Statistical Learning, Fall 2022-3 Class notes 12

Kernel methods

The general paradigm we have discussed, given modeling problem with $x \in \mathbb{R}^p$ low dimensional:

- Embed $x \to h(x) \in \mathbb{R}^q$ with q >> p.
- Fit a (possible linear model) in the high dimension $\hat{f}(x) = \sum_{j=1}^{q} h_j(x) \hat{\beta}_j$.
- Challenges:
 - Computational: how to fit in high dimension
 - Statistical: how to regularize in high dimension

Examples:

- Boosting:
 - Model space: all trees of given size
 - Computational trick: coordinate descent via gradient boosting
 - Regularization: sort of lasso (not discussed in class)
- DNN:
 - Model space: Not a linear model but linear combination of non-linear transformation of linear combinations...
 - Computational tricks: (stochastic) gradient descent,
 - Regularization: sort of ridge (gradient descent \approx ridge, similarly dropout

Now we will discuss perhaps the primary example of this thinking, which was hugely important in ML in the past, lost some of its glamour: Kernel methods including (but not limited to) kernel SVM. We can think of the basic idea the same way, except now $x \to h(x)$ where $h_1, ..., h_q$ (possibly $q = \infty$) is a basis of a Reproducing kernel Hilbert functional space (RKHS) \mathcal{H}_K . The space is defined indirectly through the kernel function

$$K(\cdot, \cdot) : \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$$
 such that: $K(x, y) = \langle h(x), h(y) \rangle = \sum_{j=1}^q h_j(x) h_j(y).$

We also naturally define for a function in \mathcal{H}_K , $f = \sum_j \beta_j h_j$, we naturally define $||f||^2_{\mathcal{H}_K} = \sum_j \beta_j^2$. **Kernel examples:**

- 1. Linear Kernel (q = p): $K(x, y) = \langle x, y \rangle$. Here \mathcal{H}_K is simply linear functions.
- 2. Polynomial kernel: $K_d(x,y) = (1+x^ty)^d$. Here $q = \binom{p+d}{p}$ all polynomials in x_j, y_j up to degree d.
- 3. RBF (Gaussian) kernel: $K_{\sigma}(x,y) = \exp\left(-\|x-y\|^2/(2\sigma^2)\right)$. Here $q = \infty$ and we usually don't think about h_1, \ldots explicitly, only about the kernel as measuring distance:
 - When σ is small, the kernel $K(x, \cdot)$ is very tight around x
 - When σ is big, the kernel $K(x, \cdot)$ becomes very spread and K(x, y) remains big for ||x y|| big

Since $q = \infty$ the function space \mathcal{H}_K contains all nicely behaved functions regardless of σ , however we will see that the different nature of the kernel will play a role in model building (i.e. selecting among the functions in \mathcal{H}_K) through regularization.

Kernel machines

The Hilbert space comes with a norm attached and therefore a natural regularization term that controls that norm. Given a loss function our problem is:

$$\hat{f}_{\lambda} = \arg\min_{f \in \mathcal{H}_K} \sum_{i=1}^n L(y_i, f(x_i)) + \lambda \|f\|_{\mathcal{H}_K}^2.$$

We see here that the regularization term is where the specific kernel plays an important role: how functions in \mathcal{H}_K are prioritized for fitting.

The most important result in this area is the Representer theorem (Kimmeldorf and Wahba 1970):

The optimal solution to the kernel regression problem above has the form:

$$\hat{f}_{\lambda} = \sum_{i=1}^{n} \alpha_i K(x_i, \cdot) , \quad \|\hat{f}_{\lambda}\|_{\mathcal{H}_K}^2 = \alpha^T K \alpha, \quad \text{where:} \quad K_{ij} = K(x_i, x_j).$$

Thus we get that we can solve the problem in the n dimensional basis of the columns of K:

$$\hat{f}_{\lambda} = \arg\min_{\alpha} \sum_{i=1}^{n} L(y_i, \sum_{j=1}^{n} \alpha_j K(x_i, x_j)) + \lambda \alpha^T K \alpha.$$

For squared loss this *Kernal linear regression* problem can be nicely written:

$$\hat{f}_{\lambda} = \sum \hat{\alpha}_i K(x_i, \cdot)$$
 where: $\hat{\alpha} = \arg \min_{\alpha} \|\mathbb{Y} - K\alpha\|^2 + \lambda \alpha^T K\alpha$,

a "generalized ridge regression" problem, with an algebraic solution:

$$\hat{\alpha} = (K + \lambda I_n)^{-1} \mathbb{Y}.$$

Now we can interpret what some of our kernels do in this context:

• Linear kernel: $K = \mathbb{X}\mathbb{X}^T$ and therefore $\hat{\alpha} = (\mathbb{X}\mathbb{X}^T + \lambda I_n)^{-1}\mathbb{Y}$. In this case we can easily show:

$$K\hat{\alpha} = \mathbb{X}\mathbb{X}^T (\mathbb{X}\mathbb{X}^T + \lambda I_n)^{-1}\mathbb{Y} = \mathbb{X}(\mathbb{X}^T\mathbb{X} + \lambda I_p)^{-1}\mathbb{X}^T\mathbb{Y} = \mathbb{X}\hat{\beta}_{\lambda},$$

the solution is the same as regular ridge regression!

• RBF Kernel with small σ :

$$K(x_i, x_j) = \exp\left(-\|x_i - x_j\|^2 / (2\sigma^2)\right) \approx 0 \text{ when } x_i \neq x_j$$

Therefore the kernel regression problem is very much like penalized k-NN:

$$\|\mathbb{Y} - K\alpha\|^2 + \lambda \alpha^T K\alpha \approx \|\mathbb{Y} - \alpha\|^2 + \lambda \alpha^T \alpha.$$

The most important kernel machine was the one using the hinge loss (kernel SVM):

$$L(y,\hat{y}) = (1 - y\hat{y})_+,$$

and recall that we discussed how the sparsity of the solution $\hat{\alpha}$ helps in computing and finding solution.

For regression, the ML crowd who like loss functions that zero many $\hat{\alpha}$ came up with the ϵ -support vector regression loss, which is absolute loss with a *dontcare* region in the middle:

$$L(y, \hat{y}) = (|y - \hat{y}| - \epsilon)_+,$$

Now we can also describe kernel methods in the high dimensional modeling framework:

- Model space: all functions in the RKHS
- Computational trick: representer theorem, giving a problem of dimension n
- Regularization: RKHS norm, sort of ridge