Statistical Learning - Milan, Fall2019
Homework problem 11

Leaving Out Lemma for ridge regression
Recall that the Leaving Out Lemma requires two conditions under the fixed-X, iid error assumption:

e Linear model: § = S(X)y in training.

e For any 1 < iy < n, define a pseudo training dataset X,y with the same X as our training data, and
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where the superscript (—ig) indicates the model built on n — 1 observations, leaving out 9. Then we
require:
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Under these conditions we proved that:
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In this problem we will examine the applicability of this result to penalized ridge regression, where:

B= argmﬁin ly — XB[* + AlBI>.

1. Write S(X) for penalized ridge regression (more accurately, we can write it S(X, A) to emphasize that
it can depend on \ as well).

2. Prove that penalized ridge complies with the second condition above, that is, it fulfills the Leaving out
Lemma.
Hint: As we did for least squares in class, concentrate on the optimization objective and prove that
its optimizer should be the same for y as for the data without observation ig.

3. How does the size of the diagonal elements S(X, \);; affect the (optimism) gap between training and
leave-one-out squared error for ridge regression? Consequently, how do you expect S(X, \);; to behave
as a function of A7 Increasing, decreasing, or not changing in a clear manner?

4. Prove your previous claim. If you fail to prove it, supply well designed simulations for partial credit.
Hint: You may find it useful to consider arguments on non-negative-definiteness and differentiation.

5. Moving from penalized ridge regression to penalized lasso, do you expect the Lemma to hold for this
problem as well? No need for formal proof, but a relevant and accurate argument is required.



