopping and pruning

CART method: build a big tree, then prune it into small tree that predicts best.

Given a big tree T0, a subtree T , denoted T ⊆ T0, is a tree that can be reached from T0 by
deleting terminal subtrees and replacing them with a single node. Formally, T is generated from
T0 by selecting a subset of the nodes in T0, and for each one of them, replacing the tree hanging
from it with a single leaf (terminal node).

We define the collection of optimally pruned trees as the set of solutions to the following problem,
for all α:

Tα = arg min
T⊆T0

RSS(T ) + α|T |,

where |T | is the number of nodes in T. It is easy to see that limα→0 Tα = T0 the full tree, and
limα→∞ Tα is the “empty” tree that has the root only.

The CART book shows that the following greedy algorithm generates all optimal tree {Tα : 0 ≤
α <∞} :

1. Set T = T0
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2. Repeat:

(a) For each node u ∈ T , denote by Tu the terminal subtree hanging from u. Calculate:

su =
Increase in RSS from deleting Tu and replacing it with a single node

|Tu| − 1
.

(b) Delete from T the subtree with the minimal su and replace it with a single leaf.

The sequence of trees generated by this algorithm contains all optimally pruned trees Tα as defined
above.

The CART book then suggests to select the optimal pruning level α̂ by minimizing prediction
MSE on holdout data not used in training:

α̂ = arg min
α

Test MSE of Tα.

The book further suggests that we prefer smaller trees (bigger alpha) so instead of α̂ above it
proposes using a bigger value:

ˆ̂α = maximal α such that Test MSE of Tα is not much worse than Test MSE of Tα̂.

The criterion for ”not much worse” is one standard error as defined from the holdout data (details
omitted), and therefore this is called the 1-SE rule.

Trees for classification

Trees in general are quite good for classification, and they use similar approaches for two classes
(K = 2) or K > 2. The main difference in classification vs regression trees is in the splitting
criterion instead of RSS. Possible criteria for classification trees:

1. Misclassification error:

MC(j, s) =
∑

i∈L(j,s)

I{yi 6= ŷL}+
∑

i∈R(j,s)

I{yi 6= ŷR}

2. Gini index (used in CART)

Gini(j, s) =

K∑
k=1

nLp̂kL(1− p̂kL) +

K∑
k=1

nRp̂kR(1− p̂kR)

3. Information gain (used in C4.5)

Gain(j, s) =
K∑
k=1

nLp̂kL log(p̂kL) +
K∑
k=1

nRp̂kR log(p̂kR)

where ŷL, ŷR are the most common classes, nL, nR are the number of observations in each side of
the split, and p̂kL, p̂kR are the empirical proportions of each class in the respective sides of the split.

In practice, MC is not used and the other two usually yield similar splits (example on the board).

The obvious changes in fitting leaves (majority class) and stopping or pruning rules (using the
same criterion as splitting) complete the classification case.
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Trees and categorical features

An important class of explanatory variables is categorical ones (city, car model,...), and many
predictive modeling approaches struggle with those. For example, the standard solution in linear
regression for a Q−category predictor is “one-hot encoding”: adding Q−1 binary dummy variables
to the regression. Since we know prediction variance is linear in the number of variables, we can
see the statistical difficulty, and it can also lead to computational difficulties.

Assume variable j is categorical and its categories are labeled {h1, . . . hQ}. In CART, all splits
are binary, so splitting on this categorical variable with Q categories involves partitioning these
categories into two subsets: L ∩R = ∅, L ∪R = {h1...hQ}, such that if Xji ∈ L, then observation i
goes left and otherwise right. The optimal split as usual is the one optimizing the splitting criterion
(RSS, Gini, or whatever applies).

Thus this raises two types of problems:

• Computational: there are O(2Q) possible splits (ways of partitioning Q objects into two
subsets). Trying them all is not practical when Q is not small. As it turns out, this is
actually not a problem for regression and two class classification, see below.

• Statistical: there are O(2Q) possible splits, so the optimal one may be badly overfitted. To
illustrate that, assume we are in a two-class classification problem and Q = n (unique value for
each observation, for example an identifier which we mistakenly take as a categorical variable).
In this setting, a single split can perfectly fit the training data: send all observations with
yi = 0 left and those with yi = 1 right according to their identifiers. This is of course not a
useful prediction model for new data. This problem exists also when Q < n to a less extreme
extent: it is a variance issue.

The CART book shows that the computational problem can be overcome for regression and
two-class classification with the following simple algorithm (for regression):

1. For each category hq denote ȳq the average of the observations of class q in the current node.

2. Sort categories in increasing order of ȳq : ȳ(1) ≤ ȳ(2) ≤ . . . ≤ ȳ(Q), where the notation (q) is
for the order statistic (sorted list).

3. The optimal split on the training data is guaranteed to be one of the Q− 1 splits along this
list, separating the categories with smaller ȳ from the ones with bigger.

For 2-class classification, we simply replace ȳq with p̂q, the empirical proportion of class 1 in each
category.

It is important to empahsize that this solves the exponential complexity issue (O(Q log(Q) +n)
instead of O(2Q + n)) but not the statistical complexity issue.

C4.5 and its related methods do Q-way splits in this setting, an interesting idea, but not
commonly used these days as far as I know.
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Trees and missing variables

An important problem, which arises also in our class competition, is dealing with missing values of
the features (explanatory variables). Here two many mainstream methods for predictive modeling
struggle.

Tree on the other hand offer many interesting solutions for dealing with this, and the one we
discuss is the surrogate variable idea in CART: after we choose a split (ĵ, ŝ), we look for other splits
on different variables that are “similar” to the chosen split. These can serve to apply the split to
observations where the chosen variable ĵ is unobserved. (Code demonstration on competition data
in class).

Summary: advantages and shortcomings of trees

Advantages:

1. Intuitive interpretation as “neighborhoods” based on splits on single variables

2. Non-parametric nature, flexibility and richness of expression

3. Dealing with important issues that other methods struggle with: categorical features, missing
data

Disadvantages:

1. Simply not good predictive modeling approach in terms of accuracy!
Main problem: greedy approach means the trees are very sensitive to small changes in data
⇒ high variance and instability

2. Intuitive appeal is overstated: since they are unstable, we cannot really think of them as
expressing “deep truth” in our data, if changing it a bit can change the tree completely!

In the next couple of weeks we will discuss a critical idea: ensemble methods like random forest
and boosting that attempt to take advantage of the advantages of trees and build accurate predictive
models by using trees as a subroutine that is applied many times and combined in different ways.
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