
Milan short course, Fall 2019

Class note: quantile regression

1 Motivation

Understanding the dependence of Y on X and the conditional distribution P (Y |X) can be much more than
modeling its mean! Figure 1 demonstrates that if the noise ε in Y = f(X) + ε is “nicely” behaved, e.g.
Normal(0,1) then modeling the conditional mean (or median) can actually be enough to understand the
complete P (Y |X), however if the noise is more erratic we may want to explicitly model the quantiles to
understand P (Y |X). In both panes we have

median(Y |X = x) = 2 ·
(
exp(−30 · (x− 0.25)2) + sin(π · x2)

)
and we see the median of Y |X (solid) and the 0.25, 0.75 quantiles (dashed).
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Figure 1: Quantiles for data with Normal(0,1) noise are parallel (left), while those for data with noise that
is asymmetric with non-constant variance can look different (right).

2 Modeling

If we use as EPE criterion the τ -quantile loss:

Lτ (Y, f(X)) =

{
τ × (Y − f(X)) if Y − f(X) > 0
−(1− τ)× (Y − f(X)) otherwise

Then the EPE is minimized by setting f∗(x) to be the τth quantile of P (Y |X = x), i.e., P (Y ≤ f∗(x)|X =
x) = τ . Figure 2 shows the quantile loss for some values of τ . The τ -quantile loss function has angle tan−1(τ)
with X-axis on the right, and tan−1(1− τ) on the left.

If we want to build a model for the τ -quantile of P (Y |X), we have several approaches, comparable to
what we did in the case of estimating conditional means:
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Figure 2: Quantile loss function for some values of τ

• Empirical risk minimization, i.e., minimize the EPE loss criterion on the training data, in the spirit
of least squares regression for estimating conditional means:

β̂ = arg min
β

n∑
i=1

Lτ (yi,x
T

iβ)

• Local estimation of conditional quantiles, i.e., approximate the conditional quantile at a point
X = x by the quantile of the training observations “in the neighborhood”. Given: a point x for
prediction, a neighborhood size k and assuming for simplicity that (k + 1) · τ is integer:

Ŷτ (x) = τth quantile of Y in Nk(x)

= (yi s.t. xi ∈ Nk(x) and |{l : xl ∈ Nk(x), yl ≤ yi}| = (k + 1) · τ)

The tradeoffs between bias and variance in this case are essentially similar to those in the conditional mean
case.

A few interesting and favorable properties of quantile regression:

1. Since the loss function is piecewise linear, solving linear quantile regression is actually a linear program-
ming problem, and an easy one at that. The formulation uses the standard doubling trick to replace
the absolute values by positivity constraints:

minβ
∑
i

τε+i + (1− τ)ε−i

s.t. −ε−i ≤ yi − xT

i ≤ ε+i
ε+, ε− ≥ 0
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2. Quantile regression in general and absolute-loss regression (τ=0.5) in particular are robust to outliers
and gross errors in the measurement of both Y and X. Detailed and formal discussion of robustness
is outside the scope of this overview, but it is easy to show examples of how contamination destroys
least squares regression, but leaves quantile regression practically unaffected.
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