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Class notes 12

Kernel methods

The general paradigm we have discussed, given modeling problem with x € RP low dimensional:
e Embed x — h(z) € R? with ¢ >> p.
e Fit a (possible linear model) in the high dimension f(z) = i hj(x)B;.

e Challenges:

— Computational: how to fit in high dimension

— Statistical: how to regularize in high dimension
Examples:
e Boosting:

— Model space: all trees of given size
— Computational trick: coordinate descent via gradient boosting

— Regularization: sort of lasso (not discussed in class)

e DNN:

— Model space: Not a linear model but linear combination of non-linear transformation of

linear combinations...
— Computational tricks: (stochastic) gradient descent,

— Regularization: sort of ridge (gradient descent ~ ridge, similarly dropout

Now we will discuss perhaps the primary example of this thinking, which was hugely important
in ML in the past, lost some of its glamour: Kernel methods including (but not limited to) kernel
SVM. We can think of the basic idea the same way, except now « — h(x) where hq,...hy (possibly
g = o0) is a basis of a Reproducing kernel Hilbert functional space (RKHS) Hg. The space is

defined indirectly through the kernel function
K(--): R x R? - R such that: K(z,y) = (h(x),h(y)) = Y _ h;(2)h;(y).
j=1

We also naturally define for a function in Hg, f = Z]‘ Bjh;, we naturally define ||f||%{K = Zj 5]2.
Kernel examples:



1. Linear Kernel (¢ = p): K(z,y) = (x,y). Here Hx is simply linear functions.

2. Polynomial kernel: Kgy(z,y) = (1 + 2'y)?. Here ¢ = (p';d) all polynomials in z;,y; up to
degree d.

3. RBF (Gaussian) kernel: K,(z,y) = exp (—||z — y||?/(20?)) . Here ¢ = oo and we usually
don’t think about A1, ... explicitly, only about the kernel as measuring distance:

e When o is small, the kernel K (z,-) is very tight around x

e When o is big, the kernel K(x,-) becomes very spread and K(z,y) remains big for
|z — yl| big

Since ¢ = oo the function space Hy contains all nicely behaved functions regardless of o,
however we will see that the different nature of the kernel will play a role in model building
(i.e. selecting among the functions in Hg ) through regularization.

Kernel machines

The Hilbert space comes with a norm attached and therefore a natural regularization term that
controls that norm. Given a loss function our problem is:

fr = arg frg& ;L(yi, F@i) + Al

We see here that the regularization term is where the specific kernel plays an important role: how
functions in H are prioritized for fitting.

The most important result in this area is the Representer theorem (Kimmeldorf and Wahba
1970):
The optimal solution to the kernel regression problem above has the form:

n
= ZaiK(wi, IR Hf,\||3_[K = aTKa, where: K;; = K(x4,2;).
i=1

Thus we get that we can solve the problem in the n dimensional basis of the columns of K:
n n
. . T
fx = argmin Z L(y;, Z a; K (zi,25)) + Ao’ Ko
i=1 j=1
For squared loss this Kernal linear regression problem can be nicely written:
fr= ZoliK(xi, ) where: & = argmin ||Y — Ko|> + AT Ka,
o
a “generalized ridge regression” problem, with an algebraic solution:

= (K +\,)"'Y.

Now we can interpret what some of our kernels do in this context:



e Linear kernel: K = XX” and therefore & = (XX + \I,)~1Y. In this case we can easily show:
Ka = XXT(XXT + ML) 7YY = X(XTX + ML) IXTY = X3y,
the solution is the same as regular ridge regression!
e RBF Kernel with small o:
K(z,x;) = exp (—|lai — z|*/(20%)) ~ 0 when z; # ;.
Therefore the kernel regression problem is very much like penalized k-NN:

Y — Ka|?> + XalKa ~ |Y — a|? + Mala.

The most important kernel machine was the one using the hinge loss (kernel SVM):

L(y,9) = (1 — y§)+,

and recall that we discussed how the sparsity of the solution & helps in computing and finding
solution.

For regression, the ML crowd who like loss functions that zero many & came up with the
e-support vector regression loss, which is absolute loss with a dontcare region in the middle:

L(y.9) = (ly = 9 =€)+,
Now we can also describe kernel methods in the high dimensional modeling framework:
e Model space: all functions in the RKHS
e Computational trick: representer theorem, giving a problem of dimension n

e Regularization: RKHS norm, sort of ridge



