
Statistical Learning - Milan, Fall2019

Homework problem 11

Leaving Out Lemma for ridge regression
Recall that the Leaving Out Lemma requires two conditions under the fixed-X, iid error assumption:

• Linear model: ŷ = S(X)y in training.

• For any 1 ≤ i0 ≤ n, define a pseudo training dataset X, ỹ with the same X as our training data, and
ỹj = yj for j 6= i0 and:

ỹi0 = ŷ
(−i0)
i0

,

where the superscript (−i0) indicates the model built on n− 1 observations, leaving out i0. Then we
require:

ˆ̃yi0 = (Sỹ)i0 = ŷ
(−i0)
i0

.

Under these conditions we proved that:

(yi0 − ŷ
(−i0)
i0

) =
(yi0 − ŷi0)

1− Si0i0
.

In this problem we will examine the applicability of this result to penalized ridge regression, where:

β̂ = arg min
β
‖y −Xβ‖2 + λ‖β‖2.

1. Write S(X) for penalized ridge regression (more accurately, we can write it S(X,λ) to emphasize that
it can depend on λ as well).

2. Prove that penalized ridge complies with the second condition above, that is, it fulfills the Leaving out
Lemma.
Hint: As we did for least squares in class, concentrate on the optimization objective and prove that
its optimizer should be the same for ỹ as for the data without observation i0.

3. How does the size of the diagonal elements S(X,λ)ii affect the (optimism) gap between training and
leave-one-out squared error for ridge regression? Consequently, how do you expect S(X,λ)ii to behave
as a function of λ? Increasing, decreasing, or not changing in a clear manner?

4. Prove your previous claim. If you fail to prove it, supply well designed simulations for partial credit.
Hint: You may find it useful to consider arguments on non-negative-definiteness and differentiation.

5. Moving from penalized ridge regression to penalized lasso, do you expect the Lemma to hold for this
problem as well? No need for formal proof, but a relevant and accurate argument is required.

1


