
Statistical Learning - Milan, Fall2019

Homework problems 5+6

5 The effect of identical predictors in Ridge and Lasso (3.28,3.29 in ESL)
Assume we have a univariate model with one x variable and no intercept. We fit constrained ridge
regression and lasso with a given constraint s on the norm (`2 norm squared for ridge, `1 norm for
lasso). Now we add a second identical variable x∗ = x and refit the models with the same constraint.

What happens to the coefficients β̂ of both models? How does the two-dimensional solution to the new
problem relate to the one-dimensional solution to the old one in each case? Is it unique? Assume the
constraint is much smaller than the norm of the least squares solution, so it is tight.
Hint: The behavior of ridge and lasso under this scenario is quite different. Since both predictors
x, x∗ are identical, a coefficient can be divided between them in different ways which give the same fit.
Consider what different divisions do to the norm of the coefficient vector in each case, and use that to
infer the optimal solution. You can also simulate to gain intuition.

6 Which properties of Lasso path generalize to other loss functions?
Recall we showed the optimality conditions for a Lasso solution:
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where as we noted in class,

XT
k (Y −Xβ̂(λ)) = −∂RSS(β)
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is the derivative of the loss function.

We noted in class the following properties of the set of solutions {β̂(λ) : 0 ≤ λ ≤ ∞}:

i All the variables in the solution are “highly correlated” with the current residual from (1) above,
and all the variables with zero coefficients are “less correlated” with the current residual from
(2,3) above.

ii The solution path {β̂(λ) : 0 ≤ λ ≤ ∞} as a function of λ can be described by a collection of
“breakpoints”∞ > λ1 > λ2 > ... > λK > 0 such that the set Ak of active variables with non-zero
coefficients is fixed for all solutions β̂(λ) with λk ≥ λ ≥ λk+1.

iii β̂(λ) is a piecewise linear function, in other words, for λ in this range we have:

β̂(λ) = β̂(λk) + vk(λk − λ),

for a vector vk we explicitly derived in class.
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Assume now that we want to build a different type of model with a different convex and infinitely
differentiable loss function, say a logistic regression model for a binary classification task, and add
lasso penalty to that:

β̂(λ) = arg min
β

n∑
i=1

log
{

1 + exp{−yixTi β}
}

+ λ‖β‖1.

We would like to investigate which of the properties above still holds for the solution of this problem.

(a) Using simple arguments about derivatives and sub-derivatives as we used in class for the quadratic
loss case, argue that that three conditions like (1)-(3) can be written for this case too, with the
appropriate derivative replacing the empirical correlation. Derive these expressions explicitly for
the logistic case.

(b) Explain clearly why this implies that properties (i), (ii) still hold (for (ii), you may find the
continuity of the derivative useful).

(c) Does the piecewise linearity still hold? A clear intuitive explanation is sufficient here.
Hint: Consider how we obtained the linearity for squared loss in 4λ in class by decomposing the
correlation vector XT (Y −Xβ) = XTY −XTXβ.
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