
Statistical Learning, Fall 2022-23

Class notes 1

Our course is focused on Supervised learning or Predictive modeling, where we have two
types of entities:

• A response or dependent varaible y that we are interested to model. We differentiate regression
where y ∈ R from classification where y ∈ G an unordered set.

• A vector of explanatory variables or covariates or features x ∈ X that encode information
about y. We will often but not always assume X = Rp a vector of measurements.

Treating x, y as random variables, there is an (unknown) joint distribution Pr(x, y). In the pre-
dictive modeling problem, however, our interest is focused on the conditional distribution Pr(y|x).
For regression we can write:

y = f(x) + ε, E(ε) = 0 ⇒ f(x) = E(y|x),

so we often focus our attention on modeling f(x) which summarizes the dependence of y on x.

In the most standard setting, we assume we have a training set T = {(x1, y1), . . . , (xn, yn)} =
(Xn×p,Yn×1) sampled i.i.d from Pr(x, y), and we want to use this data to learn a model f̂(x) that

will summarize what we can learn about the true f(x). We call f̂(x) our prediction model, imag-
ining a situation in the future where we will get x only, then apply f̂ to get a prediction ŷ = f̂(x).
A good prediction model would tend to give y ≈ ŷ and/or f(x) ≈ f̂(x).

A secondary goal, beyond predicting well, is often to “learn” things about the true function f,
for example:

• Which coordinates of x are actually informative about y (equivalently, have a role in f)?

• More generally, what kind of function is f? For example: Is it linear, or can it be well
approximated by linear functions?

A generic description of the predictive modeling process is given in Fig. 1.

A topic often mentioned in the context of predictive modeling and beyond is big data. In our
context, this could mean one or both of the following:

• Tall data: large number of observations in the training data, n is very big

• Wide data: large dimensionality, p is very big
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Figure 1: generic description

As we will see, the two modes tend to have very different implications for the predictive modeling
process, affecting: which approaches are relevant, what are the difficulties (statistical vs computa-
tional), etc.

Basic predictive modeling approaches: least squares regression and
nearest neighbors

We will start from describing two important and fundamental methods for regression: least squares
regression and nearest neighbors regression. In addition to being important in themselves, they
will represent for us conceptual approaches that are shared among many methods and approaches
that we will study during the course:

• Parametric global methods, which build f̂(x) as a parametric model that applies to the whole
space

• Non-parametric local methods, which don’t explicitly build a function f̂(x), but describe it
in terms of local behavior of the training data in the region near x

Least squares regression (quick reminder)

We are dealing with regression y ∈ R with covariates x ∈ Rp. We want to build a linear model
ŷ = β̂0 + xtβ̂. Since we want to also include an intercept β̂0 in our model, we typically define

x̃ =

(
1
x

)
∈ Rp+1, and similarly X̃ ,

and also assume β̂ ∈ Rp+1 to now write simply ŷ = x̃tβ̂.
Note: In practice we will often neglect the tildes and simply write x, implicitly assuming the added
intercept when relevant.

For any given β vector, we have Xβ ∈ span(X) (column space), so we can think of least squares
regression as using the training data T to find a good vector Xβ̂ in the column space of X. This is
typically done via least squares regression:

β̂ = arg min ‖Y− Xβ‖22,
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meaning we are looking for the closest vector to Y in the column space of X, and this gives us the
least squares solution β̂. This is an orthogonal projection.

The well known solution to this optimization solution is the least squares estimator:

β̂ =
(
XtX

)−1XtY, Ŷ = Xβ̂ = X
(
XtX

)−1XtY := HY.

Important note: We generally do not assume f(x) = E(y|x) = xβ, in other words there is
no real connection between assuming that the linear model is correct and performing least squares
regression. We will carefully analyze the bias component that arises in linear regression when the
linear model assumption does not hold.

Nearest neighbor regression

Given a point we want to predict at x, we will simply predict y as an average over y of the k
“nearest neighbors” of x in the training data:

ŷ =
1

k

∑
i∈Nk(x)

yi,

where Nk(x) contains the indexes for the “neighborhood” of size k of x in the training data.

The key to defining nearest neighbor methods is the definition of distance and hence neighbor-
hood. When x ∈ Rp, the simplest approach is simply to use Euclidean distance: d(x, xi) = ‖x−xi‖2,
and Nk(x) will be the indexes of the k observations with minimal distance. Different definitions of
distance are possible, and of course affect model quality, as well as the selection of the number of
neighbors k we consider.

An important option to consider is that of standardization (centering and rescaling columns of
X to have norm 1), which makes all variables “similarly” influential in the distance function, as
opposed to having columns on a different scale (milimeters vs kilometers).
Question: What effect does standardization have on least squares regression estimates, specifically
on each of β̂ and Ŷ?

Application to classification problems

If we limit our discussion for now to two-class classification problems, where y ∈ G with |G| =
2, G = {g0, g1} we can easily propose versions of linear regression and nearest neighbors that can
also apply to this setting and build prediction models.

For linear regression, if we simply encode y = g0 → y = 0, y = g1 → y = 1, we can apply linear
regression as it is, and we often then use it to predict by thresholding the resulting model:

ŷ(x) = g1 ⇔ f̂(x) > 0.5.

For nearest neighbors, we can simply replace the averaging in the regression setting to voting,
so

ŷ(x) = I

1

k

∑
i∈Nk(x)

I {yi = g1} > 0.5

 .
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Probability notations and laws - refresher

We use (X,Y ) ∼ Pr(x, y) a general notation for discrete probabilities or continuous densities. We
also use

∫
for sums or integrals interchangeably.

Conditional distribution: Pr(Y = y|X = x) = Pr(x,y)
Pr(x) . Conditional expectation: E(Y |X = x) =

∫
yPr(y|X = x).

Note that E(Y |X) is a random variable, which attains a value for each value of X. We can define
conditional variance in the same way.

Law of iterated expectation: E(g(X,Y )) = EX [E (g(X,Y )|X)] .

Law of total variation: V ar(Y ) = EXV ar(Y |X) + V arXE(Y |X).

Example: AssumeX ∈ {Male, Female} and Y = height.Assume Y |X = M ∼ N(175, 100), Y |X =
F ∼ N(165, 100). (Note that height does not have a normal distribution but a mixture of normals.)
Assume also Pr(X = F ) = 0.5.
Then:

E(Y ) = 0.5× 175 + 0.5× 165 = 170 , V ar(Y ) = 100 + V ar(Z) = 125,

where

Z = E(Y |X)

{
175 w.p. 0.5
165 w.p. 0.5

.
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