Class notes: Poisson regression and variance stabilizing transformations

1 Poisson distribution

$$Y \sim Pois(\lambda) \quad \Rightarrow \ P(Y = k) = \exp(-\lambda) \frac{\lambda^k}{k!} \ , \ \ k = 0, 1, \dots \ , \ \ (\lambda > 0)$$

Facts:

- $E(Y) = var(Y) = \lambda$
- $X \sim Bin(n,p)$ with n big and p small then $X \sim Pois(np)$
- Memoryless renewal process \Leftrightarrow time to event is exponentially distributed \Leftrightarrow number of events in time T is Poisson
- $Y_i \sim Pois(\lambda_i)$ independent $\Rightarrow \sum_i Y_i \sim Pois(\sum_i \lambda_i)$

Very useful in "real life". Examples (under proper assumptions):

- 1. Number of customers arriving at bank teller in an hour
- 2. Number of grades a Netflix movie gets in a year
- 3. Number of mutations in a genomic locus in X generations (or sum over genome)

2 Poisson regression

Like Gaussian and Binomial (logistic) regression, we assume:

$$Y|X = x \sim Pois(\lambda(x))$$

Like in Binomial we can try to assume $\lambda(x) = x^t \beta$ but does not guarantee $\lambda > 0$. Solution is to use link functions and assume $\log(\lambda(x)) = x^t \beta$.

3 Variance stabilizing transformations

Assume we insist on using square error loss for modeling or (especially) evaluation. Probabilistically squared error corresponds to Gaussian log likelihood, of homoskedastic error, i.e.,

- Symmetric.
- Var(Y|X) is fixed throughout covariate space.

Second assumption especially is problematic. Say $Y|X \sim Pois(\lambda(X))$ and λ is large, then:

- Normal appx. is not a problem: $Pois(\lambda) \approx N(\lambda, \lambda)$
- But variance linearly depends on mean \Rightarrow homosked asticity is a problem

Can we transform Y in such a way as to solve this problem?

General setup:

$$E(Y) = \mu$$
, $Var(Y) = \sigma^2 = \Omega(\mu)$

Examples:

- 1. Gaussian: σ^2 is an independent parameter, can assume $\Omega(\mu) = \text{constant}$.
- 2. Bernoulli: $\Omega(\mu) = \mu(1-\mu)$
- 3. Poisson: $\Omega(\mu) = \mu$

We are looking for f(Y) such that Var(f(Y)) will be roughly constant (independent of μ), like in the normal case. Taylor expansion:

$$f(Y) = f(\mu) + (Y - \mu)f'(\mu) + O((Y - \mu)^2)$$

(f(Y) - f(\mu))² \approx (Y - \mu)^2(f'(\mu))^2

Abusing additional probability law (which one?) we write:

$$Var(f(Y)) \approx Var(Y)(f'(\mu))^2$$

So to (approximately) stabilize variance we want:

$$(f'(\mu))^2 = 1/\Omega(\mu)$$

Poisson: $(f'(\mu))^2 = 1/\mu \Rightarrow f(\mu) = 2\sqrt{\mu}$
$$\Rightarrow \quad Var(\sqrt{Y}) \approx 1/4$$

Binomial variance stabilizing transformation:

$$X \sim Bin(n,p) \Rightarrow var(\arcsin(\sqrt{(X/n)})) \approx 1/2$$