Statistical Learning, Fall 2022
Homework exercise 4

Due date: 17 January 2023 before class — no extensions as we will discuss it in class

1. Playing around with trees
Run a variety of tree-based algorithms on our competition data and show their performance. Compare:
e Small tree without pruning
e Large tree without pruning
e Large tree after pruning with 1-SE rule
e Bagging/RF on small trees (100 iterations)
e Bagging/RF large trees (100 iterations)
Do this under five-fold cross validation on our competition training set, and use the results of the five
different folds to calculate confidence intervals for performance. Plot all the results in a reasonable
way (e.g. using boxplot()) and comment on them. Explain your choices of “small” and "large”.

Hints: a. Start early since bagging may take a while to run. b. Use as a basis the code from class
which implements much of this.

2. AdaBoost and e-Adaboost
This problem refers to the AdaBoost algorithm (Freund and Schapire, 1997), which is used for binary
classification with labels y; € {£1}. Adaboost initializes fo = 0,w; = 1, then for ¢t = 1...T updates:

(a) Fit a classification tree with response y and weights w on the observations, getting tree h;

(b) Denote by Err; the (weighted) misclassification error of hy

(c) Set oy = 0.5log ((1 — Erry)/Erry)

(d) Update weights: w; + w; exp (—a(y;he(x;)))
The model after step t is fi(z) = ZZ=1 ahy (), the final model is fr, and classification if according
to the sign of fr(z).

As we said in class, from the coordinate descent perspective of boosting, AdaBoost can be viewed as
gradient boosting with loss function L(y,3) = exp(—yg) and line-search steps, explicitly:

e Fitting a classification tree is minimizing >, w;yihi(z;) = (wy, hi(X)) (so w;y; is the actual
gradient)

e The calculated oy is the solution to the line search problem: oy = argming >, L (v, (fr—1 + ahe)(x;))

e The updated w; is indeed (proportional to) the absolute value of the gradient:

dL (y;,1)
Wi & dl =)

(a) Choose one of the three properties above and prove explicitly that it holds (for example, if you
choose the first one, show how fitting h; classification tree minimizing weighted miclassification
error is equivalent to choosing a coordinate descent direction in the exponential loss function).



(b)

The code in |www.tau.ac.il/~saharon/StatsLearn2022/AdaBoost.r implements AdaBoost on the
competition data for the problem of whether y > 3 or y < 3. Read the code carefully to make
sure you understand the details. Note especially the parameters "method” and ”weights” that
rpart takes.

i. With 8000-2000 training-test division as in the code, run the algorithm for 1000 iterations
and draw a plot of training and test misclassification as a function of iterations. Explain its
form.

ii. Change the algorithm from line-search boosting to e-boosting with ¢ = 0.01, not changing
the other parameters. Run this version for 1000 iterations and draw the same plot. Discuss
the results and compare to the line-search version.

iii. Now change the loss function from the exponential loss to squared error loss, and the approach
to the regular gradient boosting with regression tree. Explain briefly in writing what you did,
and run with the same parameters (e = 0.01,7" = 1000). Classify according to sign of § and
repeat the same analysis again. Discuss the relative results.

iv. (* 4+5) Play with the parameters in one (or all) of the algorithms (tree depth or other stopping
criteria, €, T') to change the results. Show how you can guarantee much better training results.
Can you find settings that give much better testing results?

. ESL 7.6 (7.5 in first edition): Degrees of freedom of Nearest Neighbors
Prove that in the standard i.i.d error model (which the book calls “additive error”), the effective degrees
of freedom of k-NN with N observations is N/k.

. Neural networks:

(a)

(d)

Assume we are given a modeling problem with € R? and y € {0,1}, which are can treat as
a regression or classification problem (but prediction is always by comparing predictions to 0.5
and predicting either 0 or 1). For the following popular models, describe a neural network that
implements them:

e Standard linear regression

e Logistic regression
Explain in what sense the network implements them. Specifically, do we expect to get the same
fitted model from the network as from the regular model when applied to data? Why yes or why
not?
The code nn.r| reads the South African heart dataset, divides it into training and test sets, and
uses Keras to apply a NN with one hidden neuron and logit (=sigmoid) activation. It also applies
and tests logistic regression. Use this skeleton to:

i. Implement all four models described in the previous part

ii. Prepare 2*2 confusion tables of predicted vs. actual labels
iii. Briefly discuss the results compared to your expectations from the previous section
Implement a more complex architectures (e.g., a hidden layer with three nodes, and then an
output layer, see commented code in the file) and apply it to the data. You may play with some
of the parameters if necessary. Discuss its test-set performance.
Implement a network with a hidden layer with three nodes and an output layer, where all activa-

tions are linear. What form does the final model have? What functions of the original = variables
are being fitted?

Resources for this problem:
Keras help
Keras in R

Note: You are of course welcome to solve and submit this problem in Python or any other environment,
all Keras/Tensorflow models in the example R code should be easily transportable.


www.tau.ac.il/~saharon/StatsLearn2022/AdaBoost.r
http://www.tau.ac.il/~saharon/StatsLearn2022/nn.r
https://keras.io/
https://keras.rstudio.com/

